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Abstract 

It is well known that amplitude-dependent frequency features only nonlinear 

dynamical systems. This paper shows that, however, within the framework of 

the theory of nonlinear differential equations introduced recently by the authors 

of this work, such a property may also characterize the linear harmonic 

oscillator equation. In doing so it has been found as another major result that the 

linear harmonic oscillator is nothing but the nonlocal transformation of equation 

of the free particle motion under constant forcing function. 

Introduction 

In mathematical physics and analysis of differential equations, it is well known 

that isochronicity, that is amplitude-independent frequency property is a 

fundamental feature of linear differential equations which may exhibit periodic 

solutions. In this way consider the linear harmonic oscillator equation 
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where 0<c , is an arbitrary parameter, and a dot over a symbol means a 

derivative with respect to the argument. The linear harmonic oscillator is known 

as the prototype of second order linear dynamical systems, which has been 

widely used in a rich variety of physical and engineering applications. Usually 

the solution of (1) is written in the form 

( )α+−= tcAtx sin)( 0                                                                                          (2) 

where 0A
 
and α are two constants of integration, which may be determined from 

initial conditions. In other words, 0A  does not dependent on c , and vice versa, 

due to the isochronicity property of  (1). However, the literature shows the 

existence of nonlinear differential equations which may exhibit such a property. 

As such a lot of papers has been devoted to criteria for which nonlinear 

differential equation may exhibit isochonicity [1, 2, 3]. The isochronicity is an 

unusual behavior of nonlinear differential equation. Therefore nonlinear 
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dynamical systems exhibit in general amplitude-dependent frequency. The 

amplitude-dependent frequency is closely related, for example in mechanics, to 

hardening or softening property exhibited by nonlinear dynamical mechanical 

systems [4]. Due to the above, it appears reasonable to ask whether the linear 

harmonic oscillator equation may exhibit a new solution. To be more precise the 

question may be formulated as follows: Can the linear harmonic oscillator 

equation exhibit amplitude-dependent frequency property? To our best 

knowledge, such a question has never been asked and solved adequately in the 

literature. Therefore this question may lead to prove the existence of unusual 

solution that is, unusual behavior to second order linear differential equations 

and also amplitude-dependent frequency property for the linear harmonic 

oscillator equation, for the first time. This work assumes such predictions which 

may be shown within the framework of nonlinear differential equations theory 

introduced recently by Adjaï et al. [5]. To do so, it is convenient first to briefly 

review the theory of Adjaï et al. [5] (section 2), to establish and solve using this 

exactly and explicitly the equation (1), (section 3). Finally, the obtained results 

are discussed (section 4) and a conclusion is drawn for the work. 

2. Review of extended theory of Akande and coworkers [6]  

In order to compute exact and explicit general solution to the cubic Duffing 

equation and to some Painlevé-Gambier equations, Adjaï et al. [5] have been 

able to carry out an extension to the theory of nonlinear differential equations 

introduced recently by Akande et al. [6]. The theory developed by Adjaï et al. 

[5] requires to consider the forced linear harmonic oscillator equation 
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where a
 
and c  are arbitrary parameters and prime means differentiation with 

respect to the argument and the generalized Sundman transformation 
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where 
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such that l  and γ  are arbitrary constants and, 0)( ≠xg  and  )(xϕ  are arbitrary 

functions of x . In this regard the nonlocal transformation of (3) yields 
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For ( ))(ln)( xfx =ϕ , (5) reduces to 
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which, for 2)( xxf =  and xxg =)( , becomes 

 ( ) 0
1

2 414
22

=−
+

+−+ −+ lxcx
l

a

x

x
lx γγγ

&
&&                                                                    (7) 

Now, the objective is to establish equation (1) from (7) in order to perform its 

exact and explicit general solution. 

3. Solution of (1) with amplitude-dependent frequency 

The aim in this section is to establish equation (1) in the context of the theory 

defined by [5] and to compute the solution. 

3.1 Derivation of equation (1) 

In this perspective consider the following theorem. 

Theorem 1. Let 0=a . Then equation (3) reduces to 

cy =′′ )(τ                                                                                                                (8) 

which admits the solution 
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where 1k  and 2k  are constants of integration. 

Proof. By substituting 0=a , into (3), one may immediately obtain (8). By 

integration, (8) yields 

( ) 1' kcy += ττ                                                                                                       (10) 

so that after integration, equation (9) is obtained as result. One may prove also 

the following theorem 



Theorem 2. Let 0=a . Let also 12 == γl . Then (7) reduces to the linear harmonic 

oscillator equation (1) where 0<c . 

Proof. It suffices to set in (7) 12 == γl , and 0=a , to obtain directly equation (1) 

with the condition that 0<c . One may now establish the solution of (1) with 

amplitude-dependent frequency. 

3.2 Solution of equation (1) 

From the above, one may prove the following theorem 

Theorem 3. Consider equation (9). Then the application of the nonlocal 

transformation (4) yields the solution of (1) in the form 

( )cKtcAtx −+−±= cos)(                                                                                  (11) 

where  
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and K  is an arbitrary constant. 

Proof. 

According to Theorem 1, the use of the nonlocal transformation (4) leads to 

compute 
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such that 
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Substituting (9) into (14) yields, after integration [7] 
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Substituting now (15) into (13) leads immediately to 
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which becomes (11) when 
c

kck
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Theorem 3 is a new result in the fields of mathematics and mathematical 

physics, which requires therefore a discussion. 

4. Discussion 

As can be seen, the frequency c−  depends on the amplitude A , that is 
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so that the solution (11) has the behavior of harmonic form but whit amplitude-

dependent frequency. One may also distinguish in (11) the presence of three 

constants of integration. However But these may easily be determined from 

initial conditions. In this perspective, consider  0)0( xx =
 
and 0)0( vx =& . Then one 

may obtain 
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and 

)(sin 222
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so that adding the equations (18) and (19), leads to 
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The comparison of (20) with (12) yields 
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The integration constant K  may be computed from 
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that is  










 −−
−=

cx

cv

c

c
K

0

0arctan                                                                                  (23) 

That being so, one may easily observe that the usual solution of (1) that is 

equation (2), may be deduced from (11) by taking 01 =k , such that 

( )cKtcxtx −+−= cos)( 0                                                                                (24) 

where the amplitude 0xA = . For 02 =k , the unusual solution (11) remains 

amplitude-dependent frequency. The above shows that the amplitude-dependent 

frequency characterizes not only nonlinear dynamical systems but may feature 

also linear dynamical systems. It is worth to note that another major finding of 

this work has been to show that the free particle motion equation with a constant 

forcing function (8) is closely related to the linear harmonic oscillator equation, 

for the first time, that is these two equations are mathematically equivalent. In 

other words the linear harmonic oscillator equation is nothing but a nonlocal 

transformation of equation of the free particle motion under a constant forcing 

function, and vice versa. So with that a conclusion may be drawn to this research 

contribution. 

Conclusion 

It is well known that amplitude-dependent frequency consists of a fundamental 

property of nonlinear dynamical systems. Also, very few researchers can suspect 

that the well known linear harmonic oscillator equation can exhibit solution with 

amplitude-dependent frequency. However, the present work has successfully 

shown, for the first time, this behavior for the linear harmonic oscillator 

equation. This has been possible by the application of the theory of nonlinear 

differential equations introduced recently by the authors of this paper. In doing 

so it has been observed that the equation of the free particle motion under 

constant forcing function, is closely related to the linear harmonic oscillator 

equation. In other words the linear harmonic oscillator equation is nothing but 



the nonlocal transformation of the equation of the free particle motion with a 

constant forcing function. 
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