Dynamics of the Solar Wind: Parker's Treatment and the Laws of Thermodynamics

APS Ohio Section – Fall 2018 Meeting September 28-29, 2018 University of Toledo Toledo, OH

Pierre-Marie Robitaille¹ and Stephen J. Crothers²

¹Department of Radiology, The Ohio State University Columbus, Ohio 43210 robitaille.1@osu.edu

²PO Box 1546, Sunshine Plaza 4558, QLD, Australia, thenarmis@yahoo.com

Zeroth Law of Thermodynamics

 $\begin{array}{c} \mathbf{A} \leftrightarrow \mathbf{B} \quad \text{and} \ \mathbf{B} \leftrightarrow \mathbf{C} \\ & \mathbf{Then...} \\ \mathbf{A} \leftrightarrow \mathbf{C} \end{array}$

But the law also implies that temperature is an intensive property.

The temperature of an object cannot depend on extensive properties which in combination do not yield an intensive property.

Intensive versus Extensive Properties

Intensive Properties

Temperature Pressure Density Concentration Specific Volume Color

Extensive Properties

Mass Energy Enthalpy Entropy Volume Heat Capacity

Intensive versus Extensive Properties

The concept of intensive and extensive properties is so important that Peter Landsberg wanted to establish it as

The 4th Law of thermodynamics

P.T. Landsberg, Thermodynamics with Quantum Statistical Illustrations, Interscience Publishers, New York, 1961, p. 142.

Equations: Intensive versus Extensive Properties

"If one side of an equation is extensive (or intensive), then so must be the other side"

S.G. Canagaratna

Intensive and Extensive Properties: Underused Concepts, J. Chem. Educ., 1992, v. 69, no. 12, 957-963.

Lesson From the Ideal Gas Law

$$PV = nRT \rightarrow P = \frac{nRT}{V}$$
, since: $n = \frac{M}{M}$ then, $\rightarrow P = \frac{MRT}{MV}$

since:
$$\rho_o = \frac{M}{V}$$
 and: $R_s = \frac{R}{M} \rightarrow P = \rho_o R_s T$

- $\begin{array}{l} P = pressure \ (intensive) \\ T = temperature \ (intensive) \\ M = mass \ (extensive) \\ V = volume \ (extensive) \\ \rho_o = density \ (intensive) = mass/volume \\ n = number \ of moles \ (extensive) = mass/molar \ mass = M/M \\ R = universal \ gas \ constant \ (constant) \\ R_s = specific \ gas \ constant \ (constant) = universal \ gas \ constant/molar \ mass \\ T = temperature \ (intensive) \end{array}$
- M =molar mass (constant)

Parker's Temperature

 $\lambda = GM_SM_H/2k_Ba T_o$

 $T_o = GM_SM_H/2k_Ba\lambda$

 $\lambda = dimensionless parameter (number)$

G = universal constant of gravitation (constant)

 $M_{S} = Mass of the Sun (extensive)$

a = radial distance to the base of the corona from which the solar wind originates (neither intensive nor extensive)

(see p. 667 in: E. N. Parker, Dynamics of the Interplanetary Gas and Magnetic Fields. Astrophysical J. 1958, v. 128, 664-676).

Parker's Temperature

 $T_o = GM_SM_H/2k_Ba\lambda$

As a result, the temperature advanced by Eugene Parker is non-intensive, contrary to the requirement of the laws of thermodynamics.

This illustrates that the solar winds could not have arisen through the thermal expansion of coronal gas as is currently believed.

A solution to this problem must include the realization that the Sun is comprised of condensed matter and that the corona possesses both condensed matter and gaseous plasma.

Robitaille P.-M.L. Forty Lines of Evidence for Condensed Matter – The Sun on Trial: Liquid Metallic Hydrogen as a Solar Building Block. Prog. Phys. 2013, v. 4, 90-142.