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Abstract 
The target of this document is the explanation of the essentials of gravity and its characteristic, the 

mass of discrete objects. The paper explains the deformation and the expansion of fields by massive 

objects. Special attention is paid to elementary particles.  

Introduction 
This paper wants to go very fundamental. That is why we need a solid mathematical platform that 

enables the modeling of reality for as far as fields and particles are concerned. We only consider the 

field that implements our living space. It is certainly not the electromagnetic field. Our living space 

always and everywhere exists in what we call the universe. The paper does not consider multiverses. 

Everything must fit in a single quaternionic non-separable Hilbert space. It comprises an infinite 

dimensional separable Hilbert space that easily can cover all discrete objects that exist in the 

universe. 

Our living space 
Our living space is a field that is defined by a quaternionic function. It equals the eigenspace of an 

operator in a quaternionic non-separable Hilbert space. The parameter space of the quaternionic 

function is a flat field, which is eigenspace of a reference operator of the same Hilbert space. That 

eigenspace is formed by a version of the quaternionic number system that is sequenced by a selected 

Cartesian coordinate system and a selected polar coordinate system. The non-separable Hilbert 

space applies the members of this version of the quaternionic number system to define the inner 

product of pairs of Hilbert space vectors. The non-separable Hilbert space embeds a unique 

companion separable Hilbert space that applies the rational values of the selected version of the 

quaternionic number system for defining the eigenvalues of its operators. We will call this separable 

Hilbert space the background platform. The eigenspace of its reference operator acts as the 

background parameter space. 

Floating platforms 
Floating platforms are quaternionic separable Hilbert spaces that are defined on the same vector 

space that carries the background platform, but that apply a different version of the quaternionic 

number system to specify the inner product of pairs of their Hilbert vectors. Floating is defined for 

the private parameter spaces of the platforms and occurs relative to the geometric centers of these 

parameter spaces and the background parameter space. On each floating platform, an elementary 

particle resides. Elementary particles are elementary modules, and together they constitute all other 

modules. Some of the modules constitute modular systems. 

A private stochastic process generates the footprint of the elementary particle, and a dedicated 

footprint operator registers the footprint. At every subsequent progression instant, the stochastic 

process generates a new hop landing location, and this location is archived together with the 

corresponding time-stamp in an eigenvalue of the footprint operator. Consequently, the elementary 

particle hops around in a stochastic hopping path and the hopping path forms a coherent hop 
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landing location swarm. A location density distribution describes this swarm. It equals the squared 

modulus of the wavefunction of the elementary particle. The stochastic process owns a characteristic 

function that equals the Fourier transform of the location density distribution. In this way, the 

characteristic function can ensure the coherence of the generated swarm. 

Spherical pulse response 
A spherical pulse response is a solution of a homogeneous second order partial differential equation 

that was triggered by an isotropic pulse. The spherical pulse response integrates over time into the 

Green’s function of the field. The Green’s function is a solution of the Poisson equation. The Green’s 

function occupies some volume. This means that locally the pulse pumps some volume into the field. 

The dynamics of the spherical pulse response shows that this volume quickly spreads over the field. 

Thus, locally and temporarily, the pulse deforms the field, and the injected volume persistently 

expands the field. 

This paper postulates that the spherical pulse response is the only field excitation that temporarily 

deforms the field, while the injected volume persistently expands the field. 

 The effect of the spherical pulse response is so tiny and so temporarily that no instrument can ever 

measure the effect of a single spherical pulse response in isolation. However, when recurrently 

regenerated in huge numbers in dense and coherent swarms the pulse responses can cause a 

significant and persistent deformation that instruments can detect. This is achieved by the stochastic 

processes that generate the footprint of elementary particles. 

The spherical pulse responses are straightforward candidates for what physicists call dark matter 

objects. A halo of these objects can cause gravitational lensing. 

Gravitation potential 
The gravitation potential that an elementary particle causes can be approached by the convolution of 

the Green’s function of the field and the location density distribution of the swarm. This 

approximation is affected by the fact that the deformations, that are due to the individual pulse 

responses quickly fade away. Further, the density of the location distribution affects the efficiency of 

the deformation. 

At some distance of the center of the swarm, the gravitation distribution can be approximated by  

( )
m

g r
r

=  

where m is the mass of the particle and r equals the distance to the center. Here we omit the 

physical units, such as the gravitational constant. 

This can be comprehended by looking at the result for a Gaussian location density distribution. In 

that case, the gravitation potential would be described by  

( )
( )

ERF r
g r m

r
=  

Where ( )ERF r  is the well-known error function. Here the gravitation potential is a perfectly 

smooth function that at some distance from the center equals the approximated gravitation 

potential that was described above. 
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According to this reasoning, the symbol m is more like a mass capacity, than a hard and well-

established property because it still depends on the density of the distribution and the duration of 

the recurrence cycle. This might explain why each elementary particle type exists in three 

generations. 

Regeneration 
The requirement for regeneration introduces a great mystery. All generated mass appears to dilute 

away and must be recurrently regenerated. This fact conflicts with the conservation laws of 

mainstream physics. The deformation work done by the stochastic processes vanishes completely. 

What results is the ongoing expansion of the field. Thus, these processes must keep generating the 

particle to which they belong. 

Only the ongoing embedding of the content that is archived in the floating platform into the 

embedding field can explain the activity of the stochastic process. This supposes that at the instant of 

creation, the creator already archived the dynamic geometric data of his creatures into the 

eigenspaces of the footprint operators. These data consist of a scalar time-stamp and a three-

dimensional spatial location. The quaternionic eigenvalues act as storage bins.  

After the instant of creation, the creator left his creation alone. The set of floating separable Hilbert 

spaces, together with the background Hilbert space act as a read-only repository. After sequencing 

the time-stamps, the stochastic processes read the storage bins and trigger the embedding of the 

location into the embedding field. 

Inertia 
The relation between inertia and mass is complicated. It assumes that a field tries to compensate the 

change of the field when its vector part suddenly changes with time.  

A special field supports the hop landing location swarm that resides on the floating platform. It 

reflects the activity of the stochastic process, and it floats with the platform over the background 

platform. It is characterized by a mass value and by the uniform velocity of the platform with respect 

to the background platform. The real part conforms to the deformation that the stochastic process 

causes. The imaginary part conforms to the moving deformation. The main characteristic of this field 

is that it tries to keep its overall change zero. We call the deformation field. 

The first order change of a field contains five terms. Mathematically, the statement that in first 

approximation nothing in the field  changes indicates that locally, the first order partial differential 

  will be equal to zero. 

 , 0r r r r      = = −  + +  =   

The terms that are still eligible for change must together be equal to zero. These terms are. 

0r r  + =  

In the following text plays  the role of the vector field and r plays the role of the scalar 

gravitational potential of the considered object. 
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The new field ,
m

v
r


 

=  
 

considers a uniformly moving mass as a normal situation. It is a 

combination of the scalar potential 
m

r
 and the uniform speed v .  

If this object accelerates, then the new field ,
m

v
r

 
 
 

 tries to counteract the change of the field v  by 

compensating this with an equivalent change of the real part 
m

r
 of the new field. This equivalent 

change is the gradient of the real part of the field. 

3
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This generated vector field acts on masses that appear in its realm. 

Thus, if two masses 1m  and 2m  exist in each other’s neighborhood, then any disturbance of the 

situation will cause the gravitational force 

( )
( )1 2 1 2

1 2 3

1 2

m m r r
F r r

r r

−
− =

−
 

The disturbance by the ongoing expansion of the field suffices to put the gravitational force into 

action. The description also holds when the field  describes a conglomerate of platforms and m

represents the mass of the conglomerate. 

In compound modules such as ions and atoms, the field   of a component oscillates with the 

deformation rather than with the platform. 

 

Inertia bases mainly on the definition of mass that applies to the region outside the sphere where the 

gravitation potential behaves as the Green’s function of the field. There the formula 
r

m

r
 = applies. 

Further, it bases in the intention of modules to keep the gravitation potential inside the mentioned 

sphere constant. At least that holds when this potential is averaged over the regeneration period. In 

that case, the overall change  of the deformation field equals zero. Next, the definition of the 

deformation field supposes that the swarm which causes the deformation moves as one unit. 

Further, the fact is used that the solutions of the homogeneous second order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is presented by smooth dips is 

obviously false. The story that is represented in this paper shows the deformations as local 

extensions of the field, which represents the universe. In both sketches, the deformations elongate 

the information path, but none of the sketches explain why two masses attract each other. The 

above explanation founds on the habit of the stochastic process to recurrently regenerate the same 

time average of the gravitation potential, even when that averaged potential moves uniformly. 

Without the described habit of the stochastic processes, inertia would not exist. 
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Similar tricks can be used to explain the electrical force from the fact that the electrical field is 

produced by sources and sinks that can be described by the Green’s function. 

Black holes 
Black holes are regions of the field that are encapsulated by a surface that cannot be passed by 

spherical shock fronts. Only the shock fronts that locate at the border of the region can add volume 

to the region. Thus, the increase of the volume of that region is restricted by the surface of the 

encapsulation. This differs from free space, where stochastic processes can inject volume anywhere. 

Black holes represent the most efficient packaging of volume that stochastic processes can achieve. 

Black holes are characterized by a Schwarzschild radius. It is the radius where the escape speed of 

massive objects equals light speed. The gravitational energy U  of a massive object with mass m  in 

a gravitation field of an object with mass M  is 

GMm
U

r
= −  

The escape velocity follows from the initial energy 2½mv of the object with mass m  and velocity 𝑣. 

0

0

2 0½
G

v
Mm

r
m − =  

This results in  

0

0

2
GM

v
r

=  

Due to the kinetic energy equivalence 21

2
h mv = ,this means for photons 

2

2GMh
U

rc


= −  

The frequency 𝜈 of the photon changes with the radius r   

0
0 2

2GMh
h h

rc


 = −  

This formula describes the gravitational redshift of photons. The radius at which the frequency 𝜈 has 

reduced to zero is the Schwarzschild radius sr   

2

2
s

GM
r

c
=  

The border of the black hole 
For a non-rotating neutral black hole, photons cannot pass the sphere with the Schwarzschild radius 

sr .  

At the Schwarzschild radius, the escape velocity of massive objects equals the light speed. 
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It also means that one-dimensional shock fronts and spherical shock fronts cannot escape the 

sphere. 

Spherical shock fronts can only add volume to the black hole when their actuator hovers over the 

region of the black hole. The injection increases the Schwarzschild radius. The injection also increases 

the mass M . An increase of the Schwarzschild radius means an increase of the volume of this 

sphere. This is like the injection of volume into the volume of the field that occurs via the pulses that 

generate the elementary particles. However, in this case, the volume stays within the Schwarzschild 

sphere. In both cases, the volume of the field expands.  

The HBM postulates that geometric center of an elementary particle cannot enter the region of the 

black hole. This means that part of the active region of the stochastic process that produces the 

footprint of the elementary particle can hover over the region of the black hole. In this overlap 

region, the pulses can inject volume into the black hole. Otherwise, no stochastic process could inject 

volume into the black hole. 

The Schwarzschild sphere contains unstructured volume. No modules exist within that sphere. 

The Bekenstein bound relates the Schwarzschild black hole to its entropy. 

22ER ER GM
S S

hc hc hc

  
 = =  

This indicates that the entropy S is proportional to the area of the black hole. This only holds for the 

entropy at the border of the black hole.  
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Remarks 

Higgs 
If a particle decays into other objects than photons, then it is not an elementary particle. 
Obviously, the Higgs is not elementary because many other decay processes are measured by 
the LHC. The Higgs particle has no electric charge, no spin and the value of its mass lays in the 
range that was theoretically predicted for the for the Higgs model. Many particles can have these 
properties without the need to implement the Higgs mechanism. Thus, before calling a particle a 
Higgs particle, in some way it must be shown that at least the Higgs field does its job. Strangely 
enough, the LHC crew was not capable of showing this and still has not proven that the Higgs 
mechanism works.  
 

Alternatives 
In the meantime, other mechanisms are proposed that can elementary particles give their mass. 
One is a combination of a stochastic process and a solution of the wave equation. The effect of 
the solution is so tiny and so short-lived that in isolation it cannot be measured, but the stochastic 
process can produce so many triggers that it generates a noticeable result that can easily be 
measured. This is more convincing than the story of the Higgs mechanism. 
The mentioned solution is a spherical shock front and injects some volume into the embedding 
field. This injection expands and locally deforms the field. Since the injected volume quickly 
spreads over the full field, the deformation quickly fades away. The stochastic process must 
recurrently regenerate a coherent swarm of triggers at enough rate to cause a significant and 
persistent deformation. The deformation then represents the generated particle. 

Volume in black holes 
The no hair character of charge-less non-rotating black holes that is shown by its Schwarzschild 
radius rs=MG/c2 also shows that a small increment of its mass M corresponds to a volume 
injection. Again, that is since the pulse response is spherical and works in all directions. The 
injected volume cannot spread beyond the Schwarzschild radius. In the region of a black hole, 
each pulse response adds a standard bit of mass and an equivalent bit of volume. This bit of 
volume is the volume of the Green’s function. The total mass is proportional to the radius of the 
Schwarzschild black hole and not to its volume. 
 

Volume in the universe 
This invites to deliberate about the function of spatial volume in the universe. Black holes are 
compact bubbles of volume, and elementary particles are less-compact flakes of volume. Besides 
of that exists free volume that is the result of the free spreading of injected volume. These three 
forms of volume make up for the full content of the universe.  
 

In the beginning 
Before the stochastic processes started their action, the volume content of the universe was 
empty. It could be represented by a flat field. In the beginning, a huge number of these processes 
started their triggering of the dynamic field that represents the universe. From that moment on the 
universe started expanding. This did not happen at a single point. Instead, it happened at a huge 
number of locations that were distributed all over the spatial part of the parameter space of the 
quaternionic function that describes the dynamic field. 

 

Close to the begin of time, all distances were equal to the distances in the flat parameter space. 
Soon, these islands were uplifted with volume that was emitted at nearby locations. This flooding 
created growing distances between used locations. After some time, all parameter space 
locations were reached by the generated shock waves. From that moment on the universe 
started acting as an everywhere expanded continuum that contained deformations which in 
advance were very small. Where these deformations grew, the distances grew faster than in the 
environment. A uniform expansion appears the rule and local deformations form the exception. 
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Deformations make the information path longer and give the idea that time ticks slower in the 
deformed and expanded regions. This corresponds with the gravitational red-shift of photons. 
 
Composed modules only started to be generated after the presence of enough elementary 
particles. The generation of photons that reflected the signatures of atoms only started after the 
presence of these compound modules. 
 
 
This picture differs considerably from the popular scene of the big bang that started at a single 
location. 
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Life of an elementary particle 
An elementary particle is a complicated construct. First, the particle resides on a private quaternionic 

separable Hilbert space that uses a selected version of the quaternionic number system to specify 

the inner products of pairs of Hilbert vectors and the eigenvalues of operators. The vectors belong to 

an underlying vector space. All elementary particles share the same underlying vector space. The 

selected version of the number system determines the private parameter space, which is managed 

by a dedicated reference operator. The coordinate systems that sequence the elements of the 

parameter space determine the symmetry of the Hilbert space and the elementary particle. The 

private parameter space floats over a background parameter space that belongs to a background 

platform. The background platform is a separable Hilbert space that also applies the same underlying 

vector space. The difference in symmetry between the private parameter space and the background 

parameter space gives rise to a symmetry related (electric) charge and a related color charge. The 

electric charge raises a corresponding symmetry related field. The corresponding source or drain 

locates at the geometric center of the private parameter space. 

The eigenspace of a dedicated footprint operator contains the dynamic geometric data that after 

sequencing of the time-stamps form the complete life-story of the elementary particle. A subspace of 

the underlying vector space acts as a window that scans over the private Hilbert space as a function 

of a progression parameter that corresponds with the archived time-stamps. This subspace 

synchronizes all elementary particles that exist in the model. 

Elementary particles are elementary modules, and together these elementary modules form all 

modules and modular systems that exist in the universe. 

The complicated structure of elementary particles indicates that these particles never die. This does 

not exclude the possibility that elementary particles can zigzag over the progression parameter. 

Observers will perceive the progression reflection instants as pair creation and pair annihilation 

events. The zigzag will only become apparent in the creator’s view. 

A private stochastic process will recurrently regenerate the footprint of the elementary particle in a 

cyclic fashion. During a cycle, the hopping path of the elementary particle will have formed a 

coherent hop landing location swarm. A location density distribution describes this swarm. This 

location density distribution equals the Fourier transform of the characteristic function of the 

stochastic process that generates the hop landing locations. The location density distribution also 

equals the squared modulus of the wavefunction of the particle. This stochastic process mimics the 

mechanism that the creator applied when he created the elementary particle. The stochastic process 

also represents the embedding of the eigenspace of the footprint operator into the continuum 

eigenspace of an operator that resides in the non-separable companion of the background platform. 

This continuum eigenspace represents the universe. 

The differences between the symmetry of the private parameter space and the background 

parameter space give rise to symmetry-related charges that locate at the geometric center of the 

private parameter space. These charges give rise to symmetry-related fields. Via the geometric 

center of the platform, these symmetry related fields are coupled to the field that represents the 

universe. 

The kinetic energy of the platform is obtained from the effects of one-dimensional shock fronts. 
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