AN ELEMENTARY PROOF OF THE ABC CONJECTURE

Abdelmajid Ben Hadj Salem

6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman,
Tunisia
E-mail: abenhadjsalema@gmail.com

Abstract: In this paper, we gives an elementary proof of the $A B C$ conjecture.

An Elementary Proof of the $A B C$ Conjecture

To the memory of my Father who taught me arithmetic.

1. Introduction and notations

Let a a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1.1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{1.2}
\end{equation*}
$$

The ABC conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph OEsterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the ABC conjecture is given above:

Conjecture 1.3. (ABC Conjecture): Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\varepsilon>0$, there exists $K(\varepsilon)$ such that :

$$
\begin{equation*}
c<K(\varepsilon) \cdot \operatorname{rad}(a b c)^{1+\varepsilon} \tag{1.4}
\end{equation*}
$$

2. Proof of the conjecture (1.3)

Let a, b, c positive integers, relatively prime, with $c=a+b$. We suppose that $b<a$, we can write that a verifies:

$$
\begin{equation*}
a=t \cdot b+(1-t) \cdot c \quad t \in] 0,1\left[, t=\frac{c-a}{c-b}\right. \tag{2.1}
\end{equation*}
$$

Let:

$$
\begin{equation*}
\beta_{0}=\frac{1}{1-t}=\frac{c-b}{a-b}>1 \Longrightarrow c=a \beta_{0}-\left(\beta_{0}-1\right) b \Longrightarrow c<a \beta_{0}+\left(\beta_{0}-1\right) b \tag{2.2}
\end{equation*}
$$

As:

$$
\begin{equation*}
a \beta_{0}+\left(\beta_{0}-1\right) b<\beta_{0} \cdot\left(\beta_{0}-1\right) \cdot a b \Longrightarrow c<\beta_{0} \cdot\left(\beta_{0}-1\right) \cdot a b \tag{2.3}
\end{equation*}
$$

But $a=\mu_{a} \cdot \operatorname{rad}(a)$ and $b=\mu_{b} \cdot \operatorname{rad}(b)$, we obtain then:

$$
c<\beta_{0} \cdot\left(\beta_{0}-1\right) \cdot \mu_{a} \cdot \mu_{b} r a d(a b)
$$

If $\beta>\beta_{0} \Longrightarrow \beta .(\beta-1)>\beta_{0} \cdot\left(\beta_{0}-1\right) \Longrightarrow c<\beta .(\beta-1) . \mu_{a} \cdot \mu_{b} r a d(a b)$. Let $\varepsilon>0$ a real number, we choose $\beta=\beta_{0}+\varepsilon$ and taking :

$$
\begin{equation*}
K(\varepsilon)=\frac{\beta(\beta-1) \mu_{a} \cdot \mu_{b}}{\operatorname{rad}(c) \cdot \operatorname{rad}(\operatorname{abc})^{\varepsilon}}=\frac{\left(\beta_{0}+\varepsilon\right)\left(\beta_{0}+\varepsilon-1\right) \mu_{a} \cdot \mu_{b}}{\operatorname{rad}(c) \cdot \operatorname{rad}(\operatorname{abc})^{\varepsilon}} \tag{2.4}
\end{equation*}
$$

Then, we obtain:

$$
\begin{equation*}
c<K(\varepsilon) \cdot \operatorname{rad}(a b c)^{1+\varepsilon} \tag{2.5}
\end{equation*}
$$

Q.E.D

3. Examples

3.1 Example of Eric Reyssat

We give here the example of Eric Reyssat ([1]), it is given by:

$$
\begin{equation*}
3^{10} \times 109+2=23^{5}=6436343 \tag{3.1}
\end{equation*}
$$

$a=3^{10} .109 \Rightarrow \mu_{a}=3^{9}=19683$ and $\operatorname{rad}(a)=3 \times 109$,
$b=2 \Rightarrow \mu_{b}=1$ and $\operatorname{rad}(b)=2$,
$c=23^{5}=6436343 \Rightarrow \operatorname{rad}(c)=23$. Then $\operatorname{rad}(a b c)=2 \times 3 \times 109 \times 23=15042$ and $\beta_{0}=\frac{6436341}{3^{10} .109-2}=$ $1+3.10735652674 \times 10^{-7}$. For example, we take $\varepsilon=\beta_{0}-1=3.10735652674 \times 10^{-7}$, the expression of $K(\varepsilon)$ becomes:

$$
\begin{equation*}
K(\varepsilon)=K\left(\beta_{0}-1\right)=\frac{\left(2 \beta_{0}-1\right) 2 \varepsilon \cdot \mu_{a} \cdot \mu_{b}}{\operatorname{rad}(c) \cdot \operatorname{rad}(a b c)^{\varepsilon}}=\frac{2 \varepsilon(1+2 \varepsilon) \cdot 19683}{23} \times 15042 \tag{3.2}
\end{equation*}
$$

Let us verify (2.5):

$$
\begin{array}{r}
c \stackrel{?}{<} K(\varepsilon) \cdot \operatorname{rad}(a b c)^{\varepsilon} \Longrightarrow c=6436343 \stackrel{?}{<} \frac{2 \varepsilon(1+2 \varepsilon) .19683}{23} \times 15042 \\
\log 6436343 \stackrel{?}{<} \log 2+\log (1+2 \varepsilon)+\log 19683-\log 23+\log 15042 \\
6.808639<8.672425 \tag{3.3}
\end{array}
$$

Hence (2.5) is verified.

3.2 Example of A. Nitaj

The example of Nitaj about the ABC conjecture ([2]) is:

$$
\begin{array}{r}
a=11^{16} \cdot 13^{2} \cdot 79=613474843408551921511 \\
b=7^{2} .41^{2} \cdot 311^{3}=2477678547239 \\
c=2 \cdot 3^{3} \cdot 5^{23} \cdot 953=613474845886230468750 \\
\operatorname{rad}(a b c)=2.3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 41 \cdot 79.311 .953=28828335646110 \tag{3.7}
\end{array}
$$

we let the verification to the reader of the result given by (2.5).

4. Conclusion

We can announce the theorem:
Theorem 1. (David Masser, Joseph CEsterlé \& Abdelmajid Ben Hadj Salem; 2018) Let a,b,c positive integers relatively prime with $c=a+b$, then for each $\varepsilon>0$, there exists $K(\varepsilon)$ such that :

$$
\begin{equation*}
c<K(\varepsilon) \cdot \operatorname{rad}(a b c)^{1+\varepsilon} \tag{4.1}
\end{equation*}
$$

where $K(\varepsilon)$ is given by (2.5).

References

[1] M. Waldschmidt. 2013. On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013.
[2] T. Gowers. 2008. The Princeton companion to mathematics. Princeton, ISBN 0691118809, 1027 pages.

