AN ELEMENTARY PROOF OF THE ABC CONJECTURE

Abdelmajid Ben Hadj Salem

6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman, Tunisia E-mail: abenhadjsalema@gmail.com

Abstract: In this paper, we gives an elementary proof of the ABC conjecture.

An Elementary Proof of the ABC Conjecture

To the memory of my Father who taught me arithmetic.

1. Introduction and notations

Let *a* a positive integer, $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \ge 1$ positive integers. We call *radical* of *a* the integer $\prod_i a_i$ noted by rad(a). Then *a* is written as:

$$a = \prod_{i} a_i^{\alpha_i} = rad(a) \cdot \prod_{i} a_i^{\alpha_i - 1}$$
(1.1)

We note:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a.rad(a) \tag{1.2}$$

The ABC conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph OEsterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the ABC conjecture is given above:

Conjecture 1.3. (*ABC Conjecture*): Let a, b, c positive integers relatively prime with c = a + b, then for each $\varepsilon > 0$, there exists $K(\varepsilon)$ such that :

$$c < K(\varepsilon).rad(abc)^{1+\varepsilon} \tag{1.4}$$

2. Proof of the conjecture (1.3)

Let a, b, c positive integers, relatively prime, with c = a + b. We suppose that b < a, we can write that a verifies:

$$a = t.b + (1-t).c$$
 $t \in]0,1[,t = \frac{c-a}{c-b}$ (2.1)

Let:

$$\beta_0 = \frac{1}{1-t} = \frac{c-b}{a-b} > 1 \Longrightarrow c = a\beta_0 - (\beta_0 - 1)b \Longrightarrow c < a\beta_0 + (\beta_0 - 1)b$$
(2.2)

As:

$$a\beta_0 + (\beta_0 - 1)b < \beta_0.(\beta_0 - 1).ab \Longrightarrow c < \beta_0.(\beta_0 - 1).ab$$

$$(2.3)$$

But $a = \mu_a . rad(a)$ and $b = \mu_b . rad(b)$, we obtain then:

 $c < \beta_0.(\beta_0 - 1).\mu_a.\mu_brad(ab)$

If $\beta > \beta_0 \Longrightarrow \beta.(\beta - 1) > \beta_0.(\beta_0 - 1) \Longrightarrow c < \beta.(\beta - 1).\mu_a.\mu_brad(ab)$. Let $\varepsilon > 0$ a real number, we choose $\beta = \beta_0 + \varepsilon$ and taking :

$$K(\varepsilon) = \frac{\beta(\beta - 1)\mu_a.\mu_b}{rad(c).rad(abc)^{\varepsilon}} = \frac{(\beta_0 + \varepsilon)(\beta_0 + \varepsilon - 1)\mu_a.\mu_b}{rad(c).rad(abc)^{\varepsilon}}$$
(2.4)

Then, we obtain:

$$c < K(\varepsilon).rad(abc)^{1+\varepsilon}$$
(2.5)

Q.E.D

3. Examples

3.1 Example of Eric Reyssat

We give here the example of Eric Reyssat ([1]), it is given by:

$$3^{10} \times 109 + 2 = 23^5 = 6436343 \tag{3.1}$$

 $a = 3^{10}.109 \Rightarrow \mu_a = 3^9 = 19683 \text{ and } rad(a) = 3 \times 109,$ $b = 2 \Rightarrow \mu_b = 1 \text{ and } rad(b) = 2,$ $c = 23^5 = 6436343 \Rightarrow rad(c) = 23.$ Then $rad(abc) = 2 \times 3 \times 109 \times 23 = 15042 \text{ and } \beta_0 = \frac{6436341}{3^{10}.109 - 2} = 1 + 3.10735652674 \times 10^{-7}.$ For example, we take $\varepsilon = \beta_0 - 1 = 3.10735652674 \times 10^{-7}$, the expression of $K(\varepsilon)$ becomes:

$$K(\varepsilon) = K(\beta_0 - 1) = \frac{(2\beta_0 - 1)2\varepsilon .\mu_a .\mu_b}{rad(c).rad(abc)^{\varepsilon}} = \frac{2\varepsilon(1 + 2\varepsilon) .19683}{23} \times 15042$$
(3.2)

Let us verify (2.5):

$$c \stackrel{?}{<} K(\varepsilon) \cdot rad(abc)^{\varepsilon} \Longrightarrow c = 6436343 \stackrel{?}{<} \frac{2\varepsilon(1+2\varepsilon) \cdot 19683}{23} \times 15042$$
$$log 6436343 \stackrel{?}{<} log 2 + log(1+2\varepsilon) + log 19683 - log 23 + log 15042$$
$$6.808 \, 639 < 8.672 \, 425 \tag{3.3}$$

Hence (2.5) is verified.

3.2 Example of A. Nitaj

The example of Nitaj about the ABC conjecture ([2]) is:

$$a = 11^{16} \cdot 13^2 \cdot 79 = 613\,474\,843\,408\,551\,921\,511 \tag{3.4}$$

$$b = 7^2 \cdot 41^2 \cdot 311^3 = 2477\,678\,547\,239 \tag{3.5}$$

$$c = 2.3^{\circ}.5^{2\circ}.953 = 613\,474\,845\,886\,230\,468\,750 \tag{3.6}$$

$$rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28\,828\,335\,646\,110 \tag{3.7}$$

we let the verification to the reader of the result given by (2.5).

4. Conclusion

We can announce the theorem:

Theorem 1. (David Masser, Joseph Æsterlé & Abdelmajid Ben Hadj Salem; 2018) Let a, b, c positive integers relatively prime with c = a + b, then for each $\varepsilon > 0$, there exists $K(\varepsilon)$ such that :

$$c < K(\varepsilon).rad(abc)^{1+\varepsilon} \tag{4.1}$$

where $K(\varepsilon)$ is given by (2.5).

References

- M. Waldschmidt. 2013. On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013.
- [2] T. Gowers. 2008. The Princeton companion to mathematics. Princeton, ISBN 0691118809, 1027 pages.