A study of the sum of three or more consecutive natural numbers

Emmanuil Manousos

APM Institute for the Advancement of Physics and Mathematics, 13 Pouliou str., 11523
Athens, Greece

Abstract

It holds that every product of natural numbers can also be written as a sum. The inverse does not hold when 1 is excluded from the product. For this reason, the investigation of natural numbers should be done through their sum and not through their product. Such an investigation is presented in the present article. We prove that primes play the same role for odd numbers as the powers of 2 for even numbers, and vice versa. The following theorem is proven: "Every natural number, except for 0 and 1, can be uniquely written as a linear combination of consecutive powers of 2 with the coefficients of the linear combination being -1 or +1 ." This theorem reveals a set of symmetries in the internal order of natural numbers which cannot be derived when studying natural numbers on the basis of the product. From such a symmetry a method for identifying large prime numbers is derived. We prove a factorization test for the natural numbers.

Keywords: Number theory, Composite numbers, Prime numbers.
2010 Mathematics Subject Classifications: 11A41, 11N05.

1 Introduction

It holds that every product of natural numbers can also be written as a sum. The inverse (i.e. each sum of natural numbers can be written as a product) does not hold when 1 is excluded from the product. This is due to prime numbers p which can be written as a product only in the form of $p=1 \cdot p$. For this reason, the investigation of natural numbers should be done through their sum and not through their product. Such an investigation is presented in the present article.

The sum of consecutive natural numbers has been studied in the past [1, 2]. In this paper we studying the sum of 3 or more consecutive natural numbers.

We prove that each natural number can be written as a sum of three or more consecutive natural numbers except of the powers of 2 and the prime numbers. Each power of 2 and each prime number cannot be written as a sum of three or more consecutive natural numbers. Primes play the same role for odd numbers as the powers of 2 for even numbers, and vice versa.

We prove a theorem which is analogous to the fundamental theorem of arithmetic, when we study the positive integers with respect to addition: ''Every natural number, with the exception of 0 and 1 , can be written in a unique way as a linear combination of consecutive powers of 2 , with the coefficients of the linear combination being -1 or +1 .' This theorem reveals a set of symmetries in the internal order of natural numbers which cannot be derived when studying natural numbers on the basis of the product. From such a symmetry a method for identifying large prime numbers is derived.

In the last chapter we prove a factorization test for the odd numbers. In the study of natural numbers, if we focus in the sum, the parameter which determines the minimum number of operations required for the factorization of an odd number, is highlighted.

2 The sequence $\mu(k, n)$

We consider the sequence of natural numbers

$$
\begin{align*}
& \mu(k, n)=k+(k+1)+(k+2)+\ldots+(k+n)=\frac{(n+1)(2 k+n)}{2} \\
& k \in \mathbb{N}^{*}=\{1,2,3, \ldots\} \tag{2.1}\\
& n \in A=\{2,3,4, \ldots\}
\end{align*}
$$

For the sequence $\mu(k, n)$ the following theorem holds:
Theorem 2.1. For the sequence $\mu(k, n)$ the following hold:

1. $\mu(k, n) \in \mathbb{N}^{*}$.
2. No element of the sequence is a prime number.
3. No element of the sequence is a power of 2.
4. The range of the sequence is all natural numbers that are not primes and are not powers of 2 .

Proof. 1. $\mu(k, n) \in \mathbb{N}^{*}$ as a sum of natural numbers.
2. $n \in A=\{2,3,4, \ldots\}$ and therefore it holds that
$n \geq 2$
$n+1 \geq 3^{\text {. }}$

Also we have that
$2 k+n \geq 4$
$\frac{2 k+n}{2} \geq \frac{3}{2}>1$
since $k \in \mathbb{N}^{*}$ and $n \in A=\{2,3,4, \ldots\}$. Thus, the product
$\frac{(n+1)(2 k+n)}{2}=\mu(k, n)$
is always a product of two natural numbers different than 1 , thus the natural number $\mu(k, n)$ cannot be prime.
3. Let that the natural number
$\mu(k, n)=\frac{(n+1)(2 k+n)}{2}$
is a power of 2 . Then, it exists $\lambda \in \mathbb{N}$ such as
$\frac{(n+1)(2 k+n)}{2}=2^{\lambda}$
and equivalently
$(n+1)(2 k+n)=2^{\lambda+1}$.
Equation (2.2) can hold if and only if there exist $\lambda_{1}, \lambda_{2} \in \mathbb{N}$ such as
$n+1=2^{\lambda_{1}} \wedge 2 k+n=2^{\lambda_{2}}$
and equivalently

$$
\left.\begin{array}{l}
n=2^{\lambda_{1}}-1 \tag{2.3}\\
n=2^{\lambda_{2}}-2 k
\end{array}\right\} .
$$

We eliminate n from equations (2.3) and we obtain
$2^{\lambda_{1}}-1=2^{\lambda_{2}}-2 k$
$2 k-1=2^{\lambda_{2}}-2^{\lambda_{1}}$,
which is impossible since the first part of the equation is an odd number and the second part is an even number. Thus, the range of the sequence $\mu(k, n)$ does not include the powers of 2 .
4. We now prove that the range of the sequence $\mu(k, n)$ includes all natural numbers that are not primes and are not powers of 2 . Let a random natural number N which is not a prime nor a power of 2 . Then, N can be written in the form
$N=\chi \psi$
where at least one of the χ, ψ is an odd number ≥ 3. Let χ be an odd number ≥ 3. We will prove that there are always exist $k \in \mathbb{N}$ and $n \in A=\{2,3,4, \ldots\}$ such as
$N=\chi \cdot \psi=\mu(k, n)$.
We consider the following two pairs of k and n :
$\chi \leq 2 \psi-1, \chi, \psi \in \mathbb{N}$
$k=k_{1}=\frac{2 \psi+1-\chi}{2}$
$n=n_{1}=\chi-1$
$\chi \geq 2 \psi+1, \chi, \psi \in \mathbb{N}$
$k=k_{2}=\frac{\chi+1-2 \psi}{2}$.
$n=n_{2}=2 \psi-1$
For every $\chi, \psi \in \mathbb{N}$ it holds either the inequality $\chi \leq 2 \psi-1$ or the inequality $\chi \geq 2 \psi+1$. Thus, for each pair of naturals (χ, ψ), where χ is odd, at least one of the pairs $\left(k_{1}, n_{1}\right),\left(k_{2}, n_{2}\right)$ of equations (2.4), (2.5) is defined. We now prove that when the natural number k_{1} of equation (2.4) is $k_{1}=0$ then the natural number k_{2} of equation (2.5) is $k_{2}=1$ and additionally it holds that $n_{2}>2$. For $k_{1}=0$ from equations (2.4) we take
$\chi=2 \psi+1$
and from equations (2.5) we have that
$k_{2}=\frac{(2 \psi+1)+1-2 \psi}{2}=1$
$n_{2}=2 \psi-1$
and because $\psi \geq 2$ we obtain
$k_{2}=1$
$n_{2}=2 \psi-1 \geq 3>2$.

We now prove that when $k_{2}=0$ in equations (2.5), then in equations (2.4) it is $k_{1}=1$ and $n_{1}>2$. For $k_{2}=0$, from equations (2.5) we obtain
$\chi=2 \psi-1$
and from equations (2.4) we get
$k_{1}=\frac{2 \psi+1-(2 \psi-1)}{2}=1$.
$n_{1}=\chi-1=2 \psi-2 \geq 2$
We now prove that at least one of the k_{2} and k_{2} is positive. Let
$k_{1}<0 \wedge k_{2}<0$.
Then from equations (2.4) and (2.5) we have that
$2 \psi+1-\chi<0 \wedge \chi+1-2 \psi<0$.
Taking into account that $\chi>1$ is odd, that is $\chi=2 \rho+1, \rho \in \mathbb{N}$, we obtain from inequalities (2.6)
$2 \psi+1-(2 \rho-1)<0 \wedge(2 \rho+1)+1-2 \psi<0$
$2 \psi-2 \rho<0 \wedge 2 \rho-2 \psi+2>0$
$\psi<\rho \wedge \psi>\rho+1$
which is absurd. Thus, at least one of k_{1} and k_{2} is positive.
For equations (2.4) we take
$\mu\left(k_{1}, n_{1}\right)=\frac{\left(n_{1}+1\right)\left(2 k_{1}+n_{1}\right)}{2}$
$\mu\left(k_{1}, n_{1}\right)=\frac{(\chi-1+1)\left(2 \frac{2 \psi+1-\chi}{2}+\chi-1\right)}{2}=\frac{\chi \cdot 2 \cdot \psi}{2}=\chi \psi=N$.
For equations (2.5) we obtain

$$
\begin{aligned}
& \mu\left(k_{2}, n_{2}\right)=\frac{\left(n_{2}+1\right)\left(2 k_{2}+n_{2}\right)}{2} \\
& \mu\left(k_{2}, n_{2}\right)=\frac{(2 \psi-1+1)\left(2 \frac{\chi+1-2 \psi}{2}+2 \psi-1\right)}{2}=\frac{2 \psi \chi}{2}=\chi \psi=N
\end{aligned}
$$

Thus, there are always exist $k \in \mathbb{N}^{*}$ and $n \in A=\{2,3,4, \ldots\}$ such as
$N=\chi \psi=\mu(k, n)$ for every N which is not a prime number and is not a power of $2 . \square$
Example 2.1. For the natural number $N=40$ we have
$N=40=5 \cdot 8$
$\chi=5$
$\psi=8$
and from equations (2.4) we get
$k=k_{1}=\frac{16+1-5}{2}=6$
$n=n_{1}=5-1=4$
thus, we obtain
$40=\mu(6,4)$.
Example 2.2. For the natural number $N=51$,
$N=51=3 \cdot 17=17 \cdot 3$
there are two cases. First case:

$$
\begin{aligned}
N & =51=3 \cdot 17 \\
\chi & =3 \\
\psi & =17
\end{aligned}
$$

and from equations (2.4) we obtain

$$
\begin{aligned}
& k=k_{1}=\frac{34+1-3}{2}=16 \\
& n=n_{1}=3-1=2
\end{aligned}
$$

thus,
$51=\mu(16,2)$.
Second case:

$$
\begin{aligned}
& N=51=17 \cdot 3 \\
& \chi=17 \\
& \psi=3
\end{aligned}
$$

and from equations (2.5) we obtain

$$
\begin{aligned}
& k=k_{2}=\frac{17+1-6}{2}=6 \\
& n=n_{2}=6-1=5
\end{aligned}
$$

thus,
$51=\mu(6,5)$.
The second example expresses a general property of the sequence $\mu(k, n)$. The more composite an odd number that is not prime (or an even number that is not a power of 2) is, the more are the $\mu(k, n)$ combinations that generate it.

Example 2.3.
$135=15 \cdot 9=27 \cdot 5=9 \cdot 15=45 \cdot 3=5 \cdot 27=3 \cdot 45$
$135=\mu(2,14)=\mu(9,9)=\mu(11,8)=\mu(20,5)=\mu(25,4)=\mu(44,2)$
a. $135=9 \cdot 15=\mu(2,14)=\mu(11,8)$
$135=2+3+4+\ldots \ldots+15+16=11+12+13 \ldots . .+18+19$.
b. $135=5 \cdot 27=\mu(9,9)=\mu(25,4)$
$135=9+10+11+\ldots . .+17+18=25+26+27+28+29$.
c. $135=3 \cdot 45=\mu(20,5)=\mu(44,2)$
$135=20+21+22+23+24+25=44+45+46$.
In the transitive property of multiplication, when writing a composite odd number or an even number that is not a power of 2 as a product of two natural numbers, we use the same natural numbers $\chi, \psi \in \mathbb{N}$:
$\Phi=\chi \cdot \psi=\psi \cdot \chi$.
On the contrary, the natural number Φ can be written in the form $\Phi=\mu(k, n)$ using different natural numbers $k \in \mathbb{N}^{*}$ and $n \in A=\{2,3,4, \ldots\}$, through equations (2.4), (2.5). This difference between the product and the sum can also become evident in example 2.3:
$135=3 \cdot 45=45 \cdot 3$
$135=44+45+46=20+21+22+23+24+25$.
From Theorem 2.1 the following corollaries are derived:
Corollary 2.1. 1. Every natural number which is not a power of 2 and is not a prime can be written as the sum of three or more consecutive natural numbers.
2. Every power of 2 and every prime number cannot be written as the sum of three or more consecutive natural numbers.

Proof. Corollary 2.1 is a direct consequence of Theorem 2.1.ם

Corollary 2.2. The sequence $\mu(k, n)$ can be written as a difference of two triangle numbers. Proof. From equation (2.1) we obtain
$\mu(k, n)=\mu(1, k+n-1)-\mu(1, k-2)=\frac{(k+n+1)(k+n)}{2}-\frac{k(k-1)}{2}$.
$k \in \mathbb{N}^{*}, n \in A=\{2,3,4, \ldots\}$

3 The concept of rearrangement

In this paragraph, we present the concept of rearrangement of the composite odd numbers and even numbers that are not power of 2 . Moreover, we prove some of the consequences of the rearrangement in the Diophantine analysis. The concept of rearrangement is given from the following definition:

Definition 3.1. We say that the sequence $\mu(k, n), k \in \mathbb{N}^{*}, n \in A=\{2,3,4, \ldots\}$ is rearranged if there exist natural numbers $k_{1} \in \mathbb{N}^{*}, n_{1} \in A,\left(k_{1}, n_{1}\right) \neq(k, n)$ such as
$\mu(k, n)=\mu\left(k_{1}, n_{1}\right)$.
From equation (2.1) written in the form of
$\mu(k, n)=k+(k+1)+(k+2)+\ldots . .+(k+n)$
two different types of rearrangement are derived: The "compression", during which n decreases with a simultaneous increase of k. The «decompression», during which n increases with a simultaneous decrease of k. The following theorem provides the criterion for the rearrangement of the sequence $\mu(k, n)$.

Theorem 3.1. 1. The sequence $\mu\left(k_{1}, n_{1}\right),\left(k_{1}, n_{1}\right) \in \mathbb{N}^{*} \times A$ can be compressed

$$
\begin{equation*}
\mu\left(k_{1}, n_{1}\right)=\mu\left(k_{1}+\varphi, n_{1}-\omega\right) \tag{3.2}
\end{equation*}
$$

if and only if there exist $\varphi, \omega \in \mathbb{N}^{*}, \omega \leq n_{1}-2$ which satisfies the equation

$$
\begin{aligned}
& \omega^{2}-\left(2 k_{1}+2 n_{1}+1+2 \varphi\right) \omega+2\left(n_{1}+1\right) \varphi=0 \\
& \varphi, \omega \in \mathbb{N}^{*} \\
& \omega \leq n_{1}-2
\end{aligned}
$$

2. The sequence $\mu\left(k_{2}, n_{2}\right),\left(k_{2}, n_{2}\right) \in \mathbb{N}^{*} \times A$ can be decompressed

$$
\begin{equation*}
\mu\left(k_{2}, n_{2}\right)=\mu\left(k_{2}-\varphi, n_{2}+\omega\right) \tag{3.4}
\end{equation*}
$$

if and only if there exist $\varphi, \omega \in \mathbb{N}^{*}, \varphi \leq k_{2}-1$ which satisfies the equation

$$
\begin{aligned}
& \omega^{2}+\left(2 k_{2}+2 n_{2}+1-2 \varphi\right) \omega-2\left(n_{2}+1\right) \varphi=0 \\
& \varphi, \omega \in \mathbb{N}^{*} \\
& \varphi \leq k_{2}-1
\end{aligned}
$$

3. The odd number $\Pi \neq 1$ is prime if and only if the sequence
$\mu(k, n)=\Pi \cdot 2^{l}$
$l, k \in \mathbb{N}^{*}, n \in A$
cannot be rearranged.
4. The odd Π is prime if and only if the sequence
$\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)=\Pi^{2}$
cannot be rearranged.
Proof. 1, 2. We prove part 1 of the corollary and similarly number 2 can also be proven. From equation (4.1) we conclude that the sequence $\mu\left(k_{1}, n_{1}\right)$ can be compressed if and only if there exist $\varphi, \omega \in \mathbb{N}^{*}$ such as
$\mu\left(k_{1}, n_{1}\right)=\mu\left(k_{1}+\varphi, n_{1}-\omega\right)$.
In this equation the natural number $n_{1}-\omega$ belongs to the set $A=\{2,3,4, \ldots\}$ and thus
$n_{1}-\omega \geq 2 \Leftrightarrow \omega \leq n_{1}-2$.
Next, from equations (2.1) we obtain
$\mu\left(k_{1}, n_{1}\right)=\mu\left(k_{1}+\varphi, n_{1}-\omega\right)$
$\frac{\left(n_{1}+1\right)\left(2 k_{1}+n_{1}\right)}{2}=\frac{\left(n_{1}-\omega+1\right)\left[2\left(k_{1}+\varphi\right)+n_{1}-\omega\right]}{2}$
and after the calculations we get equation (3.3).
5. The sequence (3.6) is derived from equations (2.4) or (2.5) for $\chi=\Pi$ and $\psi=2^{l}$. Thus, in the product $\chi \psi$ the only odd number is Π. If the sequence $\mu(k, n)$ in equation (3.6) cannot be rearranged then the odd number Π has no divisors. Thus, Π is prime. Obviously, the inverse also holds.
6. First, we prove equations (3.7). From equation (2.1) we obtain:
$\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)=\frac{(\Pi-1+1)\left(2 \frac{\Pi+1}{2}+\Pi-1\right)}{2}=\Pi^{2}$.
In case that the odd number Π is prime in equations (2.4), (2.5) the natural numbers χ, ψ are unique $\chi=\Pi \wedge \psi=\Pi$, and from equation (2.5) we get
$k=\frac{\Pi+1}{2} \wedge n=\Pi-1$.
Thus, the sequence
$\mu(k, n)=\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)$
cannot be rearranged. Conversely, if the sequence
$\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)=\Pi^{2}=\Pi \cdot \Pi$
cannot be rearranged the odd number Π cannot be composite and thus Π is prime. \square
We now prove the following corollary:
Corollary 3.1. 1. The odd number Φ,
$\Phi=\Pi^{2}=\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)$
$\Pi=$ odd
$\Pi \neq 1$
is decompressed and compressed if and only if the odd number Π is composite.
7. The even number α_{1},

$$
\begin{align*}
& \alpha_{1}=2^{l} \Pi=\mu\left(2^{l}-\frac{\Pi-1}{2}, \Pi-1\right) \\
& \Pi=\text { odd } \tag{3.9}\\
& 3 \leq \Pi \leq 2^{l}-1 \\
& l \in \mathbb{N}, l \geq 2
\end{align*}
$$

cannot be decompressed, while it compresses if and only if the odd number Π is composite.
3. The even number α_{2},
$\alpha_{2}=2^{l} \Pi=\mu\left(\frac{\Pi+1}{2}-2^{l}, 2^{l+1}-1\right)$
$\Pi=$ odd
$\Pi \geq 2^{l+1}+1$
$l \in \mathbb{N}^{*}$
cannot be compressed, while it decompresses if and only if the odd number Π is composite.
4. Every even number that is not a power of can be written either in the form of equation (3.9) or in the form of equation (3.10).
Proof. 1. It is derived directly through number (4) of Theorem 3.1. A second proof can be derived through equations (2.4), (2.5) since every composite odd Π can be written in the form of $\Pi=\chi \psi, \chi, \psi \in \mathbb{N}, \chi, \psi$ odds.

2,3 . Let the even number α,
$\alpha=2^{l} \Pi$
$\Pi=o d d$.
$l \in \mathbb{N}^{*}$
From equation (2.4) we obtain
$k=\frac{2 \cdot 2^{l}+1-\Pi}{2}=2^{l}-\frac{\Pi-1}{2}$
$n=\Pi-1$
and since $k, n \in \mathbb{N}, k \geq 1 \wedge n \geq 2$ we get
$\frac{2 \cdot 2^{l}+1-\Pi}{2} \geq 1$
$\Pi-1 \geq 2$
and equivalently
$3 \leq \Pi \leq 2^{l+1}-1$.
In the second of equations (3.12) the natural number n obtains the maximum possible value of $n=\Pi-1$, and thus the natural number k takes the minimum possible value in the first of equations (3.12). Thus, the even number

$$
\alpha_{1}=\mu\left(2^{l}-\frac{\Pi-1}{2}, \Pi-1\right)
$$

cannot decompress. If the odd number Π is composite then it can be written in the form of $\Pi=\chi \psi, \chi, \psi \in \mathbb{N}^{*}, \chi, \psi$ odds, $\chi, \psi<\Pi, \alpha_{1}=2^{l} \chi \psi$. Therefore, the natural number $\alpha_{1}=2^{l} \chi \psi$
decompresses since from equations (3.11) it can be written in the form of $\alpha_{1}=\mu(k, n)$ with $n=\chi-1<\Pi-1$. Similarly, the proof of 3 is derived from equations (2.5).
4. From the above proof process it follows that every even number that is not a power of 2 can be written either in the form of equation (3.9) or in the form of equation (3.10). \square

By substituting $\Pi=P=$ prime in equations of Theorem 3.1 and of corollary 3.1 four sets of equations are derived, each including infinite impossible diophantine equations.

Example 3.1. The odd number $P=999961$ is prime. Thus, combining (1) of Theorem 3.1 with (1) of corollary 3.1 we conclude that there is no pair $(\omega, \varphi) \in \mathbb{N}^{2}$ with $\omega \leq 999958$ which satisfies the diophantine equation

$$
\omega^{2}-(2999883+2 \varphi) \omega+1999922 \varphi=0
$$

We now prove the following corollary:
Corollary 3.2. The square of every prime number can be uniquely written as the sum of consecutive natural numbers.

Proof. For $\Pi=P=$ prime in equation (3.5) we obtain

$$
\begin{equation*}
P^{2}=\mu\left(\frac{P+1}{2}, P-1\right) . \tag{3.13}
\end{equation*}
$$

According with 4 of Theorem 3.1 the odd P^{2} cannot be rearranged. Thus, the odd can be uniquely written as the sum of consecutive natural numbers, as given from equation (3.13).。 Example 3.2. The odd $P=17$ is prime. From equation (3.13) for $P=17$ we obtain $289=\mu(9,16)$
and from equation (2.1) we get

$$
289=9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25
$$

which is the only way in which the odd number 289 can be written as a sum of consecutive natural numbers.

4 Natural numbers as linear combination of consecutive powers of 2

According to the fundamental theorem of arithmetic, every natural number can be uniquely written as a product of powers of prime numbers. The previously presented study reveals a correspondence between odd prime numbers and the powers of 2 . Thus, the question arises whether there exists a theorem for the powers of 2 corresponding to the fundamental theorem of arithmetic. The answer is given by the following theorem:

Theorem 4.1. Every natural number, with the exception of 0 and 1 , can be uniquely written as a linear combination of consecutive powers of 2 , with the coefficients of the linear combination being -1 or +1 .

Proof. Let the odd number Π as given from equation

$$
\begin{align*}
& \Pi=\Pi\left(v, \beta_{i}\right)=2^{v+1}+2^{v} \pm 2^{v-1} \pm 2^{v-2} \pm \ldots \ldots . . \pm 2^{1} \pm 2^{0}=2^{v+1}+2^{v}+\sum_{i=0}^{v-1} \beta_{i} 2^{i} \\
& \beta_{i}= \pm 1, i=0,1,2, \ldots \ldots ., v-1 \tag{4.1}\\
& v \in \mathbb{N}
\end{align*}
$$

From equation (4.1) for $v=0$ we obtain
$\Pi=2^{1}+2^{0}=2+1=3$.
We now examine the case where $v \in \mathbb{N}^{*}$. The lowest value that the odd number Π of equation (4.1) can obtain is
$\Pi_{\text {min }}=\Pi(v)=2^{v+1}+2^{v}-2^{v-1}-2^{v-1}-\ldots \ldots . .2^{1}-1$
$\Pi_{\text {min }}=\Pi(v)=2^{v+1}+1$.
The largest value that the odd number Π of equation (4.1) can obtain is
$\Pi_{\text {max }}=\Pi(v)=2^{v+1}+2^{v}+2^{v-1}+\ldots \ldots . . .2^{1}+1$
$\Pi_{\text {max }}=\Pi(v)=2^{v+2}-1$.
Thus, for the odd numbers $\Pi=\Pi\left(v, \beta_{i}\right)$ of equation (4.1) the following inequality holds
$\Pi_{\text {min }}=2^{v+1}+1 \leq \Pi\left(v, \beta_{i}\right) \leq 2^{v+2}-1=\Pi_{\max }$.
The number $N\left(\Pi\left(\nu, \beta_{i}\right)\right)$ of odd numbers in the closed interval $\left[2^{v+1}+1,2^{v+2}-1\right]$ is
$N\left(\Pi\left(\nu, \beta_{i}\right)\right)=\frac{\Pi_{\text {max }}-\Pi_{\text {min }}}{2}+1=\frac{\left(2^{v+2}-1\right)-\left(2^{v+1}+1\right)}{2}+1$
$N\left(\Pi\left(v, \beta_{i}\right)\right)=2^{v}$.
The integers $\beta_{i}, i=0,1,2, \ldots \ldots . ., v-1$ in equation (4.1) can take only two values, $\beta_{i}=-1 \vee \beta_{i}=+1$, thus equation (4.1) gives exactly $2^{v}=N\left(\Pi\left(v, \beta_{i}\right)\right)$ odd numbers. Therefore, for every $v \in \mathbb{N}^{*}$ equation (4.1) gives all odd numbers in the interval $\left[2^{v+1}+1,2^{v+2}-1\right]$.

We now prove the theorem for the even numbers. Every even number α which is a power of 2 can be uniquely written in the form of $\alpha=2^{v}, v \in \mathbb{N}^{*}$. We now consider the case where the
even number α is not a power of 2 . In that case, according to corollary 3.1 the even number α is written in the form of

$$
\begin{equation*}
\alpha=2^{l} \Pi, \Pi=\text { odd }, \Pi \neq 1, l \in \mathbb{N}^{*} . \tag{4.6}
\end{equation*}
$$

We now prove that the even number α can be uniquely written in the form of equation (4.6). If we assume that the even number α can be written in the form of

$$
\begin{aligned}
& \alpha=2^{l} \Pi=2^{i^{\prime}} \Pi^{\prime} \\
& l \neq l^{\prime}\left(l>l^{\prime}\right) \\
& \Pi \neq \Pi^{\prime} \\
& l, l^{\prime} \in \mathbb{N}^{*} \\
& \Pi, \Pi^{\prime}=o d d \\
& \text { the we obtain }
\end{aligned}
$$

$$
\begin{aligned}
& 2^{l} \Pi=2^{i} \Pi^{\prime} \\
& 2^{l-i} \Pi=\Pi^{\prime}
\end{aligned}
$$

which is impossible, since the first part of this equation is even and the second odd. Thus, it is $l=l^{\prime}$ and we take that $\Pi=\Pi^{\prime}$ from equation (4.7). Therefore, every even number α that is not a power of 2 can be uniquely written in the form of equation (4.6). The odd number Π of equation (4.6) can be uniquely written in the form of equation (4.1), thus from equation (4.6) it is derived that every even number α that is not a power of 2 can be uniquely written in the form of equation
$\alpha=\alpha\left(l, v, \beta_{i}\right)=2^{l}\left(2^{\nu+1}+2^{v}+\sum_{i=0}^{v-1} \beta_{i} 2^{i}\right)$
$l \in \mathbb{N}^{*}, v \in \mathbb{N}$
$\beta_{i}= \pm 1, i=0,1,2, \ldots \ldots . ., v-1$
and equivalently
$\alpha=\alpha\left(l, v, \beta_{i}\right)=2^{l+v+1}+2^{l+v}+\sum_{i=0}^{v-1} \beta_{i} 2^{l+i}$
$l \in \mathbb{N}^{*}, v \in \mathbb{N}$
$\beta_{i}= \pm 1, i=0,1,2, \ldots \ldots \ldots, v-1$
For 1 we take
$1=2^{0}$
$1=2^{1}-2^{0}$
thus, it can be written in two ways in the form of equation (4.1). Both the odds of equation (4.1) and the evens of the equation (4.8) are positive. Thus, 0 cannot be written either in the form of equation (4.1) or in the form of equation (4.8). व

In order to write an odd number $\Pi \neq 1,3$ in the form of equation (4.1) we initially define the $v \in \mathbb{N}^{*}$ from inequality (4.4). Then, we calculate the sum
$2^{\nu+1}+2^{\nu}$.
If it holds that $2^{\nu+1}+2^{\nu}<\Pi$ we add the $2^{\nu-1}$, whereas if it holds that $2^{\nu+1}+2^{\nu}>\Pi$ then we subtract it. By repeating the process exactly v times we write the odd number Π in the form of equation (4.1). The number of v steps needed in order to write the odd number Π in the form of equation (4.1) is extremely low compared to the magnitude of the odd number Π, as derived from inequality (4.4).

Example 4.1. For the odd number $\Pi=23$ we obtain from inequality (4.4)

$$
\begin{aligned}
& 2^{v+1}+1<23<2^{v+2}-1 \\
& 2^{v+1}+2<24<2^{v+2} \\
& 2^{v}<12<2^{v+1}
\end{aligned}
$$

thus $v=3$. Then, we have

$$
\begin{aligned}
& 2^{v+1}+2^{v}=2^{4}+2^{3}=24>23 \text { (thus } 2^{2} \text { is subtracted) } \\
& 2^{4}+2^{3}-2^{2}=20<23 \text { (thus } 2^{1} \text { is added) } \\
& 2^{4}+2^{3}-2^{2}+2^{1}=22<23 \text { (thus } 2^{0}=1 \text { is added) } \\
& 2^{4}+2^{3}-2^{2}+2^{1}+1=23
\end{aligned}
$$

Fermat numbers F_{s} can be written directly in the form of equation (4.1), since they are of the form $\Pi_{\text {min }}$,

$$
\begin{align*}
& F_{s}=2^{2^{s}}+1=\Pi_{\min }\left(2^{s}-1\right)=2^{2^{s}}+2^{2^{s}-1}-2^{2^{s}-2}-2^{2^{s}-3}-\ldots \ldots . .-2^{1}-1 . \tag{4.10}\\
& s \in \mathbb{N}
\end{align*}
$$

Mersenne numbers M_{p} can be written directly in the form of equation (4.1), since they are of the form $\Pi_{\text {max }}$,

$$
\begin{equation*}
M_{p}=2^{p}-1=\Pi_{\max }(p-2)=2^{p-1}+2^{p-2}+2^{p-3}+\ldots \ldots . .+2^{1}+1 . \tag{4.11}
\end{equation*}
$$

$$
p=\text { prime }
$$

In order to write an even number α that is not a power of 2 in the form of equation (4.1), initially it is consecutively divided by 2 and it takes of the form of equation (4.6). Then, we write the odd number Π in the form of equation (4.1).

Example 4.2. By consecutively dividing the even number $\alpha=368$ by 2 we obtain $\alpha=368=2^{4} \cdot 23$.

Then, we write the odd number $\Pi=23$ in the form of equation (4.1),
$23=2^{4}+2^{3}-2^{2}+2^{1}+1$,
and we get
$368=2^{4}\left(2^{4}+2^{3}-2^{2}+2^{1}+1\right)$
$368=2^{8}+2^{7}-2^{6}+2^{5}+2^{4}$.
This equation gives the unique way in which the even number $\alpha=368$ can be written in the form of equation (4.9).

From inequality (4.4) we obtain
$2^{v+1}+1 \leq \Pi \leq 2^{v+2}-1$
$2^{\nu+1}<2^{\nu+1}+1 \leq \Pi \leq 2^{\nu+2}-1<2^{\nu+2}$
$2^{v+1}<\Pi<2^{v+2}$
$(v+1) \log 2<\log \Pi<(v+2) \log 2$
from which we get
$\frac{\log \Pi}{\log 2}-1<v+1<\frac{\log \Pi}{\log 2}$
and finally
$v+1=\left[\frac{\log \Pi}{\log 2}\right]$
where $\left[\frac{\log \Pi}{\log 2}\right]$ the integer part of $\frac{\log \Pi}{\log 2} \in \mathbb{R}$.
We now give the following definition:
Definition 4.1. We define as the conjugate of the odd

$$
\begin{aligned}
& \Pi=\Pi\left(v, \beta_{i}\right)=2^{v+1}+2^{v}+\sum_{i=0}^{v-1} \beta_{i} 2^{i} \\
& \beta_{i}= \pm 1, i=0,1,2, \ldots \ldots . ., v-1 \\
& v \in \mathbb{N}^{*} \\
& \text { the odd } \Pi^{*},
\end{aligned}
$$

$$
\begin{aligned}
& \Pi^{*}=\Pi^{*}\left(v, \gamma_{j}\right)=2^{v+1}+2^{v}+\sum_{j=0}^{v-1} \gamma_{j} 2^{j} \\
& \gamma_{i}= \pm 1, j=0,1,2, \ldots \ldots . ., v-1 \\
& v \in \mathbb{N}^{*}
\end{aligned}
$$

for which it holds
$\gamma_{k}=-\beta_{k} \forall k=0,1,2, \ldots \ldots \ldots, v-1$.
For conjugate odds, the following corollary holds:
Corollary 4.1. For the conjugate odds $\Pi=\Pi\left(v, \beta_{i}\right)$ and $\Pi^{*}=\Pi^{*}\left(v, \gamma_{i}\right)$ the following hold:

1. $\left(\Pi^{*}\right)^{*}=\Pi$.
2. $\Pi+\Pi^{*}=3 \cdot 2^{\nu+1}$.
3. Π is divisible by 3 if and only if Π^{*} is divisible by 3 .

Proof. 1. The 1 of the corollary is an immediate consequence of definition 4.1.
2. From equations (4.13), (4.14) and (4.15) we get
$\Pi+\Pi^{*}=\left(2^{v+1}+2^{v}\right)+\left(2^{v+1}+2^{v}\right)$
and equivalently
$\Pi+\Pi^{*}=3 \cdot 2^{\nu+1}$.
3. If the odd Π is divisible by 3 then it is written in the form $\Pi=3 x, x=o d d$ and from equation (4.17) we get $3 x+\Pi^{*}=3 \cdot 2^{v+1}$ and equivalently $\Pi^{*}=3\left(2^{v+1}-x\right)$. Similarly we can prove the inverse. \quad.

5 The T symmetry and a method for defining large prime numbers

We now give the following definition:
Definition 5.1. Define as "symmetry" every specific algorithm which determines the signs of $\beta_{i}= \pm 1, i=0,1,2, \ldots \ldots . ., v-1$ in equation (4.1):
$\Pi=\Pi\left(v, \beta_{i}\right)=2^{v+1}+2^{v} \pm 2^{v-1} \pm 2^{v-2} \pm \ldots \ldots . \pm 2^{1} \pm 2^{0}=2^{v+1}+2^{v}+\sum_{i=0}^{v-1} \beta_{i} 2^{i}$
$\beta_{i}= \pm 1, i=0,1,2, \ldots \ldots \ldots, v-1$
$v \in \mathbb{N}$
Next, we develop a specific symmetry, the T symmetry.

If the natural number v, in the equation (4.1), is not a prime and is not a power of 2 , the equation (2.1) gives
$v=\mu(k, n)=\frac{(n+1)(2 k+n)}{2}=k+(k+1)+(k+2)+\ldots \ldots \ldots+(k+n)$.
$k \in \mathbb{N}^{*}, n \in A=\{2,3,4, \ldots\}$
We define the odd number $T_{1}=\Pi(v=\mu(k, n))=T_{1}(k, n)$ as follows: In the right side of equation (4.1), from left to right, we take k signs -1 , and then $(k+1)$ signs $+1,(k+2)$ signs -1 , $(k+3)$ signs +1 etc., according to the right side of equation (5.1). After making some calculations we have
$T_{1}=T_{1}(k, n)=2^{\frac{(n+1)(2 k+n)+1}{2}}+\left(\sum_{j=0}^{n}(-1)^{j} \times 2^{\frac{(n+1)(2 k+n)}{2}+1-\sum_{j=0}^{j}(k+i)}\right)-(-1)^{n}$
$=2^{\mu(k, n)+1}+\left(\sum_{j=0}^{n}(-1)^{j} \times 2^{\mu(k, n)+1-\mu(k, j)}\right)-(-1)^{n}$
$=2^{\mu(k, n)+1}+\left(\sum_{j=0}^{n-1}(-1)^{j} \times 2^{\mu(k, n)+1-\mu(k, j)}\right)+(-1)^{n}$
$k \in \mathbb{N}^{*}, n \in A$
and
$T_{1}^{*}=T_{1}^{*}(k, n)=3 \times 2^{\mu(k, n)+1}-T_{1}(k, n)$
and equivalently

$$
\begin{aligned}
& T_{1}^{*}=T_{1}^{*}(k, n)=2^{\frac{(n+1)(2 k+n)}{2}+2}-\left(\sum_{j=0}^{n}(-1)^{j} \times 2^{\frac{(n+1)(2 k+n)}{2}+1-\sum_{i=0}^{j}(k+i)}\right)+(-1)^{n} \\
& =2^{\mu(k, n)+2}-\left(\sum_{j=0}^{n}(-1)^{j} \times 2^{\mu(k, n)+1-\mu(k, j)}\right)+(-1)^{n} \\
& =2^{\mu(k, n)+2}-\left(\sum_{j=0}^{n-1}(-1)^{j} \times 2^{\mu(k, n)+1-\mu(k, j)}\right)-(-1)^{n} \\
& k \in \mathbb{N}^{*}, n \in A
\end{aligned}
$$

We write the equation (5.1) in the form
$v=\mu(k, n)=\frac{(n+1)(2 k+n)}{2}=(k+n)+(k+n-1)+(k+n-2)+\ldots \ldots . .+k$.
$k \in \mathbb{N}^{*}, n \in A$
We define the odd number $T_{2}=\Pi(v=\mu(k, n))=T_{2}(k, n)$ by the same way as we defined $T_{1}=\Pi(\nu=\mu(k, n))=T_{1}(k, n)$ but the signs in equation (4.1) are now determined according to the right side of equation $(5.4),(k+n)$ signs $-1,(k+n-1)$ signs $+1,(k+n-2)$ signs $-1,(k+n-3)$ signs +1 etc. After making some calculations we have
$T_{2}=T_{2}(k, n)=2^{\frac{(n+1)(2 k+n)}{2}+1}+\left(\sum_{j=0}^{n}(-1)^{j} \times 2^{\frac{(n+1)(2 k+n)}{2}+1-\sum_{i=0}^{j}(k+n-i)}\right)-(-1)^{n}$
$=2^{\mu(k, n)+1}+\left(\sum_{j=0}^{n}(-1)^{j} \times 2^{\mu(k, n)+1-\mu(k+n-j, j)}\right)-(-1)^{n}$
$=2^{\mu(k, n)+1}+\left(\sum_{j=0}^{n-1}(-1)^{j} \times 2^{\mu(k, n)+1-\mu(k+n-j, j)}\right)+(-1)^{n}$
$k \in \mathbb{N}^{*}, n \in A$
and
$T_{2}^{*}=T_{2}^{*}(k, n)=3 \times 2^{\mu(k, n)+1}-T_{2}(k, n)$
and equivalently

$$
\begin{align*}
& T_{2}^{*}=T_{2}^{*}(k, n)=2^{\frac{(n+1)(2 k+n)}{2}+2}-\left(\sum_{j=0}^{n}(-1)^{j} \times 2^{\frac{(n+1)(2 k+n)}{2}+1-\sum_{i=0}^{j}(k+n-i)}\right)+(-1)^{n} \\
& =2^{\mu(k, n)+2}-\left(\sum_{j=0}^{n}(-1)^{j} \times 2^{\mu(k, n)+1-\mu(k+n-j, j)}\right)+(-1)^{n} \tag{5.6}\\
& =2^{\mu(k, n)+2}-\left(\sum_{j=0}^{n-1}(-1)^{j} \times 2^{\mu(k, n)+1-\mu(k+n-j, j)}\right)-(-1)^{n} \\
& k \in \mathbb{N}^{*}, n \in A
\end{align*}
$$

Equations (5.2), (5.3), (5.5) and (5.6) define the T symmetry.
A method for the determination of large prime numbers emerges from the study we presented. This method is completely different from previous methods [3-7]. For the T symmetry holds:
"There are pairs $(k, n) \in \mathbb{N}^{*} \times A$,
$n \neq 3+4 L, L \in \mathbb{N}$,
for which one or more of $T_{1}(k, n), T_{1}^{*}(k, n), T_{2}(k, n), T_{2}^{*}(k, n)$ are prime numbers."
We will present three examples:

1. The number
$T_{2}(11,5)=2^{82}+2^{66}-2^{51}+2^{37}-2^{24}+2^{12}-2^{1}+1=4835777063183149145526271$ is a prime.
The number
$T_{1}^{*}(11,5)=2^{83}-2^{71}+2^{59}-2^{46}+2^{32}-2^{17}+2^{1}-1=9669045950065986429124609$ is a prime.
2. The number
$T_{1}(23,4)=2^{126}+2^{103}-2^{79}+2^{54}-2^{28}+2^{1}-1=85070601871438813228787070915221$ 389313 is a prime.
3. The number $T_{1}^{*}(80,2)=2^{245}-2^{164}+2^{83}-2^{1}+1=56539106072908298546665496639747$ 195212032793441072154605920000979840794623 (74 digits) is a prime.

The number D of digits of the primes calculated by the method is of order

$$
\begin{equation*}
D=D(k, n)=(\mu(k, n)+1) \log 2=\left(\frac{(n+1)(2 k+n)}{2}+1\right) \log 2 . \tag{5.8}
\end{equation*}
$$

The smallest prime number given by the method is $T_{1}(2,2)=2^{10}+2^{8}-2^{5}+2^{1}-1=1249$. Also, it doesn't give prime numbers Fermat and Mersenne.

We now cite some remarkable properties of the T symmetry. When the numbers of the T symmetry are not primes, with high probability, one or more of them are the product of a set of small primes with a large prime (with ratio of the number of digits at least 3:1 in the decimal system). We give an example for $\mathrm{n}=4$ and $\mathrm{k}=1,2,3, \ldots, 2$

Example 5.1.

1. $T_{1}^{*}(1,4)=5 \times 21107$.
2. $T_{1}(2,4)=3 \times 853291$

$$
\begin{aligned}
& T_{2}(2,4)=3 \times 709651 \\
& T_{2}^{*}(2,4)=3 \times 1387501
\end{aligned}
$$

3. $T_{1}^{*}(3,4)=126337279$ (9 digits) is a prime

$$
T_{2}^{*}(3,4)=133701391 \text { (9 digits) is a prime. }
$$

4. $T_{2}^{*}(4,4)=3 \times 13 \times 109913929$.
5. $T_{2}(5,4)=68853174209$ (11 digits) is a prime

$$
T_{2}^{*}(5,4)=19 \times 7226592421
$$

6. $T_{2}(6,4)=3 \times 7 \times 104817455293$.
7. $T_{2}(7,4)=37 \times 1902785687213$

$$
T_{2}^{*}(7,4)=11 \times 12791196555101 .
$$

8. $T_{1}(8,4)=3 \times 47 \times 16032473358917$.
9. $T_{1}^{*}(11,4)=1301 \times 113403483925962179$.
10. $T_{1}^{*}(12,4)=3 \times 13 \times 121071540832866439273$
$T_{2}(12,4)=3 \times 7 \times 112439012815828430653$
$T_{2}^{*}(12,4)=3 \times 89 \times 17686630918247456093$.
11. $T_{1}^{*}(13,4)=5 \times 30221300928544913175347$

$$
T_{2}^{*}(13,4)=2239 \times 67492251451483773121 .
$$

12. $T_{1}^{*}(14,4)=3 \times 19 \times 107 \times 792844025087630419877$
13. $T_{1}^{*}(15,4)=23 \times 6727832337541722681821273$.
14. $T_{2}(16,4)=3 \times 825294146583166134057740971$.
15. $T_{2}(17,4)=3541 \times 22374527052572768094438269$.
16. $T_{1}^{*}(18,4)=3 \times 73 \times 2903 \times 7975677388569543733588379$.
17. $T_{2}^{*}(19,4)=11 \times 641 \times 23012234740860744903766035421$.
18. $T_{1}^{*}(20,4)=3 \times 6643069 \times 260536928672371642740686521$.
19. $T_{2}(21,4)=7 \times 79 \times 150229208340754381651561471195673$ (33 digits).
20. $T_{1}(22,4)=3 \times 29 \times 1259 \times 24270828201501431550885053400181$ (32 digits) $T_{1}^{*}(22,4)=3 \times 1933 \times 916866933835909456002715952336617$ (33 digits).
21. $T_{1}(23,4)=85070601871438813228787070915221389313$ (38 digits) is a prime $T_{1}^{*}(23,4)=18269 \times 9313108178842029359502101081537291$ (34 digits) $T_{2}^{*}(23,4)=19 \times 89 \times 100615720181338817896100110722568301$ (36 digits).

For

$$
\begin{equation*}
n=3+4 L, L \in \mathbb{N} \tag{5.9}
\end{equation*}
$$

the numbers of the T symmetry have 3 as a factor. In these cases, we factorize the numbers of the T symmetry in order to identify the ones which are the product of a set of small primes with a large prime (with ratio of the number of digits at least $3: 1$ in the decimal system). We give an example for $\mathrm{L}=0$ and $\mathrm{k}=1,2,3, \ldots \ldots \ldots, 33$.

Example 5.2.

1. $T_{2}^{*}(1,3)=3 \times 1327$.
2. $T_{2}^{*}(2,3)=3 \times 21523$.
3. $T_{2}^{*}(4,3)=3 \times 5570891$.
4. $T_{1}(5,3)=3 \times 46115669$.
5. $T_{2}^{*}(7,3)=3 \times 5 \times 4579065839$.
6. $T_{2}^{*}(9,3)=3^{2} \times 1954448845369$.
7. $T_{1}(10,3)=3 \times 73 \times 643264201901$.
8. $T_{1}(11,3)=3 \times 5 \times 23 \times 6530142193943$.
9. $T_{1}(12,3)=3^{2} \times 4004176893145543$.
10. $T_{2}(13,3)=3 \times 7 \times 31 \times 107 \times 151 \times 54806826689$.
11. $T_{1}(14,3)=3 \times 11 \times 279513180897836063$.
12. $T_{1}^{*}(16,3)=3^{3} \times 7 \times 19 \times 73 \times 18014329790791679$.
13. $T_{1}(17,3)=3 \times 12593073364077934630229$.
14. $T_{1}(18,3)=3^{2} \times 9239 \times 7269488227993959889$.
15. $T_{1}(19,3)=3 \times 5 \times 73 \times 331 \times 26683841696377422587$

$$
\begin{aligned}
& T_{1}^{*}(19,3)=3 \times 7^{2} \times 127 \times 269 \times 337 \times 11429204013400937 \\
& T_{2}^{*}(19,3)=3 \times 5 \times 557 \times 2315117990184578945803 .
\end{aligned}
$$

16. $T_{2}(20,3)=3 \times 23 \times 89 \times 683 \times 9041 \times 4080688125380017$.
17. $T_{1}^{*}(21,3)=3 \times 47 \times 178481 \times 196765246663328879957$
$T_{2}^{*}(21,3)=3^{2} \times 83 \times 23473 \times 282403703315945507251$.
18. $T_{2}^{*}(22,5)=3 \times 5273 \times 5008417809828231066746851$.
19. $T_{2}^{*}(23,3)=3 \times 5^{2} \times 137 \times 211 \times 379 \times 1542751819716389148523$.
20. $T_{2}(24,3)=3 \times 2731 \times 7487 \times 8191 \times 20183749276015547071$.
21. $T_{1}(25,3)=3 \times 13 \times 269 \times 636697 \times 24291809038323309475541$.
22. $T_{1}(26,3)=3 \times 47 \times 829 \times 22210374525858205252016927831$

$$
T_{2}(26,3)=3 \times 5 \times 13 \times 29 \times 43 \times 83 \times 113 \times 127 \times 151 \times 59359638928368977041 .
$$

23. $T_{1}^{*}(27,3)=3 \times 233 \times 1103 \times 2089 \times 48091 \times 1072567317671651381903$

$$
T_{2}^{*}(27,3)=3^{2} \times 5 \times 23 \times 139 \times 257 \times 6560737 \times 342482665485076269161 .
$$

24. $T_{1}^{*}(28,3)=3^{2} \times 7 \times 11 \times 31 \times 151 \times 331 \times 1237940038132458773513502719$.
25. $T_{2}^{*}(30,3)=3^{2} \times 5801 \times 288383 \times 22600831355114079948328119407$.
26. $T_{1}^{*}(31,3)=3 \times 7 \times 23 \times 83 \times 89 \times 109 \times 599479 \times 23353056263230084539231539$.
27. $T_{1}(32,3)=3 \times 37 \times 392397684468660613729344084167488872817$ (39 digits).
28. $T_{1}(33,3)=3^{2} \times 23 \times 857 \times 3928422863348787826215906015441564473$ (37 digits)

$$
T_{2}^{*}(33,3)=3^{4} \times 20286419 \times 848220926630659241732391340317419 \text { (33 digits). }
$$

Fermat and Mersenne, for odds $N \neq 3$ of the form $N=2^{n}+1=2^{n}+1^{n}, n \in \mathbb{N}^{*}$ and $N=2^{n}-1=2^{n}-1^{n}, n \in \mathbb{N}^{*}$, respectively, chose the values of $n \in \mathbb{N}$ for which the odd N, firstly, does not have 3 as a factor ($n=2^{s}, s \in \mathbb{N}$ and $n=$ prime, respectively). This has as a consequence that the Fermat and Mersenne numbers are not divisible by 3, that is, they are not divisible by $1 / 3$ of the odd numbers (that are smaller than N). This non-divisibility by 3 , is a property of the numbers of the T symmetry for $\mathrm{n}=5$. Consequently, the odds $T_{1}(k, 5), T_{1}^{*}(k, 5)$,
$T_{2}(k, 5), T_{2}^{*}(k, 5), k \in \mathbb{N}^{*}$ are not divisible by $1 / 3$ of the odd numbers (that are smaller than $\left.T_{1}(k, 5), T_{1}^{*}(k, 5), T_{2}(k, 5), T_{2}^{*}(k, 5), k \in \mathbb{N}^{*}\right)$. Because of this, the method is particularly efficient for $\mathrm{n}=5$. We give an example for $\mathrm{n}=5$ and for small values of $\mathrm{k}, \mathrm{k}=1,2,3, \ldots, 18$.
Example 5.3.

1. $T_{2}(2,5)=270500807$ (9 digits) is a prime.
2. $T_{2}(3,5)=17246461711$ (11digits) is a prime $T_{1}^{*}(3,5)=32342343169$ (11 digits) is a prime.
3. $T_{1}^{*}(4,5)=2132417969153$ (13 digits) is a prime.
4. $T_{1}^{*}(8,5)=36821571153497669633$ (20 digits) is a prime.
5. $T_{2}(9,5)=1180663669517502645247$ (22 digits) is a prime.
6. $T_{1}(10,5)=75631614682207162007551$ (23 digits) is a prime.
7. $T_{2}(11,5)=4835777063183149145526271$ (25 digits) is a prime $T_{1}^{*}(11,5)=9669045950065986429124609$ (25 digits) is a prime.
8. $T_{1}^{*}(12,5)=618894471001773327207104513$ (27 digits) is a prime.
9. $T_{2}(16,5)=5192299334412545020553193752494079$ (34 digits) is a prime.
10. $T_{1}^{*}(18,5)=42535214735633635683576920453379260417$ (38 digits) is a prime.

From the identity of the Euclidean division, we have that the equations
$n=3+4 L, L \in \mathbb{N}^{*}$
$n=2+4 L, L \in \mathbb{N}$
$n=1+4 L, L \in \mathbb{N}^{*}$
$n=4 L, L \in \mathbb{N}^{*}$
give all values for $n \in A=\{2,3,4, \ldots\}$.
For $n=2+4 L, L \in \mathbb{N}$ the numbers of T symmetry give prime numbers only for even values of k :

$$
\begin{align*}
& (k, n)=(2 S, 2+4 L) \tag{5.10}\\
& S \in \mathbb{N}^{*}, L \in \mathbb{N}
\end{align*}
$$

For $n=1+4 L, L \in \mathbb{N}^{*}$ the numbers of T symmetry give prime numbers for both, even and odd values of k :

$$
\begin{align*}
& (k, n)=(S, 1+4 L) \tag{5.11}\\
& S, L \in \mathbb{N}^{*}
\end{align*}
$$

For $n=4 L, L \in \mathbb{N}^{*}$ the numbers of T symmetry give prime numbers only for odd values of k :
$(k, n)=(2 S-1,4 L)$
$S, L \in \mathbb{N}^{*}$
The values of sequence $\mu(k, n)$ for the pairs (k, n) of equations (5.10), (5.11) and (5.12), are odd numbers. So the numbers of T symmetry give prime numbers only in cases where the sequence $\mu(k, n)=\frac{(n+1)(2 k+n)}{2}$

In equations (5.2), (5.3), (5.5) and (5.6) is an odd number.
From the above study it emerges that the method is applied in two ways:
a. We factorize the numbers of the T symmetry and identify the ones that are products of a set of prime numbers with a comparatively larger prime number.
b. We identify the prime numbers of the T symmetry, via a primality test, when the equations (5.10), (5.11), (5.12) hold.

We suggest, in both cases, that a specific $n \in A=\{2,3,4, \ldots\}$ should be chosen, and then the values $\mathrm{k}=1,2,3 \ldots$ can be given in equations (5.2), (5.3), (5.5) and (5.6). The method may be further investigated for the form of the pairs $(k, n) \in \mathbb{N}^{*} \times A$ in equations (5.2), (5.3), (5.5) and (5.6).

The observations above have high theoretical interest, but they have not been completely proved. During the application of the method, it is necessary, a primality test to be done, for all possible primes of T symmetry.

6. A factorization test

The corollary gives a factorization test for the odd numbers $\Pi \geq 9$.
Corollary 6.1.1. Every odd number $\Pi \geq 9$ is composite if and only if there exists an odd number f such that
$(2 h-1)^{2}+8 \Pi=f^{2}$
$h \in \mathbb{N}^{*}, f \in \mathbb{N}, f=$ odd
$\sqrt{8 \Pi}<f \leq \sqrt{8 \Pi+1}+2 h-2$
and then
$\Pi=\mu(h, c)=\frac{(c+1)(2 h+c)}{2}$
$c=\frac{f-(2 h+1)}{2} \in A$.
2. The biggest number $S=S(\Pi)$ of operations required for the factorization of the odd number Π depends on the value of the parameter $h \in \mathbb{N}^{*}$ and derives from the equation
$S=S(\Pi=\mu(h, c))=\frac{[\sqrt{8 \Pi+1}]-[\sqrt{8 \Pi}]+2 h-2}{2}=h-1$.
Proof. 1. According to theorem 2.1 every composite odd number Пcan be written in the form of the equation

$$
\begin{aligned}
& \Pi=\mu(h, c)=\frac{(c+1)(2 h+c)}{2} \\
& (h, c) \in \mathbb{N}^{*} \times A
\end{aligned}
$$

and we have
$c^{2}+(2 h+1) c+2 h-2 \Pi=0$.
This equation is of second order with respect to $c \in A$ and the determinant D of the equation (6.5) is a square of a natural number:

$$
\begin{equation*}
D=(2 h-1)^{2}+8 \Pi=f^{2} . \tag{6.6}
\end{equation*}
$$

From the equations (6.5) and (6.6) we have
$c=\frac{f-(2 h+1)}{2} \in A$ which is the equation (6.3).
In equation (6.3) the natural number $(2 h+1)$ is odd and consequently f is also odd. From the equation (6.6) we have that $8 \Pi<f^{2}$ and finally $\sqrt{8 \Pi}<f$. From the equation (6.2) we have $\frac{\Pi}{c+1}-\frac{c}{2}=h \geq 1$
and so
$c \leq \frac{\sqrt{8 \Pi+1}-3}{2}$
and in combination with the equation (6.3) we have
$\frac{f-(2 h+1)}{2} \leq \frac{\sqrt{8 \Pi+1}-3}{2}$
And finally we have $f \leq \sqrt{8 \Pi+1}+2 h-2$.
2. From the inequality of relation (6.1) we have that the odd number f belongs to the closed interval $\Delta=\Delta(\Pi)$:

$$
\begin{equation*}
f \in \Delta=\Delta(\Pi=\mu(h, c))=[[\sqrt{8 \Pi}]+1,[\sqrt{8 \Pi+1}]+2 h-2] . \tag{6.7}
\end{equation*}
$$

Consequently the biggest number of operation required is

$$
S=S(\Pi=\mu(h, c))=\frac{[\sqrt{8 \Pi+1}]-[\sqrt{8 \Pi}]+2 h-2}{2}=h-1
$$

in the case where the number f takes all odd values in the interval Δ.
The factorization of the odd number Π can be done by two ways:
By giving to the natural number h the values $\mathrm{h}=1,2,3 \ldots$ in the equation (6.1) until we have an odd value for f . Then, from equation (6.3) we calculate $c \in A$ and take the odd Π factorized in the form $\Pi=\mu(h, c)=\frac{(c+1)(2 h+c)}{2}$ (2 factors).

By giving to the odd number f values $f>\sqrt{8 \Pi}$ until we have a natural number $h \in \mathbb{N}^{*}$ from equation (6.1). Then, from the equation (6.3) we calculate $c \in A$ and take the odd Π factorized in the form $\Pi=\mu(h, c)=\frac{(c+1)(2 h+c)}{2}$ (2 factors).

From the equation (6.4) we conclude that the biggest number of operations required $\mathrm{S}=\mathrm{S}(\Pi)$ for the factorization of the odd number Π is minimized when the number h takes the smallest possible value in the rearrangements of $\Pi=\mu(\mathrm{h}, \mathrm{c})$ (see chapter 3). By comparing our factorization test with the sieve of Eratosthenes: the number of operations required for the factorization of an odd number Π by the sieve of Eratosthenes is approximately $\frac{\sqrt{\Pi}}{\ln \sqrt{\Pi}}$. Therefor, the factorization test is efficient for the odd numbers Π for which we have

$$
S(\Pi=\mu(h, c))<\frac{\sqrt{\Pi}}{\ln \sqrt{\Pi}}
$$

and equivalently
$h<\frac{\sqrt{\Pi}}{\ln \sqrt{\Pi}}+1$.
As we can conclude from equation (6.4). The test is very effective for the odd numbers Π for which we have
$h \ll \frac{\sqrt{\Pi}}{\ln \sqrt{\Pi}}+1$.
From equations (2.4) and (2.5), where $\mathrm{k}=\mathrm{h}$ and $\mathrm{n}=\mathrm{c}$, we have that parameter h takes small values, and equivalently the test is effective when an odd number Π is a product of two odd numbers χ and $\psi, \Pi=\chi \psi, \chi<\psi$ and ψ be about twice as high as χ :
$\frac{\psi}{2 \chi} \sim 1$.
This observation leads to the concept of "rearrangement multiplier": If the odd number Π cannot be factorized by the test then we multiply it by an odd ξ (rearrangement multiplier) so that $\xi \Pi$ is product of two odd numbers χ and $\psi, \chi<\psi$ and ψ be about twice as high as χ. Then we factorize $\xi \Pi$ by the test. In factorization of $\xi \Pi$ the biggest factor of Π is appeared. Next we can see seven examples.

Example 6.1. We apply the test with the first way mentioned above for the odd $\Pi=289034935$ 520125533903 . The test factorizes in just 1 operation: $289034935520125533903=$ $12021541821 \times 24043083643$.

Example 6.2. We apply the test with the first way mentioned above for the odd $\Pi=499999$ 994488500015 187991. The test factorizes in 26 operations: $499999994488500015187991=$ $499999997257 \times 999999$.

Example 6.3. We apply the test with the first way mentioned above for the odd $\Pi=4988007042$ 023480817299187879152021079829 121957. The test factorizes in 8040399872594 operations: $\Pi=4988007042023480817299187879152021079829$ 121957=49939 999213 $188599848703 \times 99879998410296399952219$. We apply the test with the second way mentioned above for the odd $\Pi=4988007042023480817299187879152021079829121957$. The test factorizes in 324 operations: $\Pi=4988007042023480817299187879152021079829$ $121957=49939999213188599848703 \times 99879998410296399952219$.

Example 6.4. We apply the test with the first way mentioned above for the odd $\Pi=107262$ 463439540776796592199985646769019834926564739147021788491549774112240589 533735307367547289463131370341744570421106676687468135967135411548323345 072121 (156 digits). The test factorizes in 5 operations: $\Pi=463168356949264781694283940034751631413079938662562256157830336031652518559$
$751 \times 23158417847463239084714197001737581570653996933128112807891516801582625927$ 9871.

Example 6.5. We apply the test with the first way mentioned above for the odd $\Pi=1339385$ 758982834151185531311325002263201756014631917009304687985462938813906170 153116497973519619822659493341146941433531483931607115392554498072196841 413588751691149190545360298668824573067195292298103755984923583067909903 930689138499780608667013060760007914870267859719075299638934789671311367 995385 (301digits). The test factorizes in 5 operations:

П=163669530394807093500659484841379957610832102302153239474164568404806689820 $2337277441635046162952078575443342063780035504608628272942696526664263794695 \times$ 818347651974035467503297424206899788054160511510766197370822842024033449101168 638720817523081476039287721671031890017752304314136471348263332131897343.

Example 6.6. We apply the test with the first way mentioned above for the odd $\Pi=11917$. The test factorizes in 334 operations which is an extremely high number for such a small number. We apply the test with the second way mentioned above for the odd $\Pi=11917$. The test factorizes in 214 operations.

For $\xi=21$ we can factorizes $21 \times \Pi=21 \times 11917=250257$ and by applying the test by the first way mentioned above we can take, in 7 operations performed, $\xi \Pi=250257=701 \times 357$. The odd number 701 is the biggest factor of the odd $\Pi=11917$.

For $\xi=83$ we can factorizes $83 \times \Pi=83 \times 11917=989111$ and by applying the test by the first way mentioned above we can take, in 5 operations performed, $\xi \Pi=989111=701 \times 1411$. The odd number 701 is the biggest factor of the odd $\Pi=11917$.

Example 6.7. We apply the test with the first way mentioned above for the odd $\Pi=374757029$. The test factorizes in 182504 operations which is an extremely high number for such a small number. We apply the test with the second way mentioned above for the odd $\Pi=374757029$. The test factorizes in 157169 operations.

For $\xi=717$ we can factorizes $717 \times \Pi=717 \times 374757029=268700789793$ and by applying the test by the first way mentioned above we can take, in 1021 operations performed, $\xi \Pi=$ $268700789793=367049 \times 732057$. The odd number 367049 is the biggest factor of the odd П=374757029.

For $\xi=719$ we can factorizes $719 \times \Pi=719 \times 374757029=269450303851$ and by applying the test by the first way mentioned above we can take, in just 1 operation performed, $\xi \Pi=$ $269450303851=367049 \times 734099$. The odd number 367049 is the biggest factor of the odd $\Pi=374757029$.

For $\xi=721$ we can factorizes $721 \times \Pi=721 \times 374757029=270199817909$ and by applying the test by the first way mentioned above we can take, in 1022 operations performed, $\xi \Pi=$
$270199817909=367049 \times 736141$. The odd number 367049 is the biggest factor of the odd П=374757029.

For $\xi=179$ we can factorizes $179 \times \Pi=179 \times 374757029=67081508191$ and by applying the test by the first way mentioned above we can take, in 766 operations performed, $\xi \Pi=67081508191=$ 367049×184801. The odd number 367049 is the biggest factor of the odd $\Pi=374757029$.

We prove now the following corollary for the rearrangement multiplier:
Corollary 6.2. For every odd number $\Pi, \Pi=\chi \psi, \chi<\psi, \chi, \psi$ odd numbers, the rearrangement multipliers ξ are always pairs $\left(\xi_{1}, \xi_{2}\right), \xi_{1}<\xi_{2}$ for which the following equations hold
$\xi_{2}=4 \xi_{1} \pm 1$
$\xi_{1} \in \mathbb{N}^{*}, \xi_{1}=$ odd
$\xi_{1} \sim \frac{\xi_{2} \pm 1}{4}$
$\xi_{1}, \xi_{2} \in \mathbb{N}^{*}$
$\xi_{1}, \xi_{2}=$ odd numbers
Prof. For the odd number $\Pi, \Pi=\chi \psi, \chi<\psi, \chi, \psi$ odd numbers, we have $\xi \Pi=\xi \chi \psi$.

From equation (6.4) for the odd number $\xi \Pi$ and from equations (2.4), (2.5) we have that the odd number $\xi \Pi$ is factorized by the test in the following cases:

For $2 \xi \chi \sim \psi$ and we have
$\xi=\xi_{1} \sim \frac{\psi}{2 \chi}=\frac{\Pi}{2 \chi^{2}}=\frac{\psi^{2}}{2 \Pi}$.
For $\xi \chi \sim 2 \psi$ and we have
$\xi=\xi_{2} \sim \frac{2 \psi}{\chi}=\frac{2 \Pi}{\chi^{2}}=\frac{2 \psi^{2}}{\Pi}$.
By cancelling χ and ψ from the equations (6.14), (6.15) we have
$\xi_{2} \sim 4 \xi_{1}$.
In relation (6.16) the numbers ξ_{1} and ξ_{2} are odd and consequently we have $\xi_{2}=4 \xi_{1} \pm 1$ which is exactly the equation (6.11). The equation (6.12) results from relation (6.11) whereas the numbers ξ_{1} and ξ_{2} are odd.

For the odd numbers of the examples $6.1,6.2,6.3,6.4$ and 6.5 we have that the relation (6.10) holds. In examples 6.6 and 6.7 we can see the consequences of the corollary 6.2.

We prove now the following corollary:
Corollary 6.3. Every odd number $\Pi \geq 9$ is composite if and only if there exist natural numbers N and h so that to have

$$
\begin{align*}
& \Pi=\frac{N(N-1)}{2}-\frac{h(h-1)}{2} \\
& \frac{\sqrt{8 \Pi}+1}{2}<N \leq \frac{\sqrt{8 \Pi+1}}{2}+h \tag{6.17}\\
& h, N \in \mathbb{N}^{*}
\end{align*}
$$

Proof. We set

$$
\begin{aligned}
& f=2 N-1 \\
& N \in \mathbb{N}^{*}
\end{aligned}
$$

in equation (6.1) and by making calculations we take the equation (6.17).
The equations (6.1) and (6.17) are equivalent. From the equation (6.17) and by our test we have that the odd number Π can be written as a difference of two triangle numbers. Consequently the test can factorize odd numbers which cannot be factorized by tests that are based on differences and on sums of natural number squares. We underline that our test gives the odd number Π as a product of two factors, so many as the factors of the sequence $\mu(\mathrm{h}, \mathrm{c})$ are. The test can also applied to even numbers.

As in the case of equations (6.1) our test can be applied in two ways:
For the natural number h we give values $\mathrm{h}=1,2,3, \ldots$ in equation (6.17) until a natural number N to find out,

$$
N \in\left(\frac{\sqrt{8 \Pi}+1}{2}, \frac{\sqrt{8 \Pi+1}}{2}+h\right] .
$$

Next, from the equation (6.18) we calculate the odd number f and from equation (6.3) we calculate $c \in A$, and take the odd number Π factorized in the form $\Pi=\mu(\mathrm{h}, \mathrm{c})$.

We give N values, $N>\frac{\sqrt{8 \Pi}+1}{2}$ in equation (6.17) until a natural number $h \in \mathbb{N}^{*}$ to find out.
Next, from equation (6.18) next we calculate the odd number f and from equation (6.3) we calculate $c \in A$, and take the odd number Π factorized in the form $\Pi=\mu(\mathrm{h}, \mathrm{c})$.

From corollaries 6.2 and 6.3 we can find out the following results for the usage of the test:

1. The test factorizes odd numbers Π for which the equation (6.10) holds. The number of calculations required for the factorization depends on the internal structure of the odd number Π (from the quotient $\psi / 2 \chi$) and it is independent from the size of the odd number Π.
2. The test can factorize odd numbers for which the equation (6.10) doesn't hold, in the following way: From equation (6.11) we have that for every odd number candidate multiplier ξ_{1} which is rejected, immediately all odd candidate multipliers of the form $\xi_{2}=4 \xi_{1} \pm 1$ are rejected.

Consequently, every trial we do for a candidate multiplier ξ_{1} is equivalent to three trials. If $\xi_{1}=1$ is rejected, then the candidate multipliers $\xi_{2}=3,5$ are rejected, too. So we go on by testing as candidate multiplier the next odd number which is $\xi_{1}=7$. If $\xi_{1}=7$ is rejected, then immediately the candidate multipliers $\xi_{2}=27,29$ are rejected, too. Then we can test as candidate multiplier $\xi_{1}=9$ from $\xi_{1}=9,13,15,17,19,21,23,25$ and so on. The initial value of ξ_{1} depended on the value of the odd number П. In the same way we have a descending sequence of candidate ξ_{2} which are rejected by relation (6.12).
3. Using a rearrangement multiplier, the test can factorize odd numbers Q which cannot be factorized by tests that are based on differences and on sums of natural number squares. The initial values of ξ_{1} and ξ_{2} are depended on the value of odd Q.

The above presented factorization test may be combined with factorization tests that are based on differences and on sums of natural numbers squares. This combination could solve the problem of natural numbers factorization. For example, classical tests experience a difficulty in factorizing the odd number Π (301 digits) of example 6.5 ($\sim 1.2 \times 10^{8}$ operations). On the contrary, they can easily factorize the odd numbers

1636695303948070935006594848413799576108321023021532394741645684048 066898202337277441635046162952078575443342063780035504608628272942696526 $664263794695=3^{2} \times 5 \times 23 \times 61 \times 1237 \times 149173 \times 783077369 \times 1730874200754908897$ $438581 \times 103649580891650334533217110728686722681891397035344668562358179$ 839502136821566545795337979963740075089413
and
818347651974035467503297424206899788054160511510766197370822842024033449 101168638720817523081476039287721671031890017752304314136471348263332131 $897343=3^{2} \times 7 \times 167 \times 499 \times 1163 \times 2657 \times 155377 \times 1621324657 \times 13455809771 \times 9$ $202419446683 \times 57912614113275649087721 \times 3388098290567587377052016525627$ $948593 \times 8241594690167137359552274418432855740327$.

Thus, by combining the two tests we obtain the factorization of the odd number Π :
П= 1339385758982834151185531311325002263201756014631917009304687985462 938813906170153116497973519619822659493341146941433531483931607115392554

The tests that are based on differences and on sums of natural number squares are highly efficient when the following relationships hold

$$
\begin{equation*}
\chi \ll \psi \Leftrightarrow \frac{\psi}{2 \chi} \gg \frac{1}{2} \tag{6.19}
\end{equation*}
$$

or

$$
\begin{equation*}
\chi \sim \psi \sim \sqrt{\Pi} \Leftrightarrow \frac{\psi}{2 \chi} \sim \frac{1}{2} \tag{6.20}
\end{equation*}
$$

for the odd numbers $\Pi=\chi \psi, \chi<\psi, \chi, \psi$ odd numbers. Therefore, there is an emerging need of studying the association between the two tests, based on relationships (6.10) and (6.19), (6.20). This study can provide the initial values of rearrangement multipliers ξ_{1} and ξ_{2} for the odd numbers Q that cannot be factorized by the classical tests. In some first applications that have been conducted, the determination of the initial value of ξ_{1} was based on the statistical estimation of the relationship between ξ_{1} and χ in equation (6.14) for $\Pi=\mathrm{Q}$,

$$
\begin{align*}
& \xi_{1} \sim \frac{Q}{2 \chi^{2}} \tag{6.21}\\
& \xi_{1}=\xi_{1}(\chi)
\end{align*}
$$

The results we have set out, as well as the applications of Chapters 5 and 6, can be further explored. This is expected because this is the first time we study the natural numbers by their sum and not by their product.

References

[1] LeVeque, W. J. "On representations as a sum of consecutive integers." Canad. J. Math 2 (1950): 399-405.
[2] Parshall, Karen Hunger. "America's first school of mathematical research: James Joseph Sylvester at The Johns Hopkins University 1876-1883." Archive for History of Exact Sciences 38.2 (1988): 153-196.
[3] Apostol, Tom M. Introduction to analytic number theory. Springer Science \& Business Media, 2013.
[4] Crandall, Richard, and Carl B. Pomerance. Prime numbers: a computational perspective. Vol. 182. Springer Science \& Business Media, 2006.
[5] Gurevich, Alexander, and Boris, Kunyavskiĭ. "Primality testing through algebraic groups." Arch. der Math. 93.6 (2009): 555.
[6] Rempe-Gillen, Lasse, and Rebecca, Waldecker. Primality testing for beginners. Amer. Math. Soc., 2014.
[7] Schoof, Rene. Four primality testing algorithms, Algorithmic Number Theory: Lattices, Number Fields, Curves, and Cryptography, 2008.

