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Abstract

ABSTRACT. Two iterated limits are not equal each other, in general.
Thus, we present an example when the massless limit of the function of
E,p, m does not exist in some calculations within quantum field theory.

RESUMÉ. Deux limites itérées ne sont pas égales en général. Ainsi,
nous présentons un exemple oú la limite sans masse de la fonction de
E,p, m n’existe pas dans certains calculs de la théorie quantique des
champs.
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In the previous paper [1] we found some intrinsic contradictions related to the
mathematical foundations of modern physics. It is well known that the partial
derivatives commute in the Minkowski space (as well as in the 4-dimensional
momentum space). However, if we consider that the energy is the implicit
function of the 3-momenta and mass (thus, approaching the mass hyperboloid
formalism, E2−p2c2 = m2c4) then we may be interested in the commutators of
the whole-partial derivatives [2] instead. The whole-partial derivatives do not
commute, in general. If they are associated with the corresponding physical
operators, we would have the uncertainty relations for dynamically-conjugated
physical quantities in the latter case. This is an intrinsic contradiction. While
we start from the same postulates, on using two different ways of reasoning we
arrive at the two different physical conclusions.

In the present note I would like to ask another question related to the math-
ematical foundations of the special relativity. Sometimes, when calculating dy-
namical invariants (and other physical quantities in quantum field theory), and
when studying the corresponding massless limits we need to calculate the iter-
ated limits. We may encounter a rare situation when two iterated limits are not
equal each other in physics. See, for example, Ref. [3]. We were puzzled calcu-
lating the iterated limits of the aggregate E2−p2

m2 (or the inverse one, m2

E2−p2 ,
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c = 1).1

lim
m→0

lim
E→±

√
p2+m2

(
m2

E2 − p2
) = 1 , (1)

lim
E→±

√
p2+m2

lim
m→0

(
m2

E2 − p2
) = 0 . (2)

Physics should have the well-defined dynamical invariants. Which iterated limit
should be applied in the study of massless limits?

The question of the iterated limits was studied in [4, 5]. However, the answers
leave the room for misunderstandings and contradictions with the experiments.

I am grateful to the referee for his clear reports. I am grateful to R. Keys
for his help with the French translation.

Note Added. Some physicists may say: “The two limits are of very differ-
ent sorts: the limit of E → ±

√
p2 + m2 is a limit that subsumes the statement

under the theory of Special Relativity. Such limits should be done first, because
they define the physical rule book of the rest of the game. The other limit,
m → 0, defines a value of a parameter within the theory defined by the first
limit. Limits like m→ 0 should be done only after the theory-setting limits are
performed.”

However, the cases exist when the limit E → ±
√

p2 + m2 cannot be applied
(or its application leads to the loss of the information). For example, we have
for the causal Green’s function used in the scalar field theory and in the m→ 0
quantum electrodynamics (QED):

Dc(x) =
1

(2π)4

∫
d4p

e−ip·x

m2 − p2 − iε
= (3)

=
1
4π

δ(λ)− m

8π
√

λ
θ(λ)[J1(m

√
λ)− iN1(m

√
λ)] +

im

4π2
√
−λ

θ(−λ)K1(m
√
−λ),

λ = (x0)2 − x2; J1, N1,K1 are the Bessel functions of the first order. The
application of E → ±

√
p2 + m2 − iδ results to non-existence of the integral.

Meanwhile, the massless limit is made in the integrand in the Feynman gauge
with no problems. Please remember that integrals are also the limits of the
Riemann integral sums. The m→ 0 is made first sometimes.

The application of the mass shell condition in the Weinberg-Tucker-Hammer
2(2S + 1)-formalism leads to the fact that we would not be able to write the
dynamical equation in the covariant form [γµν∂µ∂ν − m2]Ψ(6)(x) = 0. The
information about the propagation of the longitudinal modes would be lost (cf.
formulas (19,20,27,28) of the first paper [3]). Moreover, the Weinberg equation
and the mapping of the Tucker-Hammer equation to the antisymmetric tensor
formalism have different physical contents on the interaction level [7, 8].

However, I take this opportunity to note that the problems (frequently for-
gotten) may exist with the direct application of m → 0 in relativistic quantum

1Similar mathematical examples are presented in https://en.wikipedia.org/wiki/Iterated limit.
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equations. The case is: when the solutions are constructed on using the relativis-
tic boosts in the momentum space (the mass may appear in the denominator,
∼ 1/mn, which cancels the mass terms of the equation giving the non-zero
corresponding result).

Next, if we would always apply the mass shell condition first then we come to
the derivative paradox of the previous paper [1]. Finally, the condition E2−p2 =
m2 does not always imply the generally-accepted special relativity only. For
instance, see the Kapuscik work, Ref. [9], who showed that similar expression
for energy and momentum exists for particles with V > c and m∞ ∈ <e.

Meanwhile, the case m = 0 appears to be equivalent to the light cone condi-
tion r = ct, which can be taken even without the mass shell condition to study
the theories extending the special relativity. Not all realizes that it can be used
to deduce the Lorentz transformations between two different reference frames.
Just take squares and use the lineality: r2

1 − c2t21 = 0 = r2
2 − c2t22. Hence, in

d = 1 + 1 we have

x2 = γ(x1 − vt1) , y2 = y1 , z2 = z1 , t2 = α(t1 −
β

c
x1) (4)

with α = γ = 1/
√

1− v2

c2 , the Lorentz factor; β = v/c.
Thus, while for physicists everything is obvious in the solutions of the para-

doxes, this is not so for mathematicians.
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