On the Infinite Product for the Ratio of \boldsymbol{k}-th Power and Factorial

By Edigles Guedes

September 8, 2018

And Jesus said unto them, I am the bread of life: he that cometh to me shall never hunger; and he that believe on me shall never thirst. John 6:35.

AbStRaCt. I derive an infinite product for the ratio of k-th power and factorial.

2010 Mathematics Subject Classification. Primary 33B99; Secondary 33B15. Key words and phrases. k-th Power, gamma function, factorial.

1. Introduction

In present paper, I derive the following infinite products:
and, obviously,

$$
\frac{z^{k}}{k!}=\prod_{j=1}^{\infty}\left(1+\frac{k}{j}\right)\left(1-\frac{1}{j+z}\right)^{k},
$$

$$
z=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)\left(1-\frac{1}{j+z}\right)
$$

2. The Main Theorem

2.1. The Infinite Product for the Ratio of \boldsymbol{K}-th Power and Factorial.

Theorem 2.1. If $z \in \mathbb{C}$ and $k \in \mathbb{Z}^{+}$, then

$$
\begin{equation*}
\frac{z^{k}}{k!}=\prod_{j=1}^{\infty}\left(1+\frac{k}{j}\right)\left(1-\frac{1}{j+z}\right)^{k}, \tag{2.1}
\end{equation*}
$$

where k ! denotes the factorial.
Proof. I well know the finite product identity

$$
\begin{equation*}
\frac{z^{k}}{k!}=\prod_{r=1}^{k}\left(\frac{z}{r}\right) . \tag{2.2}
\end{equation*}
$$

On the other hand, I have the infinite product representation [1, Lemma 1, p. 2]

$$
\begin{equation*}
\frac{a}{b}=\prod_{j=1}^{\infty} \frac{(a+j-1)(b+j)}{(a+j)(b+j-1)} . \tag{2.3}
\end{equation*}
$$

Replace a by z and b by r in (2.3) and encounter

$$
\begin{equation*}
\frac{z}{r}=\prod_{j=1}^{\infty} \frac{(z+j-1)(r+j)}{(z+j)(r+j-1)} \tag{2.4}
\end{equation*}
$$

From (2.2) and (2.4), it follows that

$$
\begin{aligned}
\frac{z^{k}}{k!} & =\prod_{r=1}^{k} \prod_{j=1}^{\infty} \frac{(z+j-1)(r+j)}{(z+j)(r+j-1)} \\
& =\prod_{j=1}^{\infty} \prod_{r=1}^{k} \frac{(z+j-1)(r+j)}{(z+j)(r+j-1)} \\
& =\prod_{j=1}^{\infty}\left(1+\frac{k}{j}\right)\left(1-\frac{1}{j+z}\right)^{k},
\end{aligned}
$$

which is the desired result.

2.2. The Infinite Products for the K-th Power and the z.

Theorem 2.2. If $z \in \mathbb{C}$ and $k \in \mathbb{Z}^{+}$, then

$$
\begin{equation*}
z^{k}=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{k}\left(1-\frac{1}{j+z}\right)^{k}, \tag{2.5}
\end{equation*}
$$

where z^{k} denotes the k-th power of z.
Proof. I well know the finite product identity

$$
\begin{equation*}
\frac{z^{k}}{k}=\frac{z^{k}(k-1)!}{k!}=\frac{z^{k}}{k!} \cdot \Gamma(k) . \tag{2.6}
\end{equation*}
$$

On the other hand, I know the Euler's infinite product representation for gamma function [1, (1), p. 1]

$$
\begin{equation*}
\Gamma(k)=\frac{1}{k} \prod_{j=1}^{\infty} \frac{\left(1+\frac{1}{j}\right)^{k}}{\left(1+\frac{k}{j}\right)} \tag{2.7}
\end{equation*}
$$

From Theorem 2.1, (2.6) and (2.7), I conclude that

$$
\begin{align*}
\frac{z^{k}}{k}= & \frac{1}{k} \prod_{j=1}^{\infty}\left(1+\frac{k}{j}\right)\left(1-\frac{1}{j+z}\right)^{k} \cdot \frac{\left(1+\frac{1}{j}\right)^{k}}{\left(1+\frac{k}{j}\right)} \\
& \Rightarrow z^{k}=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{k}\left(1-\frac{1}{j+z}\right)^{k}, \tag{2.8}
\end{align*}
$$

which is the desired result.

Corollary 2.3. If $z \in \mathbb{C}$, then

$$
\begin{equation*}
z=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)\left(1-\frac{1}{j+z}\right) . \tag{2.9}
\end{equation*}
$$

Proof. Set $k=1$ in the Theorem 2.2. This gives the desired result.

3. Exercises

Exercise 3.1. Prove that

$$
c_{2} F_{1}(a, b ; c ; z)+{ }_{2} F_{1}(a, b ; c+1 ; z)={ }_{3} F_{2}(2, a, b ; 1, c+1 ; z)+c_{2} F_{1}(a, b ; c+1 ; z)
$$

Exercise 3.2. Prove that

$$
\frac{1}{(1+z)^{k} \Gamma(1-k)}=\prod_{j=1}^{\infty}\left(1-\frac{k}{j}\right)\left(1+\frac{1}{j+z}\right)^{k} .
$$

Reference

[1] Guedes, Edigles, Infinite Product Representations for Binomial Coefficient, Pochhammer's Symbol, Newton's Binomial and Exponential Function, June 27, 2016, viXra:1611.0049.

