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1. INTRODUCTION

In present paper, I derive the following in�nite products:
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2. THE MAIN THEOREM

2.1. The In�nite Product for the Ratio of K-th Power and Factorial.

Theorem 2.1. If z�� and k�$
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, then
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where k! denotes the factorial.

Proof. I well know the �nite product identity
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On the other hand, I have the in�nite product representation [1, Lemma 1, p. 2]
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Replace a by z and b by r in (2.3) and encounter
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From (2.2) and (2.4), it follows that
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which is the desired result. ¡

2.2. The In�nite Products for the K-th Power and the z.

Theorem 2.2. If z�� and k�$

+

, then
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where z

k

denotes the k-th power of z.

Proof. I well know the �nite product identity
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On the other hand, I know the Euler's in�nite product representation for gamma func-

tion [1, (1), p. 1]
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From Theorem 2.1, (2.6) and (2.7), I conclude that
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(2.8)

which is the desired result. ¡
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Corollary 2.3. If z��, then
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Proof. Set k=1 in the Theorem 2.2. This gives the desired result. ¡

3. EXERCISES

Exercise 3.1. Prove that
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Exercise 3.2. Prove that
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