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Abstract: This paper is the first study of the neutrosophic triplet loop (NTL) which was originally
introduced by Floretin Smarandache. NTL originated from the neutrosophic triplet set X: a collection
of triplets (x, neut(x), anti(x)) for an x ∈ X which obeys some axioms (existence of neutral(s) and
opposite(s)). NTL can be informally said to be a neutrosophic triplet group that is not associative.
That is, a neutrosophic triplet group is an NTL that is associative. In this study, NTL with inverse
properties such as: right inverse property (RIP), left inverse property (LIP), right cross inverse
property (RCIP), left cross inverse property (LCIP), right weak inverse property (RWIP), left weak
inverse property (LWIP), automorphic inverse property (AIP), and anti-automorphic inverse property
are introduced and studied. The research was carried out with the following assumptions: the
inverse property (IP) is the RIP and LIP, cross inverse property (CIP) is the RCIP and LCIP, weak
inverse property (WIP) is the RWIP and LWIP. The algebraic properties of neutrality and opposite in
the aforementioned inverse property NTLs were investigated, and they were found to share some
properties with the neutrosophic triplet group. The following were established: (1) In a CIPNTL
(IPNTL), RIP (RCIP) and LIP (LCIP) were equivalent; (2) In an RIPNTL (LIPNTL), the CIP was
equivalent to commutativity; (3) In a commutative NTL, the RIP, LIP, RCIP, and LCIP were found to
be equivalent; (4) In an NTL, IP implied anti-automorphic inverse property and WIP, RCIP implied
AIP and RWIP, while LCIP implied AIP and LWIP; (5) An NTL has the IP (CIP) if and only if
it has the WIP and anti-automorphic inverse property (AIP); (6) A CIPNTL or an IPNTL was a
quasigroup; (7) An LWIPNTL (RWIPNTL) was a left (right) quasigroup. The algebraic behaviours
of an element, its neutral and opposite in the associator and commutator of a CIPNTL or an IPNTL
were investigated. It was shown that (Zp, ∗) where x ∗ y = (p − 1)(x + y), for any prime p, is a
non-associative commutative CIPNTL and IPNTL. The application of some of these varieties of
inverse property NTLs to cryptography is discussed.

Keywords: neutrosophic; triplet loop; quasigroup; loop; generalized group; neutrosophic triplet
group; group; cryptography

1. Introduction

1.1. Generalized Group

A generalized group is an algebraic structure which has a deep physical background in the unified
gauge theory and has direct relation with isotopies. Mathematicians and physicists have been trying
to construct a suitable unified theory for twistor theory, isotopies theory, and so on. It was known that
generalized groups are tools for constructions in unified geometric theory and electroweak theory.
Electroweak theories are essentially structured on Minkowskian axioms, and gravitational theories are
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constructed on Riemannian axioms. According to Araujo et. al. [1], the generalized group is equivalent
to the notion of a completely simple semigroup.

Some of the structures and properties of generalized groups have been studied by Vagner [2],
Molaei [3], [4], Mehrabi, Molaei, and Oloomi [5], Agboola [6], Adeniran et al. [7], and Fatehi and
Molaei [8]. Smooth generalized groups were introduced in Agboola [9], and later Agboola [10] also
presented smooth generalized subgroups while Molaei [11], Molaei and Tahmoresi [12] considered the
notion of topological generalized groups, and Maleki and Molaei [13] studied the quotient space of
generalized groups.

Definition 1. (Generalized Group)
A generalized group G is a non-empty set admitting a binary operation called multiplication, subject to the

set of rules given below.

(i) (xy)z = x(yz) for all x, y, z ∈ G.
(ii) For each x ∈ G, there exists a unique e(x) ∈ G such that xe(x) = e(x)x = x (existence and uniqueness

of identity element).
(iii) For each x ∈ G, there exists x−1 ∈ G such that xx−1 = x−1x = e(x) (existence of inverse element).

Definition 2. Let L be a non-empty set. Define a binary operation (·) on L. If x · y ∈ L for all x, y ∈ L, (L, ·)
is called a groupoid.

If the equation a · x = b (resp. y · a = b) has a unique solution relative to x (resp. y) (i.e., obeys the left
(resp. right) cancellation law), then (L, ·) is called a left (resp. right) quasigroup. If a groupoid (L, ·) is both a
left quasigroup and right quasigroup, then it is called a quasigroup. If there exists an element e ∈ L called the
identity element such that for all x ∈ L, x · e = e · x = x, then a quasigroup (L, ·) is called a loop.

For more on quasigroups and loops, readers should check [14–20].

Definition 3. (Generalized loop)
A generalized loop is the pair (G, ·) where G is a non-empty set and “·” a binary operation such that the

following are true.

(i) (G, ·) is a groupoid.
(ii) For each x ∈ G, there exists a unique e(x) ∈ G such that xe(x) = e(x)x = x.
(iii) For each x ∈ G, there exists x−1 ∈ G such that xx−1 = x−1x = e(x).

A generalized group G exhibits the following properties:

(i) For each x ∈ G, there exists a unique x−1 ∈ G.
(ii) e(e(x)) = e(x) and e(x−1) = e(x) whenever x ∈ G.
(iii) If G is commutative, then G is a group.

1.2. Neutrosophic Triplet Group

Neutrosophy is a new branch of philosophy which studies the nature, origin, and scope of
neutralities as well as their interaction with ideational spectra. In 1995, Florentin Smarandache [21]
first introduced the concept of neutrosophic logic and neutrosophic sets where each proposition in
neutrosophic logic is approximated to have the percentage of truth in a subset T, the percentage of
indeterminacy in a subset I, and the percentage of falsity in a subset F so that this neutrosophic logic is
called an extension of fuzzy logic, especially to intuitionistic fuzzy logic. In fact, the neutrosophic set
is the generalization of classical sets [22], fuzzy sets [23], intuitionistic fuzzy sets [22,24] and interval
valued fuzzy sets [22], to mention a few. This mathematical tool is used to handle problems consisting of
uncertainty, imprecision, indeterminacy, inconsistency, incompleteness, and falsity. The development
process of neutrosophic sets, fuzzy sets, and intuitionistic fuzzy sets are still growing, with various
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applications; here are some recent research works in these directions [25–32]. By utilizing the idea of
neutrosophic theory, Vasantha Kandasamy and Florentin Smarandache studied neutrosophic algebraic
structures in [33–35] by introducing an indeterminate element “I” in the algebraic structure and
then combining “I” with each element of the structure with respect to the corresponding binary
operation ∗. This was called a neutrosophic element, and the generated algebraic structure was
termed a neutrosophic algebraic structure. They further studied several neutrosophic algebraic
structures, such as neutrosophic fields, neutrosophic vector spaces, neutrosophic groups, neutrosophic
bigroups, neutrosophic N-groups, neutrosophic semigroups, neutrosophic bisemigroups, neutrosophic
N-semigroups, neutrosophic loops, neutrosophic biloops, neutrosophic N-loops, neutrosophic
groupoids, neutrosophic bigroupoids, and so on.

Smarandache and Ali [36] for the first time introduced the idea of the neutrosophic triplet,
which they had previously discussed in [37]. They used these neutrosophic triplets to introduce
the neutrosophic triplet group, which is different from the classical group both in structural and
fundamental properties. They gave distinction and comparison of neutrosophic triplet group with
the classical generalized group. They also drew a brief sketch of the possible applications of the
neutrosophic triplet group in some other research areas. Jaiyéo. lá [38] studied new algebraic properties
of the neutrosophic triplet group with new applications. Some new applications of neutrosophy
were announced in Okpako and Asagba [39], Sahin and Kargin [40], Vasantha Kandasamy et al. [41],
and Smarandache [42]. Agboola et al. [43] and Zhang et al. [44] are some recent works on neutrosophic
triplet groups, neutrosophic quadruple, and neutrosophic duplet of algebraic structures.

Definition 4. (Neutrosophic Triplet Set)
Let X be a set together with a binary operation ∗ defined on it. Then, X is called a neutrosophic triplet set if

for any x ∈ X, there exists a neutral of “x” denoted by neut(x) (not necessarily the identity element) andan
opposite of “x” denoted by anti(x) or xJ, with neut(x), anti(x) ∈ X such that:

x ∗ neut(x) = neut(x) ∗ x = x and x ∗ anti(x) = anti(x) ∗ x = neut(x).

The elements x, neut(x), and anti(x) are collectively referred to as a neutrosophic triplet, and denoted by
(x, neut(x), anti(x)).

Remark 1. For the same x ∈ X, each neut(x) and anti(x) may not be unique. In a neutrosophic triplet set
(X, ∗), an element y (resp. z) is the second (resp. third) component of a neutrosophic triplet if there exist x, z ∈ X
(x, y ∈ X) such that x ∗ y = y ∗ x = x and x ∗ z = z ∗ x = y. Thus, (x, y, z) is the neutrosophic triplet.

Example 1. (Smarandache and Ali [36])
Consider (Z6,×6) where Z6 = {0, 1, 2, 3, 4, 5} and ×6 is multiplication in modulo 6. (2, 4, 2), (4, 4, 4),

and (0, 0, 0) are neutrosophic triplets, but 3 does not give rise to a neutrosophic triplet.

Definition 5. (Neutrosophic Triplet Group)
Let (X, ∗) be a neutrosophic triplet set. Then, (X, ∗) is called a neutrosophic triplet group if (X, ∗) is a

semigroup. If in addition, (X, ∗) obeys the commutativity law, then (X, ∗) is called a commutative neutrosophic
triplet group.

Remark 2. A neutrosophic triplet group is not a group in general, but a group is a neutrosophic triplet group
where neut(x) = e the general identity element for all x ∈ X and anti(x) is unique for each x ∈ X.

1. A generalized loop is a generalized group if and only if it is associative.
2. A neutrosophic triplet loop (NTL) is a neutrosophic triplet group if and only if it is associative.
3. An NTL is a generalized loop if and only if neut(x) = e(x) is unique for each x.
4. An NTL is a loop if and only if it is a quasigroup and neut(x) = neut(y) for all x, y.
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Example 2. (Smarandache and Ali [36])
Consider (Z10,⊗) where x⊗ y = 3xy mod 10. (Z10,⊗) is a commutative neutrosophic triplet group but

neither a classical group nor a generalized group.

Example 3. (Smarandache and Ali [36])
Consider (Z10, ?) where x ? y = 5x + y mod 10. (Z10, ?) is a non-commutative neutrosophic triplet

group, but not a classical group.

Theorem 1. (Smarandache and Ali [36])
Let (X, ∗) be a neutrosophic triplet group. The following are true for all x, y, z ∈ X.

1. x ∗ y = x ∗ z⇔ neut(x) ∗ y = neut(x) ∗ z.
2. y ∗ x = z ∗ x ⇔ y ∗ neut(x) = z ∗ neut(x).
3. anti(x) ∗ y = anti(x) ∗ z⇒ neut(x) ∗ y = neut(x) ∗ z.
4. y ∗ anti(x) = z ∗ anti(x)⇒ y ∗ neut(x) = z ∗ neut(x).
5. neut(x) ∗ neut(x) = neut(x) i.e., neut

(
neut(x)

)
= neut(x).

6. neut(x)n = neut(x) for any n ∈ N; anti(neut(x)) = neut(x).
7. neut(x) ∗ anti(x) = anti(x) ∗ neut(x) = anti(x) i.e. neut

(
anti(x)

)
= neut(x).

Definition 6. (Neutrosophic Triplet Loop—NTL)
Let (X, ∗) be a neutrosophic triplet set. Then, (X, ∗) is called a neutrosophic triplet loop if (X, ∗) is a

groupoid. If in addition, (X, ∗) obeys the commutativity law, then (X, ∗) is called a commutative neutrosophic
triplet loop.

Let (X, ∗) be a neutrosophic triplet loop. If neut(xy) = neut(x)neut(y) for all x, y ∈ X, then X is
called normal.

Remark 3. An NTL is a neutrosophic triplet group if and only if it is associative. Thus, an NTL is a
generalization of a neutrosophic triplet group, and it is interesting to study an NTL that obeys weak associative
law. NTL was originally introduced by Florentin Smarandache.

Example 4. Let (Z10,+, ·) be the field of integers modulo 10. Consider (Z10, ∗), where for all x, y ∈ Z10, x ∗
y = 2x + 2y. The following are neutrosophic triplets:

(0, 0, 0), (0, 0, 5), (2, 4, 0), (2, 4, 5), (4, 8, 0), (4, 8, 5), (6, 2, 0), (6, 2, 5), (8, 6, 0), (8, 6, 5)

in (Z10, ∗). Thus, {0, 2, 4, 5, 6, 8} is a neutrosophic triplet set. (Z10, ∗) is non-associative because (x ∗ y) ∗ z =

4x + 4y + 2z 6= x ∗ (y ∗ z) = 2x + 4y + 4z. (Z10, ∗) is a non-associative NTL (i.e., not a neutrosophic triplet
group) with 2 ∗ neut(x) = 9x and 4 ∗ anti(x) = 5x.

Definition 7. (Inverse Properties and Neutrosophic Triplet Loop)
(X, ∗) will be called a right inverse property neutrosophic triplet loop (RIPNTL) if it obeys the right inverse

property (RIP)
(y ∗ x) ∗ anti(x) = y (1)

(X, ∗) will be called a left inverse property neutrosophic triplet loop (LIPNTL) if it obeys the left inverse
property (LIP)

anti(x) ∗ (x ∗ y) = y (2)

(X, ∗) will be called an inverse property neutrosophic triplet loop if it obeys both (1) and (2).

(X, ∗) will be called a left cross inverse property neutrosophic triplet loop (LCIPNTL) if it obeys the left
cross inverse property (LCIP)

anti(x) ∗ (y ∗ x) = y (3)
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(X, ∗) will be called a right cross inverse property neutrosophic triplet loop (RCIPNTL) if it obeys the right cross
inverse property (RCIP)

(x ∗ y) ∗ anti(x) = y (4)

(X, ∗) will be called a cross inverse property neutrosophic triplet loop (CIPNTL) if it obeys both (3) and (4).

(X, ∗) will be called a right weak inverse property neutrosophic triplet loop (RWIPNTL) if it obeys the
right weak inverse property (RWIP)

x ∗ anti(y ∗ x) = anti(y) (5)

(X, ∗) will be called a left weak inverse property neutrosophic triplet loop (LWIPNTL) if it obeys the left weak
inverse property (LWIP)

anti(x ∗ y) ∗ x = anti(y) (6)

(X, ∗) will be called a weak inverse property neutrosophic triplet loop (WIPNTL) if it obeys both (5) and (6).

(X, ∗) will be called an automorphic inverse property neutrosophic triplet loop (AIPNTL) if it obeys the
automorphic inverse property (AIP)

anti(x ∗ y) = anti(x) ∗ anti(y) (7)

(X, ∗) will be called an antiautomorphic inverse property neutrosophic triplet loop (AAIPNTL) if it obeys the
antiautomorphic inverse property (AAIP)

anti(x ∗ y) = anti(y) ∗ anti(x) (8)

(X, ∗) will be called a semi-automorphic inverse property neutrosophic triplet loop (SAIPNTL) if it obeys the
semi-automorphic inverse property (SAIP)

anti
(
(x ∗ y) ∗ x

)
=
(
anti(x) ∗ anti(y)

)
∗ anti(x) (9)

Definition 8. (Associators and Commutators of Neutrosophic Triplet Loop)
Let (X, ∗) be an NTL. For any x, y, z ∈ X,

1. (x, y, z) ∈ X is called the right associator of x, y, z if xy ∗ z = (x ∗ yz)(x, y, z).
2. [x, y, z] ∈ X is called the left associator of x, y, z if xy ∗ z = [x, y, z](x ∗ yz).
3. (x, y) ∈ X is called the right commutator of x, y if x ∗ y = (y ∗ x)(x, y).
4. [x, y] ∈ X is called the right commutator of x, y if x ∗ y = [x, y](y ∗ x).

This paper is the first study of a class of neutrosophic triplet loop (NTL) containing varieties
of inverse property NTLs and the application of some of them to cryptography. The second
section contains the main results on the varieties of inverse property NTLs in Definition 7 and the
interrelationships. The algebraic properties of their neutrality and opposite were investigated, and were
found to share some properties with the neutrosophic triplet group. An example of these varieties
of NTL is given. Summaries of the results in the second section are exhibited as two Hasse diagrams
in Figure 1. The third section discusses the application of some of these varieties of inverse property
NTLs to cryptography.

2. Main Results

Lemma 1. Let X be a CIPNTL. Then:

1. neut(x) = neut(anti(x)), anti(anti(x)) = x and J2 = I.
2. LxRanti(x) = I = RxLanti(x).
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3. X is an RIPNTL if and only X is an LIPNTL.
4. neut(x) = anti(neut(x)) and neut(neut(x)) = neut(x)neut(x).

Proof.

1. Put y = anti(x) in (4) to get x anti(x) ∗ anti(x) = anti(x)⇒

neut(x)anti(x) = anti(x) (10)

Put y = anti(x) in (3) to get anti(x) ∗ anti(x)x = anti(x)⇒

anti(x)neut(x) = anti(x) (11)

By (10) and (11), we have neut(x) = neut(anti(x)). By this, anti(x)x = x anti(x) = neut(x) ⇒
anti(anti(x)) = x and J2 = I.

2. These are just (3) and (4) put in translation forms.
3. From 2., LxRanti(x)RxLanti(x) = I. So, Ranti(x)Rx = I ⇒ LxRanti(x) ⇔ y anti(x) ∗ x = y ⇒

anti(x) ∗ xy = y ⇔ y anti(anti(x)) ∗ anti(x) = y ⇒ anti(x) ∗ xy = y ⇔ yx ∗ anti(x) = y ⇒
anti(x) ∗ xy = y ⇔ X has the RIP, which implies that X has the LIP. Similarly, since by 2.,
RxLanti(x)LxRanti(x) = I, then we get X has the LIP implies X has the RIP.

4. Let x ∈ X. Recall that x neut(x) = x = neut(x)x. So, by the RCIP, neut(x)x ∗ anti(neut(x)) =
x anti(neut(x))⇒

x anti(neut(x)) = x. (12)

Similarly, by the LCIP,
anti(neut(x))x = x. (13)

Thus, by (12) and (13), neut(x) = anti(neut(x)). Furthermore, neut(x)neut(x) =

anti(neut(x))neut(x) = neut(x)anti(neut(x))⇒ neut(neut(x)) = neut(x)neut(x).

Lemma 2. Let X be a CIPNTL or an IPLNTL. Then:

1. Equations a ∗ x = b and y ∗ c = d have solutions for x, y ∈ X and these solutions are unique for all
a, b, c, d ∈ X. (unique solvability)

2. The cancellation laws hold.
3. The right and left translation maps Ra and La are bijections for all a ∈ X.

Proof. For CIPNTL.

1. a ∗ x = b⇒ (a ∗ x)anti(a) = b anti(a)⇒ x = b anti(a) ∈ X. Similarly, y ∗ c = d⇒ anti(c)(y ∗ c) =
anti(c)d⇒ y = anti(c)d.

Let x1, x2 ∈ X such that a ∗ x1 = b = a ∗ x2 ⇒ (a ∗ x1)anti(a) = (a ∗ x2)anti(a)⇒ x1 = x2.
2. This follows from 1.
3. Ra : X → X given by xRa = x ∗ a. Ra is a bijection if and only if the equation x ∗ a = b is

uniquely solvable for x for all a, b ∈ X. La : X → X given by xLa = a ∗ x. La is a bijection if and
only if the equation a ∗ x = b is uniquely solvable for x for all a, b ∈ X.

For IPNTL.

1. a ∗ x = b⇒ anti(a)(a ∗ x) = anti(a)b⇒ x = anti(a)b ∈ X. Similarly, y ∗ c = d⇒ (y ∗ c)anti(c) =
d anti(c)⇒ y = d anti(c).

Let x1, x2 ∈ X such that a ∗ x1 = b = a ∗ x2 ⇒ anti(a)(a ∗ x1) = anti(a)(a ∗ x2)⇒ x1 = x2.
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2. This follows from above.
3. Ra : X → X given by xRa = x ∗ a. Ra is a bijection if and only if the equation x ∗ a = b is

uniquely solvable for x for all a, b ∈ X. La : X → X given by xLa = a ∗ x. La is a bijection if and
only if the equation a ∗ x = b is uniquely solvable for x for all a, b ∈ X.

Theorem 2. Let X be an NTL.

1. X is an RCIPNTL if and only if x ∗ y anti(x) = y.
2. X is an LCIPNTL if and only if anti(x)y ∗ x = y.
3. X is a CIPNTL if and only if x ∗ y anti(x) = y = anti(x)y ∗ x.

Proof.

1. By Lemma 2, if X is an RCIPNTL, then it is a left quasigroup and La is a bijection for a ∈ X.
Consider an NTL which has the property x ∗ y anti(x) = y. Put y = neut(anti(x)) to
get x ∗ neut(anti(x))anti(x) = neut(anti(x)) ⇒ x ∗ anti(x) = neut(anti(x)) ⇒ neut(x) =

neut(anti(x)) ⇒ anti(anti(x)) = x. Thus, x ∗ a = b ⇒ x ∗ anti(anti(a)) = b ⇒ anti(a)(x ∗
anti(anti(a))) = anti(a)b ⇒ x = anti(a)b. Let x1, x2 ∈ X. Then, x1 ∗ a = x2 ∗ a ⇒ x1 ∗
anti(anti(a)) = x2 ∗ anti(anti(a))⇒ anti(a)

(
x1 ∗ anti(anti(a))

)
= anti(a)

(
x2 ∗ anti(anti(a))

)
⇒

x1 = x2. So, x ∗ a = b is uniquely solvable for x that Ra is bijective.
RCIP implies LxRanti(x) = I ⇒ Ranti(x) = L−1

x ⇒ Ranti(x)Lx = I ⇒ x ∗ y anti(x) = y. Conversely,
x ∗ y anti(x) = y⇒ Ranti(x)Lx = I ⇒ Lx = R−1

anti(x) ⇒ LxRanti(x) = I ⇒ RCIP.
2. By Lemma 2, if X is an LCIPNTL, then it is a right quasigroup and Ra is a bijection for a ∈ X.

Consider an NTL which has the property anti(x)y ∗ x = y. Put y = neut(anti(x)) to
get anti(x)neut(anti(x)) ∗ x = neut(anti(x)) ⇒ anti(x) ∗ x = neut(anti(x)) ⇒ neut(x) =

neut(anti(x)) ⇒ anti(anti(x)) = x. Thus, a ∗ x = b ⇒ anti(anti(a)) ∗ x = b ⇒ (anti(anti(a)) ∗
x)anti(a) = b anti(a) ⇒ x = b anti(a). Let x1, x2 ∈ X. Then, a ∗ x1 = a ∗ x2∗ ⇒ anti(anti(a)) ∗
x1∗ = anti(anti(a)) ∗ x2 ⇒

(
anti(anti(a)) ∗ x1

)
anti(a) =

(
anti(anti(a)) ∗ x2

)
anti(a) ⇒ x1 = x2.

So, a ∗ x = b is uniquely solvable for x that La is bijective.
LCIP implies RxLanti(x) = I ⇒ R−1

x = Lanti(x) ⇒ Lanti(x)Rx = I ⇒ anti(x)y ∗ x = y. Conversely,
anti(x)y ∗ x = y⇒ Lanti(x)Rx = I ⇒ L−1

anti(x) = Rx ⇒ RxLanti(x) = I ⇒ LCIP.
3. This follows from 1. and 2.

Lemma 3. Let X be an IPNL. Then:

1. neut(x) = neut(anti(x)), anti(anti(x)) = x and J2 = I.
2. RxRanti(x) = I = LxLanti(x).
3. X is an RCIPNL if and only X is an LCIPNL.
4. neut(x) = anti(neut(x)) and neut(neut(x)) = neut(x)neut(x).

Proof.

1. Put y = anti(x) in (1) to get anti(x)x ∗ anti(x) = anti(x)⇒

neut(x)anti(x) = anti(x) (14)

Put y = anti(x) in (2) to get anti(x) ∗ x anti(x) = anti(x)⇒

anti(x)neut(x) = anti(x) (15)
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By (14) and (15), we have neut(x) = neut(anti(x)). By this, anti(x)x = x anti(x) = neut(x) ⇒
anti(anti(x)) = x and J2 = I.

2. These are just (1) and (2) put in translation forms.
3. Keep Theorem 2 in mind. From 2., RxRanti(x)LxLanti(x) = I. So, Ranti(x)Lx = I ⇒ RxLanti(x) ⇔

x ∗ y anti(x) = y⇒ anti(x) ∗ yx = y⇔ X has the RCIP implies X has the LCIP. Similarly, since
by 2., LxLanti(x)RxRanti(x) = I, then we get X has the LCIP implies X has the RCIP.

4. Let x ∈ X. Recall that x neut(x) = x = neut(x)x. So, by the RIP, x neut(x) ∗ anti(neut(x)) =

x anti(neut(x))⇒
x anti(neut(x)) = x. (16)

Similarly, by the LIP,
anti(neut(x))x = x. (17)

Thus, by (16) and (17), neut(x) = anti(neut(x)). Furthermore, neut(x)neut(x) =

anti(neut(x))neut(x) = neut(x)anti(neut(x))⇒ neut(neut(x)) = neut(x)neut(x).

Theorem 3. Let X be a CIPNTL. For all x, y ∈ X,

1.
(

x, x, anti(x)
)
= neut(x) =

[
x, x, anti(x)

]
.

2.
(

x, y, anti(x)
)
= neut(y) =

[
x, y, anti(x)

]
.

3.
(
anti(x), x, x

)
= neut(x) =

[
anti(x), x, x

]
.

4.
(
anti(x), y, x

)
= neut(y) =

[
anti(x), y, x

]
.

5.
(

x, neut(x)
)
= neut(x) =

[
x, neut(x)

]
.

6.
(
neut(x), x

)
= neut(x) =

[
neut(x), x

]
.

7. (x, x) = neut(xx) = [x, x].
8.

(
x, anti(x)

)
= neut(neut(x)) =

[
x, anti(x)

]
.

9.
(
anti(x), x

)
= neut(neut(x)) =

[
anti(x), x

]
.

10. (x, y) = (xy)anti(yx) and [x, y] = anti(yx)(xy).
11. X is commutative if and only if (x, y) = neut(yx) if and only if [x, y] = neut(yx).
12. If X is commutative, then X is normal if and only if (x, y) = (x, neut(x))(y, neut(y)) if and only if

[x, y] = [x, neut(x)][y, neut(y)].
13. X is normal if and only if (x, y)anti(xy) ∗ (yx) = neut(y)neut(x) if and only if (yx) ∗

(x, y)anti(xy) = neut(y)neut(x) if and only if anti(xy)[x, y] ∗ yx = neut(y)neut(x) if and only
if (yx) ∗ anti(xy)[x, y] = neut(y)neut(x).

14.
(

x, neut(x), anti(x)
)
= neut(neut(x)) =

(
anti(x), neut(x), x

)
.

15.
(
neut(x), x, anti(x)

)
=
(
anti(x), x, neut(x)

)
=
(
x, anti(x), neut(x)

)
=
(
neut(x), anti(x), x

)
=

neut(x).

Proof.

1 and 2 From the right associator, xy ∗ anti(x) =
(
x ∗ y anti(x)

)(
x, y, anti(x)

)
⇒ y =

y
(

x, y, anti(x)
)
⇒ y anti(y) = y

(
x, y, anti(x)

)
∗ anti(y) ⇒

(
x, y, anti(x)

)
= neut(y). Hence,(

x, x, anti(x)
)
= neut(x).

From the left associator, xy ∗ anti(x) =
[
x, y, anti(x)

](
x ∗ y anti(x)

)
⇒ y =

[
x, y, anti(x)

]
y ⇒

anti(y)y = anti(y) ∗
[
x, y, anti(x)

]
y ⇒

[
x, y, anti(x)

]
= neut(y). Hence,

[
x, x, anti(x)

]
=

neut(x).
3 and 4 From the right associator, anti(x)y ∗ x =

(
anti(x) ∗ yx

)(
anti(x), y, x

)
⇒ y =

y
(
anti(x), y, x

)
⇒ y anti(y) = y

(
anti(x), y, x

)
∗ anti(y) ⇒

(
anti(x), y, x

)
= neut(y). Hence,(

anti(x), x, x
)
= neut(x).

From the left associator, anti(x)y ∗ x =
[
anti(x), y, x

](
anti(x) ∗ yx

)
⇒ y =

[
anti(x), y, x

]
y ⇒
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anti(y)y = anti(y) ∗
[
anti(x), y, x

]
y ⇒

[
anti(x), y, x

]
= neut(y). Hence,

[
anti(x), x, x

]
=

neut(x).
5 and 6 From the right commutator, x ∗ neut(x) = (neut(x) ∗ x)(x, neut(x)) ⇒ x = x(x, neut(x)) ⇒

x anti(x) = x(x, neut(x)) ∗ anti(x)⇒
(
x, neut(x)

)
= neut(x). Similarly,

(
neut(x), x

)
= neut(x).

From the left commutator, x ∗ neut(x) = [x, neut(x)](neut(x) ∗ x) ⇒ x = [x, neut(x)]x ⇒
anti(x)x = anti(x) ∗ x(x, neut(x))⇒

[
x, neut(x)

]
= neut(x). Similarly,

[
neut(x), x

]
= neut(x).

7 From the right commutator, x ∗ x = (xx)(x, x) ⇒ xx ∗ anti(xx) = (xx)(x, x) ∗ anti(xx) ⇒
neut(xx) = (x, x). From the left commutator, x ∗ x = [x, x](xx) ⇒ anti(xx) ∗ xx = anti(xx) ∗
[x, x](xx)⇒ neut(xx) = [x, x].

8 and 9 From the right commutator, x ∗ anti(x) = (anti(x) ∗ x)(x, anti(x)) ⇒ neut(x) =

neut(x)(x, anti(x)) ⇒ neut(x)anti(neut(x)) = neut(x)(x, anti(x)) ∗ anti(neut(x)) ⇒
big(x, anti(x)

)
= neut(neut(x)). Similarly,

(
anti(x), x

)
= neut(neut(x)).

From the left commutator, anti(x) ∗ x = [x, anti(x)](x ∗ anti(x)) ⇒ neut(x) =

[x, anti(x)]neut(x) ⇒ anti(neut(x))neut(x) = anti(neut(x)) ∗ [x, anti(x)]neut(x) ⇒
[x, anti(x)] = neut(neut(x)). Similarly,

[
anti(x), x

]
= neut(neut(x)).

10 From the right commutator, xy = yx ∗ (x, y) ⇒ xy ∗ anti(yx) = (yx)(x, y) ∗ anti(yx) ⇒
(x, y) = (xy)anti(yx). From the left commutator, xy = [x, y] ∗ yx ⇒ anti(yx) ∗ xy =

anti(yx) ∗ [x, y](yx)⇒ [x, y] = anti(yx)(xy).
11 This follows from 10.
12 This follows from 6 and 10.
13 We shall use 10.

X is normal if and only if (x, y)anti(xy) = (xy)anti(yx) ∗ anti(yx) ⇔ (x, y)anti(xy) =

anti(yx)⇔

(x, y)anti(xy) ∗ (yx) = anti(yx)(yx) or (yx) ∗ (x, y)anti(xy) = (yx)anti(yx)⇔
(x, y)anti(xy) ∗ (yx) = neut(yx) or (yx) ∗ (x, y)anti(xy) = neut(yx)⇔

(x, y)anti(xy) ∗ (yx) = neut(y)neut(x) or (yx) ∗ (x, y)anti(xy) = neut(y)neut(x).

X is normal if and only if anti(xy)[x, y] = anti(xy) ∗ anti(yx)(xy)⇔ anti(xy)[x, y] = anti(yx)⇔

anti(xy)[x, y] ∗ (yx) = anti(yx)(yx) or (yx) ∗ anti(xy)[x, y] = (yx)anti(yx)⇔
anti(xy)[x, y] ∗ (yx) = neut(yx) or (yx) ∗ anti(xy)[x, y] = neut(yx)⇔

anti(xy)[x, y] ∗ (yx) = neut(y)neut(x) or (yx) ∗ anti(xy)[x, y] = neut(y)neut(x).

14 Apply the right and left associators.
15 Apply the right and left associators.

Lemma 4. Let X be an NTL.

1. Let X be an RIPNL. X is a CIPNTL if and only if X is commutative.
2. Let X be an LIPNL. X is a CIPNTL if and only if X is commutative.
3. Let X be commutative. The following are equivalent:

(a) RIP.
(b) LIP.
(c) RCIP.
(d) LCIP.

Proof.
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1. Let X be an RIPNL. Then, yx ∗ anti(x) = y. RCIP implies xy ∗ anti(x) = y ⇒ xy ∗ anti(x) =

yx ∗ anti(x) ⇒ xy = yx. Conversely, RIP and commutativity imply xy ∗ anti(x) = y and
anti(x) ∗ yx = y imply RCIP and LCIP.

2. Let X be an LIPNL. Then, anti(x) ∗ xy = y. LCIP implies anti(x) ∗ yx = y ⇒ anti(x) ∗ yx =

anti(x) ∗ xy = y ⇒ xy = yx. Conversely, LIP and commutativity imply xy ∗ anti(x) = y and
anti(x) ∗ yx∗ = y imply RCIP and LCIP.

3. This follows from 1 and 2.
4. Let X be commutative. X has the RIP iff yx ∗ anti(x) = y ⇔ anti(x) ∗ xy = y iff X has the

LIP. X has the RIP iff yx ∗ anti(x) = y ⇔ xy ∗ anti(x) = y iff X has the RCIP. X has the RIP iff
yx ∗ anti(x) = y⇔ anti(x) ∗ yx∗ = y iff X has the LCIP.

Theorem 4. Let X be an IPNTL. For all x, y ∈ X,

1.
(

x, y, anti(y)
)
= anti

(
x neut(y)

)
x,
(

x, x, anti(x)
)
= neut(x).

2.
(
anti(y), y, x

)
= anti(x) ∗ neut(y)x,

(
anti(x), x, x

)
= neut(x).

3.
[
x, y, anti(y)

]
= x anti

(
x neut(y)

)
,
[
x, x, anti(x)

]
= neut(x).

4.
[
anti(y), y, x

]
= neut(y),

[
anti(x), x, x

]
= neut(x).

5. (x, y) = anti(yx)(xy) and [x, y] = (xy)anti(yx).
6.

(
x, y, anti(y)

)
=
[
x, y, anti(y)

]
⇔ x ∗ anti(neut(y))anti(x) = anti(neut(y)).

7.
(
anti(y), y, x

)
=
[
anti(y), y, x

]
⇔ x neut(y) = neut(y)x.

8. anti
(

x
[
anti(y), y, x

])
x =

(
x, y, anti(y)

)
.

9. anti(x) ∗
[
anti(y), y, x

]
x =

(
anti(y), y, x

)
.

10. x anti
(

x
[
anti(y), y, x

])
x =

[
x, y, anti(y)

]
.

11.
(
neut(x), x

)
= neut(x) =

[
neut(x), x

]
and (x, x) = neut(xx) = [x, x].

12.
(

x, neut(x), anti(x)
)
= neut(neut(x)) =

(
anti(x), neut(x), x

)
.

13.
(
neut(x), x, anti(x)

)
=
(
anti(x), x, neut(x)

)
=
(
x, anti(x), neut(x)

)
=
(
neut(x), anti(x), x

)
=

neut(x).

Proof.

1. From the right associator, xy ∗ anti(y) = (x ∗ y anti(y))
(

x, y, anti(y)
)
⇒ x = x neut(y) ∗(

x, y, anti(y)
)
⇒ anti

(
x neut(y)

)
x = anti

(
x neut(y)

)[
x neut(y) ∗

(
x, y, anti(y)

)]
⇒(

x, y, anti(y)
)
= anti

(
x neut(y)

)
x. Hence,

(
x, x, anti(x)

)
= neut(x).

2. From the right associator, anti(y)y ∗ x = (anti(y) ∗ yx)
(
anti(y), y, x

)
⇒ neut(y)x =

x
(
anti(y), y, x

)
⇒ anti(x) ∗ neut(y)x = anti(x) ∗ x

(
anti(y), y, x

)
⇒
(
anti(y), y, x

)
= anti(x) ∗

neut(y)x. Hence,
(
anti(x), x, x

)
= neut(x).

3. From the left associator, xy ∗ anti(y) =
[
x, y, anti(y)

]
(x ∗ y anti(y)) ⇒ x =[

x, y, anti(y)
]
(x neut(y)) ⇒ x anti

(
x neut(y)

)
=
[
x, y, anti(y)

]
(x neut(y)) ∗ anti

(
x neut(y)

)
⇒[

x, y, anti(y)
]
= x anti

(
x neut(y)

)
. Hence,

[
x, x, anti(x)

]
= neut(x).

4. From the left associator, anti(y)y ∗ x =
[
anti(y), y, x

]
(anti(y) ∗ yx) ⇒ neut(y)x =[

anti(y), y, x
]
x Lemma 2

=⇒
[
anti(y), y, x

]
= neut(y). Hence,

[
anti(x), x, x

]
= neut(x).

5. From the right commutator, x ∗ y = (y ∗ x)(x, y) ⇒ anti(yx) ∗ xy = anti(yx) ∗ (yx)(x, y) ⇒
(x, y) = anti(yx)(xy). From the left commutator, x ∗ y = [x, y](y ∗ x) ⇒ xy ∗ anti(yx) =

[x, y](yx) ∗ anti(yx)⇒ [x, y] = (xy)anti(yx).

6. By 1 and 3,
(

x, y, anti(y)
)
=
[
x, y, anti(y)

]
⇔ anti

(
x neut(y)

)
x = x anti

(
x neut(y)

) AAIP
=⇒

Theorem 5
anti(neut(y))anti(x) ∗ x = x ∗ anti(neut(y))anti(x)⇔ anti(neut(y)) = x ∗ anti(neut(y))anti(x).

7. By 2 and 4,
(
anti(y), y, x

)
=
[
anti(y), y, x

]
⇔ anti(x) ∗ neut(y)x = neut(y) ⇔ x

(
anti(x) ∗

neut(y)x
)
= x neut(y)⇔ x neut(y) = neut(y)x.
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8. This follows combining by 1 and 4.
9. This follows combining by 2 and 4.

10. This follows combining by 3 and 4.
11. Apply 5.
12. Apply the right and left associators.
13. Apply the right and left associators.

Lemma 5. Let X be a CIPNTL or an IPLNTL. Then:

1. neut(x) is unique for each x ∈ X.
2. anti(x) is unique for each x ∈ X.
3. X is a generalized loop and a quasigroup.
4. X is a loop if and only if neut(x) = neut(y) for all x, y ∈ X.
5. If X is associative, then X is a loop and group.
6. X is a group if and only if X is associative.

Proof.

1. By Lemma 2(2), neut(x)x = x = neut(x)′ ⇒ neut(x) = neut(x)′.
2. By Lemma 2(2), anti(x)x = x = anti(x)′ ⇒ anti(x) = x = anti(x)′.
3. These follow by 1. and Lemma 2(1).
4. By the definition of NTL and loop, and 2.
5. An associative quasigroup is a loop and a group.
6. A loop is a group if and only it is associative.

Theorem 5. Let X be an NTL.

1. If X is an IPNTL, then for all x ∈ X:

(a) X is an AAIPNL.
(b) R−1

x = Ranti(x) and L−1
x = Lanti(x).

(c) JRx J = L−1
x and JLx J = R−1

x .
(d) X is a WIPNTL.

2. If X is a CIPNTL, then for all x ∈ X:

(a) X is an AIPNTL.
(b) LxRanti(x) = I = Ranti(x)Lx and RxLanti(x) = I = Lanti(x)Rx.
(c) JRx J = Ranti(x) and JLx J = Lanti(x).
(d) X is a WIPNTL.

3. If X is an RCIPNTL, then for all x ∈ X:

(a) X is an AIPNTL.
(b) LxRanti(x) = I = Ranti(x)Lx.
(c) JRx J = Ranti(x) and JLx J = Lanti(x) if and only if anti

(
anti(x)

)
= x.

(d) X is an RWIPNTL.

4. If X is an LCIPNTL, then for all x ∈ X:

(a) X is an AIPNL.



Algorithms 2018, 11, 32 12 of 20

(b) RxLanti(x) = I = Lanti(x)Rx.
(c) JRx J = Ranti(x) and JLx J = Lanti(x) if and only if anti

(
anti(x)

)
= x.

(d) X is an LWIPNTL.

Proof.

1. Let X be an IPNTL.

(a) xy = z ⇒ x = z anti(y) ⇒ anti(y) = anti(z)x ⇒ anti(z) = anti(y)anti(x) ⇒
anti(y)anti(x) = anti(xy)⇒ AAIP. So, X is an AAIPNL.

(b) RIP implies xy ∗ anti(y) = x ⇒ RyRanti(y) = I ⇒ R−1
y = Ranti(y). LIP implies anti(y) ∗

yx = x ⇒ LyLanti(y) = I ⇒ L−1
y = Lanti(y).

(c) yJRx J = anti
(
anti(y)x

)
= anti(x)anti

(
anti(y)

)
= anti(x)y = yLanti(x) = yL−1

x ⇒
JRx J = L−1

x . Also, yJLx J = anti
(
x anti(y)

)
= anti

(
anti(y)

)
anti(x) = yanti(x) =

yRanti(x) = yR−1
x ⇒ JLx J = R−1

x .
(d) anti(xy)x = anti(y)anti(x) ∗ x = anti(y)⇒ LWIP. Also, x anti(yx) = x ∗ anti(x)anti(y) ∗

x = anti(y)⇒ RWIP. So, X is a WIPNTL.

2. Let X be a CIPNTL.

(a) xy = z ⇒ y = z anti(x) ⇒ anti(x) = y anti(z) ⇒ anti(z) = anti(x)anti(y) ⇒
anti(x)anti(y) = anti(xy)⇒ AIP. So, X is an AIPNL.

(b) By Theorem 2: RCIP implies that LxRanti(x) = I = Ranti(x)Lx and LCIP implies that
RxLanti(x) = I = Lanti(x)Rx.

(c) yJRx J = anti
(
anti(y)x

)
= anti

(
anti(y)

)
anti(x) = y anti(x) = yRanti(x) ⇒ JRx J =

Ranti(x). Also, yJLx J = anti
(

x anti(y)
)
= anti(x)anti

(
anti(y)

)
= anti(x)y = yLanti(x) ⇒

JLx J = Lanti(x).
(d) anti(xy)x = anti(x)anti(y) ∗ x = anti(y)⇒ LWIP. Also, x anti(yx) = x ∗ anti(y)anti(x) ∗

x = anti(y)⇒ RWIP. So, X is a WIPNTL.

3. Let X be an RCIPNTL.

(a) xy = z ⇒ y = z anti(x) ⇒ anti(x) = y anti(z) ⇒ anti(z) = anti(x)anti(y) ⇒
anti(x)anti(y) = anti(xy)⇒ AIP. So, X is an AIPNL.

(b) By Theorem 2: RCIP implies that LxRanti(x) = I = Ranti(x)Lx.
(c) yJRx J = anti

(
anti(y)x

)
= anti

(
anti(y)

)
anti(x). So, JRx J = Ranti(x) ⇔

anti
(
anti(y)

)
anti(x) = y anti(x)⇔ anti

(
anti(y)

)
= y.

Also, yJLx J = anti
(

x anti(y)
)

= anti(x)anti
(
anti(y)

)
. So, JLx J = Lanti(x) ⇔

anti(x)anti
(
anti(y)

)
= anti(x)y⇔ anti

(
anti(y)

)
= y.

(d) x anti(yx) = x ∗ anti(y)anti(x) = anti(y)⇒ RWIP. So, X is an RWIPNTL.

4. Let X be an LCIPNTL.

(a) xy = z ⇒ x = anti(y)z ⇒ anti(y) = anti(z)x ⇒ anti(z) = anti(x)anti(y) ⇒
anti(x)anti(y) = anti(xy)⇒ AIP. So, X is an AIPNL.

(b) By Theorem 2: LCIP implies that RxLanti(x) = I = Lanti(x)Rx.
(c) yJRx J = anti

(
anti(y)x

)
= anti

(
anti(y)

)
anti(x). So, JRx J = Ranti(x) ⇔

anti
(
anti(y)

)
anti(x) = y anti(x)⇔ anti

(
anti(y)

)
= y.

Also, yJLx J = anti
(

x anti(y)
)

= anti(x)anti
(
anti(y)

)
. So, JLx J = Lanti(x) ⇔

anti(x)anti
(
anti(y)

)
= anti(x)y⇔ anti

(
anti(y)

)
= y.

(d) anti(xy)x = anti(x)anti(y) ∗ x = anti(y)⇒ LWIP. So, X is an LWIPNTL.
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Theorem 6. Let X be an NTL.

1. If X is an LWIPNTL, then for all x ∈ X:

(a) neut(x) = anti
(
neut(x)

)
.

(b) neut
(
neut(x)

)
= neut(x)neut(x).

(c) anti
(
anti(x)

)
= x and J2 = I.

(d) neut(x) = neut
(
anti(x)

)
.

(e) J is a bijection.
(f) X is a left quasigroup.
(g) Lx is a bijection.

2. If X is an RWIPNTL, then for all x ∈ X:

(a) neut(x) = anti
(
neut(x)

)
.

(b) neut
(
neut(x)

)
= neut(x)neut(x).

(c) anti
(
anti(x)

)
= x and J2 = I.

(d) neut(x) = neut
(
anti(x)

)
.

(e) J is a bijection.
(f) X is a right quasigroup.
(g) Rx is a bijection.

3. The following are equivalent.

(a) X is an LWIPNTL and Rx is bijective.
(b) X is an RWIPNTL and Lx is bijective.
(c) X is an LWIPNTL and X is a right quasigroup.
(d) X is an RWIPNTL and X is a left quasigroup.

4. If X is a WIPNTL, then L2
x = I ⇔ R2

x = I.
5. If X is an LCIPNTL, then X is a right quasigroup.
6. If X is an RCIPNTL, then X is a left quasigroup.

Proof.

1. Let X be an LWIPNTL, then anti(xy)x = anti(y).
Put y = anti(x) to get anti

(
x anti(x)

)
x = anti

(
anti(x)

)
⇒

anti
(
neut(x)

)
x = anti

(
anti(x)

)
(18)

Put y = neut(x) to get anti
(

x neut(x)
)
x = anti

(
neut(x)

)
⇒ x anti(x) = anti

(
neut(x)

)
⇒

neut(x) = anti
(
neut(x)

)
(19)

(19) implies neut(x)neut(x) = anti
(
neut(x)

)
neut(x)⇒

neut(x)neut(x) = neut
(
neut(x)

)
(20)

From (18) and (19), neut(x)x = anti
(
anti(x)

)
⇒ x = anti

(
anti(x)

)
and so, J2 = I

Put x = neut(y) to get anti
(
neut(y) y

)
neut(y) = anti(y)⇒

anti(y)neut(y) = anti(y) (21)
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Put x = anti(y) to get anti
(
anti(y) y

)
anti(y) = anti(y)⇒ anti

(
neut(y)

)
anti(y) = anti(y)⇒

neut(y)anti(y) = anti(y) (22)

By (21) and (22), neut
(
anti(y)

)
= neut(y)

Let J : X → X ↑ xJ = anti(x). Then, x1 J = x2 J ⇒ anti(x1) = anti(x2) ⇒ anti
(
anti(x1)

)
=

anti
(
anti(x2)

)
⇒ x1 = x2. So, J is 1-1. For all y ∈ X, there exists x ∈ X such that xJ = y because

anti(x) = y⇒ anti
(
anti(x)

)
= anti(y)⇒ x = anti(y) ∈ X.

Consider La : X → X ↑ xLa = ax. Let x1La = x2La ⇒ ax1 = ax2 ⇒ anti(ax1) = anti(ax2) ⇒
anti(ax1) ∗ a = anti(ax2) ∗ a⇒ anti(x1) = anti(x2)⇒ anti

(
anti(x1)

)
= anti

(
anti(x2)

)
⇒ x1 = x2.

For all y ∈ X, there exists x ∈ X such that xLa = y because ax = y ⇒ anti(ax) = anti(y) ⇒
anti(ax) ∗ a = anti(y) ∗ a ⇒ anti(x) = anti(y) a ⇒ anti

(
anti(x)

)
= anti

(
anti(y) a

)
⇒ x =

anti
(
anti(y) a

)
.

2. Let X be an RWIPNTL, then x anti(yx) = anti(y).
Put y = anti(x) to get x anti

(
anti(x)x

)
= anti

(
anti(x)

)
⇒

x anti
(
neut(x)

)
= anti

(
anti(x)

)
. (23)

Put y = neut(x) to get x anti
(
neut(x)x

)
= anti

(
neut(x)

)
⇒ x anti(x) = anti

(
neut(x)

)
⇒

neut(x) = anti
(
neut(x)

)
. (24)

(24) implies neut(x)neut(x) = anti
(
neut(x)

)
neut(x)⇒

neut(x)neut(x) = neut
(
neut(x)

)
. (25)

From (23) and (24), xneut(x) = anti
(
anti(x)

)
⇒ x = anti

(
anti(x)

)
and so, J2 = I .

Put x = neut(y) to get neut(y)anti
(
y neut(y)

)
= anti(y)⇒

neut(y)anti(y) = anti(y). (26)

Put x = anti(y) to get anti(y)anti
(
y anti(y)

)
= anti(y)⇒ anti(y)anti

(
neut(y)

)
= anti(y)⇒

anti(y)neut(y) = anti(y). (27)

By (26) and (27), neut
(
anti(y)

)
= neut(y) .

Let J : X → X ↑ xJ = anti(x). Then, x1 J = x2 J ⇒ anti(x1) = anti(x2) ⇒ anti
(
anti(x1)

)
=

anti
(
anti(x2)

)
⇒ x1 = x2. So, J is 1-1. For all y ∈ X, there exists x ∈ X such that xJ = y because

anti(x) = y⇒ anti
(
anti(x)

)
= anti(y)⇒ x = anti(y) ∈ X.

Consider Ra : X → X ↑ xRa = xa. Let x1Ra = x2Ra ⇒ x1a = x2a⇒ anti(x1a) = anti(x2a)⇒
a ∗ anti(x1a) = a ∗ anti(x2a) ⇒ anti(x1) = anti(x2) ⇒ anti

(
anti(x1)

)
= anti

(
anti(x2)

)
⇒ x1 =

x2. For all y ∈ X, there exists x ∈ X such that xRa = y because xa = y⇒ anti(xa) = anti(y)⇒
a ∗ anti(xa) = a ∗ anti(y) ⇒ anti(x) = a anti(y) ⇒ anti

(
anti(x)

)
= anti

(
a anti(y)

)
⇒ x =

anti
(
a anti(y)

)
.

3. X is an LWIPNTL if and only if anti(xy)x = anti(y)⇔ Lx JRx = J and X is an RWIPNTL if and
only if x anti(yx) = anti(y)⇔ Rx JLx = J.
X is an LWIPNTL and Rx is bijective if and only if (Lx JRx)−1 = J−1 and Rx is bijective if and
only if R−1

x J−1L−1
x = J−1 ⇔ R−1

x JL−1
x = J ⇔ Rx JLx = J and Lx is bijective if and only if X is an

RWIPNTL and Lx is bijective.
For a groupoid X: Lx is bijective for all x ∈ X if and only if X is a left quasigroup and Rx is
bijective for all x ∈ X if and only if X is a right quasigroup. Hence, (a) to (d) are equivalent.
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4. If X is a WIPNTL, then it is both an LWIPNTL and RWIPNTL which implies that Lx JRx = J and
Rx JLx = J. Consequently, Lx JR2

x JLx = J2 and Rx JL2
x JRx = J2. Thus, L2

x = I ⇔ R2
x = I.

5. This follows from Lemma 2.
6. This follows from Lemma 2.

Theorem 7. Let X be an NTL.

1. X has the LWIP and AAIP, then X has the RIP.
2. X has the RWIP and AAIP, then X has the LIP.
3. X has the LWIP and AIP, then X has the RCIP.
4. X has the RWIP and AIP, then X has the LCIP.
5. X is an IPNTL if and only if X is a WIPNTL and an AAIPNTL.
6. X is a CIPNTL if and only if X is a WIPNTL and an AIPNTL.

Proof. Let X be an NTL.

1. LWIP implies anti(xy)x = anti(y) AAIP⇒ anti(y)anti(x) ∗ x = anti(y)
y 7→anti(y)⇒
x 7→anti(x)

anti
(
anti(y)

)
anti

(
anti(x)

)
∗ anti(x) = anti

(
anti(y)

)
⇒ yx ∗ anti(x) = y⇒ RIP.

2. RWIP implies x anti(yx) = anti(y) AAIP⇒ x ∗ anti(x)anti(y) = anti(y)
y 7→anti(y)⇒
x 7→anti(x)

anti(x) ∗

anti
(
anti(x)

)
anti

(
anti(y)

)
= anti

(
anti(y)

)
⇒ anti(x) ∗ xy = y⇒ LIP.

3. LWIP implies anti(xy)x = anti(y) AIP⇒ anti(x)anti(y) ∗ x = anti(y)
y 7→anti(y)⇒
x 7→anti(x)

anti
(
anti(x)

)
anti

(
anti(y)

)
∗ anti(x) = anti

(
anti(y)

)
⇒ xy ∗ anti(x) = y⇒ RCIP.

4. RWIP implies x anti(yx) = anti(y) AIP⇒ x ∗ anti(y)anti(x) = anti(y)
y 7→anti(y)⇒
x 7→anti(x)

anti(x) ∗

anti
(
anti(y)

)
anti

(
anti(x)

)
= anti

(
anti(y)

)
⇒ anti(x) ∗ yx = y⇒ LCIP.

5. This backward of the statement follows by 1 and 2, while the forward of the statement follows by
1 of Theorem 5.

6. This backward of the statement follows by 3 and 4, while the forward of the statement follows by
2 of Theorem 5.

Lemma 6. Let X be an NTL.

1. If X is an AIPNTL, then

(a) neut
(
anti(x)

)
= anti

(
neut(x)

)
.

(b) anti
(

neut(x)neut(y)
)
= neut

(
anti(x)

)
neut

(
anti(y)

)
.

2. If X is an AAIPNTL, then

(a) neut
(
anti(x)

)
= anti

(
neut(x)

)
.

(b) anti
(

neut(x)neut(y)
)
= neut

(
anti(y)

)
neut

(
anti(x)

)
.

3. If X is an AIPNTL (AAIPNTL), then X is an AAIPNTL (AIPNTL) if and only if anti(x)anti(y) =

anti(y)anti(x).
4. Let X be an AIPNTL (AAIPNTL), then X is an AAIPNTL (AIPNTL) if

(a)
(

anti(x), anti(y)
)
= neut

(
anti(y)anti(x)

)
or

(b)
[

anti(x), anti(y)
]
= neut

(
anti(y)anti(x)

)
.
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Proof.

1. Let X be an AIPNTL. Then, anti(xy) = anti(x)anti(y).

(a) Put y = neut(x) to get anti
(

x neut(x)
)
= anti(x)anti

(
neut(x)

)
⇒

anti(x) = anti(x)anti
(
neut(x)

)
. (28)

Do the replacement x 7→ neut(x) and put y = x to get anti
(
neut(x)x

)
=

anti
(
neut(x)

)
anti(x)⇒

anti(x) = anti
(
neut(x)

)
anti(x). (29)

Combining (28) and (29), we get neut
(
anti(x)

)
= anti

(
neut(x)

)
.

(b) Do the replacements x 7→ neut(x) and y 7→ neut(y) to get

anti
(

neut(x)neut(y)
)
= anti

(
neut(x)

)
anti

(
neut(y)

)
= neut

(
anti(x)

)
neut

(
anti(y)

)
.

2. Let X be an AAIPNTL. Then, anti(xy) = anti(y)anti(x).

(a) Put y = neut(x) to get anti
(

x neut(x)
)
= anti

(
neut(x)

)
anti(x)⇒

anti(x) = anti
(
neut(x)

)
anti(x). (30)

Do the replacement x 7→ neut(x) and put y = x to get anti
(
neut(x)x

)
=

anti(x)anti
(
neut(x)

)
⇒

anti(x) = anti(x)anti
(
neut(x)

)
(31)

Combining (30) and (31), we get neut
(
anti(x)

)
= anti

(
neut(x)

)
.

(b) Do the replacements x 7→ neut(x) and y 7→ neut(y) to get

anti
(

neut(x)neut(y)
)
= anti

(
neut(y)

)
anti

(
neut(x)

)
= neut

(
anti(y)

)
neut

(
anti(x)

)
.

3. This follows from the AIP and AAIP.
4. This follows from the AIP and AAIP.

Theorem 8. Let (Zp,+, ·) be the field of integers modulo p, where p is prime. Define ∗ on Zp as follows:
x ∗ y = ax + ay for a fixed 0, 1 6= a ∈ Zp. Then:

1. (Zp,+·) is a non-associative commutative NTL.
2. The following are equivalent.

(a) (Zp, ∗) is a CIPNTL.
(b) (Zp, ∗) is an IPNTL.
(c) a2 ≡ 1 mod p.

Proof.

1. (Zp, ∗) is a groupoid by the definition of ∗.

Commutativity x ∗ y = ax + ay = ay + ax = y ∗ x. So, (Zp, ∗) is commutative.
Neutrality x ∗ neut(x) = x ⇔ ax + a neut(x) = x ⇔ a neut(x) = x − ax = (1 − a)x ⇔

neut(x) = a−1(1− a)x. Similarly, neut(x) ∗ x = x ⇔ neut(x) ∗ x = a−1(1− a)x.
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IPNTL

CIPNTL

commutativity

AAIPNTL RIPNTL LIPNTL RWIPNTL LWIPNTL

CIPNTL

IPNTL

commutativity

AIPNTL RWIPNTL LWIPNTL SAIPNTL

Figure 1. Inverse property neutrosophic triplet loop (NTL) Hasse diagrams. AAIP: antiautomorphic
inverse property; AIP: automorphic inverse property; CIP: cross inverse property; LCIP: left cross
inverse property; LIP: left inverse property; LWIP: left weak inverse property; RCIP: right cross inverse
property; RIP: right inverse property; RWIP: right weak inverse property; SAIP: semi-automorphic
inverse property; WIP: weak inverse property.

Opposite x ∗ anti(x) = neut(x) ⇔ ax + a anti(x) = neut(x) ⇔ ax + a anti(x) = a−1(1−
a)x ⇔ anti(x) = a−1(1− a)x − ax = a1[a−1(1− a)− a]x ⇔ anti(x) = [a−2(1− a)− 1]x.
Similarly, anti(x) ∗ x = neut(x) ⇔ anti(x) = [a−2(1− a)− 1]x. So, (Zp, ∗) is a NTL. So,
(Zp, ∗) is an NTL.

Non-Associativity x ∗ (y ∗ z) = ax + a(ay + az) = ax + a2y + a2z and (x ∗ y) ∗ z = a(ax +

ay) + az = a2x + a2y + az. So, x ∗ (y ∗ z) 6= (x ∗ y) ∗ z.

∴ (Zp, ∗) is a non-associative commutative NTL.
2. Going by 3. of Lemma 4, it suffices to only show that (Zp, ∗) is a RIPL. (Zp, ∗) has the RIP if

and only if (y ∗ x) ∗ anti(x) = y ⇔ (ay + ax) ∗ anti(x) = y ⇔ a(ay + ax) + a anti(x) = y ⇔
a2y + a2x + a[a−2(1− a)− 1]x = y⇔ a2y + [a−1(1− a)− a + a2]x = 1y + 0x ⇔ a2 ≡ 1 mod p.

Remark 4. In Theorem 8, a2 ≡ 1 mod p ⇔ p|a2 − 1 ⇔ ∃ k ∈ Z 3 a2 − 1 = pk ⇔ a =
√

pk + 1 for
some k ∈ Z with a < p. Hence, with the requirements that a2 = pk + 1 and a < p, k = p − 2, so that
a = p− 1.

Example 5. (Zp, ∗) where x ∗ y = (p− 1)(x + y), for any prime p is a non-associative commutative CIPNTL
and IPNTL.

3. Application to Cryptography

Keedwell [45], Keedwell and Shcherbacov [46–49], Jaiyéo. lá [50–55], and Jaiyéo. lá and
Adéníran [56] are of great significance in the study of quasigroups and loop with the WIP, AIP,
CIP, their generalizations (i.e., m-inverse loops and quasigroups, (r,s,t)-inverse quasigroups) and
applications to cryptography.
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Cross inverse property quasigroups have been found appropriate for cryptography because they
give rise to what is called ‘cycle of inverses’ or ‘inverse cycles’ or simply ‘cycles’.

After Jaiyéo. lá [57] studied the universality of Osborn loops; a class of loop which includes
universal WIP loops, some of the identities established in Jaiyéo. lá and Adéníran [58] were singled out
and christened ‘cryptographic identities’, and their applications to cryptography have been reported
in Jaiyéo. lá [59,60], Jaiyéo. lá and Adéníran [61].

Going by Lemma 1, Lemma 3, and Theorem 6, a CIPNTL, IPNTL, LWIPNTL, or RWIPNTL X obeys
the property anti

(
anti(x)

)
= x for any x ∈ X. Additionally, by Lemma 4, a commutative NTL X with

RIP or LIP or RCIP or LCIP also has the property anti
(
anti(x)

)
= x for any x ∈ X. Hence, long inverse

cycles which naturally arise in CIP quasigroup will not be feasible for such NTLs. However, for an
RCIPNTL, LCIPNTL, RIPNTL, or LRIPNTL X that is non-commutative, long inverse cycles will be
feasible (this makes an attack on the system more difficult). Thus, such a non-commutative NTL which
is not a CIPNTL, IPNTL, RWIPNTL, or RWIPNTL will be appropriate for cryptography. The procedure
for applying any of them is described below.

RCIPNTL Assume that the message to be transmitted can be represented as a single element x ∈ X.
Then, this is enciphered by pre-multiplying by another element y ∈ X so that the cipher text is
yx ∈ X. At the receiving end, the cipher text is deciphered by post-multiplying by anti(y) ∈ X
to get the plain text.

LCIPNTL Assume that the message to be transmitted can be represented as a single element x ∈ X.
Then, this is enciphered by post-multiplying by another element y ∈ X so that the cipher text is
xy ∈ X. At the receiving end, the cipher text is deciphered by pre-multiplying by anti(y) ∈ X to
get the plain text.

RIPNTL Assume that the message to be transmitted can be represented as a single element x ∈ X.
Then, this is enciphered by post-multiplying by another element y ∈ X so that the cipher text is
xy ∈ X. At the receiving end, the cipher text is deciphered by post-multiplying by anti(y) ∈ X
to get the plain text.

LIPNTL Assume that the message to be transmitted can be represented as a single element x ∈ X.
Then, this is enciphered by pre-multiplying by another element y ∈ X so that the cipher text is
yx ∈ X. At the receiving end, the cipher text is deciphered by pre-multiplying by anti(y) ∈ X to
get the plain text.

Note that these four procedures can alternatively be carried out using Theorem 2.

Author Contributions: Tèmít .óp .é Gb .óláhàn Jaíyé .olá has introduced many properties of the neutrosophic triplet 
loop and he proved them. He also presented an application of the neutrosophic triplet loops into cryptography. 
Florentin Smarandache has co-introduced the neutrosophic triplet set and group and their properties. He 
defined the neutrosophic triplet loop and several of its properties.
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