The Balan-Killing Manifolds

A.Balan

August 17, 2018

Abstract

We define here a differential equation over the metric of a Spin manifold, calling Balan-Killing metrics the solutions of this equation.

1 The Spin manifolds

A Spin manifold [F] admits a spinor bundle by reduction of the tangent bundle with the orthogonal group to the spinor bundle with the group spin. The spinors ψ admit a multiplication by the vectors X, called the Clifford multiplication $X.\psi$.

Definition 1 A Killing spinor is defined by the equation:

 $\nabla_X \psi = \mu X.\psi$

with ∇ the Levi-Civita connection and $\mu \in \mathbf{R}$.

2 The Balan-Killing metrics

We introduce here the following differential equation over the metric. Let R^{∇} be the spinor curvature.

Definition 2 We call a Balan-Killing manifold, a manifold M with riemannian metric g such that $\exists \mu, \forall X, Y$ vectors and $\forall \psi$ spinor:

 $R^{\nabla}(X,Y)\psi = \mu \operatorname{Ricc}^{\nabla}(X.Y - Y.X).\psi$

. is the Clifford multiplication and ∇ is the Levi-Civita connection over the spinors, $Ricc^{\nabla}$ is the Ricci curvature as an endomorphism of the spinors. For example, a flat space is a Balan-Killing manifold.

3 The Balan-Killing spinors

Definition 3 We call a Balan-Killing spinor, a spinor ψ which verifies the equation:

 $d(h(Z.\psi,\psi)(X,Y) = \mu h((X.Y - Y.X).\psi,\psi)$

h is the hermitian metric over the spinor bundle, d is the differential operator over the forms.

It is a differential equation over the spinors.

References

- [F] T.Friedrich, "Dirac operators in Riemannian Geometry", Graduate Studies in Mathematics vol 25, AMS, 2000.
- [GHL] S.Gallot, D.Hulin, J.Lafontaine, "Riemannian Geometry", Springer, 2004.
- [J] J.Jost, "Riemannian Geometry and Geometric Analysis", Springer, 2008.