The generalized Seiberg-Witten equations

A.Balan

August 5, 2018

Abstract

We show a set of equations which generalizes the Seiberg-Witten equations

1 Recalls of differential geometry

The S pin $-C$-structures are reductions of a $S O(n) \cdot S^{1}$ - fiber bundle to the $\operatorname{group} \operatorname{Spin}(n) \times{ }_{\{1,-1\}} S^{1}$. For a four-manifold it exists always a $S p i n-C$ structure for the tangent fiber bundle $[\mathrm{F}]$.

The DIrac operator is define over the Spin - C-structure with help of a connection A for the associated line bundle.

$$
\mathcal{D}_{A}=\sum_{i} e_{i} \cdot \nabla_{e_{i}}^{A}
$$

with ∇^{A} the connection defined by the Levi-Civita connection and the connection A.

The self-dual part of the curvature (which is a 2 -form) of the connection A is considered:

$$
\Omega_{A}^{+}
$$

A 2 -form bound to a spinor ψ is also defined by [F]:

$$
\omega(\psi)(X, Y)=<X . Y . \psi, \psi>+<X, Y>|\psi|^{2}
$$

2 The Seiberg-Witten equations

The Seiberg-Witten equations are the following ones $[\mathrm{F}][\mathrm{M}]$: 1)

$$
\mathcal{D}_{A}(\psi)=0
$$

2)

$$
\Omega_{A}^{+}=-(1 / 4) \omega(\psi)
$$

3 The generalization of the SW equations

We consider two spinors ψ, ϕ and we define [F] the coupled Seiberg-Witten equations ($A, A^{\prime}, f, g, \psi, \phi$):
1)

$$
\mathcal{D}_{A}(f \psi)=0
$$

2)

$$
\mathcal{D}_{A^{\prime}}(g \phi)=0
$$

3)

$$
\Omega_{A}^{+}=-(1 / 4) \omega(\psi)
$$

4)

$$
\Omega_{A^{\prime}}^{+}=-(1 / 4) \omega(\phi)
$$

5)

$$
\left(f^{2}\right)^{*} A=\left(g^{2}\right)^{*} A^{\prime}
$$

6)

$$
f g=<\psi, \bar{\phi}>
$$

A, A^{\prime} are connections $f, g: M \rightarrow S^{1}$.
The gauge group acts:

$$
\left(h, h^{\prime}\right) \cdot\left(A, A^{\prime}, f, \psi, \phi\right)=\left(\left(1 / h^{2}\right)^{*} A,\left(1 / h^{2}\right)^{*} A^{\prime}, f h,, g h^{\prime}, h \psi, h^{\prime} \phi\right)
$$

Moreover, the situation can be generalized to n solutions of the SeibergWitten equations:
1)

$$
\mathcal{D}_{A_{i}}\left(f_{i} \psi_{i}\right)=0
$$

2)

$$
\Omega_{A_{i}}^{+}=-(1 / 4) \omega\left(\psi_{i}\right)
$$

3)

$$
\left(f_{i}^{2}\right)^{*} A_{i}=B
$$

4 The compacity of the generalized SW moduli spaces

Theorem 1 Let (ψ, A) be a solutions of $\mathcal{D}_{A} \psi=0, \Omega_{A}^{+}=-(1 / 4) \omega(\psi)$ over a compact Riemann manifold (M, g) with scalar curvature R. Then at each point,

$$
|\psi(x)|^{2} \leq-R_{\min }
$$

with $R_{\text {min }}=\min \{R(m), m \in M\}$
The proof is given in [F] p135.
Definition 1 We define:

$$
\begin{aligned}
M_{L}= & \left\{\left(\psi, \phi, A, A^{\prime}, f, g\right) \in \Gamma\left(S^{+}\right)^{2} \cdot C(P)^{2} \cdot M a p\left(M, S^{1}\right): \mathcal{D}_{A} \psi=\mathcal{D}_{A^{\prime}} \phi=0,\right. \\
& \left.\Omega_{A}^{+}=-(1 / 4) \omega(\psi), \Omega_{A^{\prime}}^{+}=-(1 / 4) \omega(\phi),\left(f^{2}\right)^{*} A=\left(g^{2}\right)^{*} A^{\prime}\right\} / \mathcal{G}
\end{aligned}
$$

Theorem $2 M_{L}$ is compact.
Proof : Let

$$
F(L)=\left\{\omega \in \Lambda(M): d \omega=0,[\omega]_{D R}=c_{1}(L)\right\}
$$

Since the curvature form is gauge invariant, we obtain a mapping:

$$
P: M_{L} \rightarrow F(P), P\left[A, A^{\prime}, \psi, \phi, f, g\right]=\Omega_{A}=\Omega_{A^{\prime}}
$$

4.1 First step

$P\left(M_{L}\right) \rightarrow F(L)$ is a compact subset.
The proof is given in $[\mathrm{F}] \mathrm{P} 136-137$.

4.2 Second step

Let be $\left(P_{1}, P_{2}\right): M_{L} \rightarrow \mathcal{C}(P)^{2} / \mathcal{G}(P)^{2}$,

$$
P_{1}\left(\psi, \phi, A, A^{\prime}, f, g\right)=A
$$

and

$$
P_{2}\left(\psi, \phi, A, A^{\prime}, f, g\right)=A^{\prime}
$$

then $\left(P_{1}, P_{2}\right)\left(M_{L}\right) \subset \mathcal{C}(P)^{2} / \mathcal{G}(P)^{2}$ is a compact subset.
We use Weyl's theorem. The mapping $\mathcal{C}^{2}(P) / \mathcal{G}(P)^{2} \rightarrow F(P),\left(A, A^{\prime}\right) \rightarrow$ $\Omega_{A}=\Omega_{A^{\prime}}$ is a fibration with compact fiber $\operatorname{Pic}(M)=H^{1}(M, \mathbf{R}) / H^{1}(M, \mathbf{Z})$. The following diagram commutes:

$$
\begin{array}{ccc}
M_{L} & \rightarrow^{\left(P_{1}, P_{2}\right)} & \mathcal{C}(P)^{2} / G(P)^{2} \\
\downarrow P & & \downarrow \\
F(L) & = & F(L)
\end{array}
$$

$\left(P_{1}, P_{2}\right)\left(M_{L}\right) \subset \mathcal{C}(P)^{2} / \mathcal{G}(P)^{2}$ is a compact subset.

4.3 Third step

Let be $(F / G): M_{L} \rightarrow \mathcal{G}(P),(F / G)\left(\psi, \phi, A, A^{\prime}, f, g\right)=f / g$, then $(F / G)\left(M_{L}\right) \subset$ $\mathcal{G}(P)$ is a compact subset.

Consider the maps: $K, K^{\prime}: M_{L} \rightarrow \Lambda^{1}(M)$,

$$
\begin{aligned}
K\left(A, A^{\prime}, \psi, \phi, f, g\right) & =\frac{d f}{f} \\
K^{\prime}\left(A, A^{\prime}, \psi, \phi, f, g\right) & =\frac{d g}{g}
\end{aligned}
$$

then $\left(K-K^{\prime}\right)\left(M_{L}\right) \subset \Lambda^{1}(M)$ is compact. Indeed, $2 \frac{d f}{f}-2 \frac{d g}{g}=A^{\prime}-A$ which is in a compact set. And the fiber is $\frac{d f}{f}=\frac{d g}{g}, f / g=c s t \in S^{1}$.

4.4 Fourth step: M_{L} is compact

$\left(P_{1}, P_{2}\right)^{-1}\left(A, A^{\prime}\right) \cap(F / G)^{-1}(f / g)$ consists of the solutions of

$$
\begin{gathered}
\mathcal{D}_{A} f \psi=\mathcal{D}_{A^{\prime}} g \phi=0, \max (|\psi(x)|,|\phi(x)|) \leq-R_{m i n} \\
f g=<\psi, \bar{\phi}>
\end{gathered}
$$

This is a bounded ball in a finite-dimensional vector space. The system is of finite dimension.

References

[B] N.Berline, E.Getzler, M.Vergne, "Heat kernels and Dirac operators", Springer-Verlag, 1992.
[F] T.Friedrich, "Dirac operators in Riemannian Geometry", Graduate Studies in Mathematics vol 25, AMS, 2000.
[K] M.Karoubi, "Algèbres de Clifford et K-théorie", Ann.Scient.Ec.Norm.Sup. 4 ser. 1 (1968), 161-270.
[M] J.Morgan, "The Seiberg-Witten equations and applications to the topology of smooth four-manifolds", Mathematical Notes, Princeton University Press, 1996.
[W] E.Witten, "Monopoles and four-manifolds", Math.Res.Lett. 1(1994), 769-796.

