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Abstract

We show a set of equations which generalizes the Seiberg-Witten equa-
tions

1 Recalls of differential geometry
The Spin−C-structures are reductions of a SO(n).S1- fiber bundle to the
group Spin(n)×{1,−1}S

1. For a four-manifold it exists always a Spin−C-
structure for the tangent fiber bundle [F].

The DIrac operator is define over the Spin − C-structure with help of
a connection A for the associated line bundle.

DA =
∑

i

ei.∇A
ei

with ∇A the connection defined by the Levi-Civita connection and the
connection A.

The self-dual part of the curvature (which is a 2-form) of the connection
A is considered:

Ω+
A

A 2-form bound to a spinor ψ is also defined by [F]:

ω(ψ)(X,Y ) =< X.Y.ψ, ψ > + < X,Y > |ψ|2

2 The Seiberg-Witten equations
The Seiberg-Witten equations are the following ones [F] [M]:
1)

DA(ψ) = 0
2)

Ω+
A = −(1/4)ω(ψ)
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3 The generalization of the SW equations
We consider two spinors ψ, ϕ and we define [F] the coupled Seiberg-Witten
equations (A,A′, f, g, ψ, ϕ):
1)

DA(fψ) = 0
2)

DA′ (gϕ) = 0
3)

Ω+
A = −(1/4)ω(ψ)

4)
Ω+

A′ = −(1/4)ω(ϕ)
5)

(f2)∗A = (g2)∗A′

6)
fg =< ψ, ϕ̄ >

A,A′ are connections f, g : M → S1.

The gauge group acts:

(h, h′).(A,A′, f, ψ, ϕ) = ((1/h2)∗A, (1/h′2)∗A′, fh, , gh′, hψ, h′ϕ)

Moreover, the situation can be generalized to n solutions of the Seiberg-
Witten equations:
1)

DAi (fiψi) = 0
2)

Ω+
Ai

= −(1/4)ω(ψi)
3)

(f2
i )∗Ai = B

4 The compacity of the generalized SW
moduli spaces
Theorem 1 Let (ψ,A) be a solutions of DAψ = 0,Ω+

A = −(1/4)ω(ψ)
over a compact Riemann manifold (M, g) with scalar curvature R. Then
at each point,

|ψ(x)|2 ≤ −Rmin

with Rmin = min{R(m),m ∈ M}

The proof is given in [F] p135.
Definition 1 We define:

ML = {(ψ, ϕ,A,A′, f, g) ∈ Γ(S+)2.C(P )2.Map(M,S1) : DAψ = DA′ϕ = 0,

Ω+
A = −(1/4)ω(ψ),Ω+

A′ = −(1/4)ω(ϕ), (f2)∗A = (g2)∗A′}/G

2



Theorem 2 ML is compact.

Proof : Let

F (L) = {ω ∈ Λ(M) : dω = 0, [ω]DR = c1(L)}

Since the curvature form is gauge invariant, we obtain a mapping:

P : ML → F (P ), P [A,A′, ψ, ϕ, f, g] = ΩA = ΩA′

4.1 First step
P (ML) → F (L) is a compact subset.

The proof is given in [F] P136-137.

4.2 Second step
Let be (P1, P2) : ML → C(P )2/G(P )2,

P1(ψ, ϕ,A,A′, f, g) = A,

and
P2(ψ, ϕ,A,A′, f, g) = A′,

then (P1, P2)(ML) ⊂ C(P )2/G(P )2 is a compact subset.

We use Weyl’s theorem. The mapping C2(P )/G(P )2 → F (P ), (A,A′) →
ΩA = ΩA′ is a fibration with compact fiber Pic(M) = H1(M,R)/H1(M,Z).
The following diagram commutes:

ML →(P1,P2) C(P )2/G(P )2

↓P ↓
F (L) = F (L)

(P1, P2)(ML) ⊂ C(P )2/G(P )2 is a compact subset.

4.3 Third step
Let be (F/G) : ML → G(P ), (F/G)(ψ, ϕ,A,A′, f, g) = f/g, then (F/G)(ML) ⊂
G(P ) is a compact subset.

Consider the maps: K,K′ : ML → Λ1(M),

K(A,A′, ψ, ϕ, f, g) = df

f

K′(A,A′, ψ, ϕ, f, g) = dg

g

then (K − K′)(ML) ⊂ Λ1(M) is compact. Indeed, 2 df
f

− 2 dg
g

= A′ − A

which is in a compact set. And the fiber is df
f

= dg
g

, f/g = cst ∈ S1.
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4.4 Fourth step: ML is compact
(P1, P2)−1(A,A′) ∩ (F/G)−1(f/g) consists of the solutions of

DAfψ = DA′gϕ = 0,max(|ψ(x)|, |ϕ(x)|) ≤ −Rmin

fg =< ψ, ϕ̄ >

This is a bounded ball in a finite-dimensional vector space. The system
is of finite dimension.
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