The generalized Seiberg-Witten equations

A.Balan

August 2, 2018

Abstract

We show a set of equations which generalizes the Seiberg-Witten equations $\,$

1 Recalls of differential geometry

The Spin-C-structures are reductions of a $SO(n).S^1$ - fiber bundle to the group $Spin(n)\times_{\{1,-1\}}S^1$. For a four-manifold it exists always a Spin-C-structure for the tangent fiber bundle [F].

The DIrac operator is define over the Spin-C-structure with help of a connection A for the associated line bundle.

$$\mathcal{D}_A = \sum_i e_i . \nabla^A_{e_i}$$

with ∇^A the connection defined by the Levi-Civita connection and the connection A.

The self-dual part of the curvature (which is a 2-form) of the connection A is considered:

$$\Omega_A^+$$

A 2-form bound to a spinor ψ is also defined by [F]:

$$\omega(\psi)(X,Y) = \langle X.Y.\psi, \psi \rangle + \langle X,Y \rangle |\psi|^2$$

2 The Seiberg-Witten equations

The Seiberg-Witten equations are the following ones [F] [M]: 1)

$$\mathcal{D}_A(\psi) = 0$$

2)
$$\Omega_A^+ = -(1/4)\omega(\psi)$$

3 The generalization of the SW equations

We consider two spinors ψ, ϕ and we define [F] the coupled Seiberg-Witten equations (A, A', f, ψ, ϕ) :

1)

$$\mathcal{D}_A(f\psi) = 0$$

2)

$$\mathcal{D}_{A'}((1/f)\phi) = 0$$

3)

$$\Omega_A^+ = -(1/4)\omega(\psi)$$

4)

$$\Omega_{A'}^+ = -(1/4)\omega(\phi)$$

5)

$$(f^2)^*A = (1/f^2)^*A'$$

A,A' are connections $f:M\to S^1.$ If f=e, then we have the Seiberg-Witten equations.

The gauge group acts:

$$g.(A, A', f, \psi, \phi) = ((1/g^2)^* A, (g^2)^* A', fg, g\psi, (1/g)\phi)$$

Moreover, the situation can be generalized to n solutions of the Seiberg-Witten equations:

1)

$$\mathcal{D}_{A_i}(f_i\psi_i)=0$$

2)

$$\Omega_{A_i}^+ = -(1/4)\omega(\psi_i)$$

3)

$$(f_i^2)^* A_i = B$$

4)

$$\prod_i f_i = 1$$

4 The compacity of the generalized SW moduli spaces

Theorem 1 Let (ψ, A) be a solutions of $\mathcal{D}_A \psi = 0$, $\Omega_A^+ = -(1/4)\omega(\psi)$ over a compact Riemann manifold (M, g) with scalar curvature R. Then at each point,

$$|\psi(x)|^2 \le -R_{min}$$

with $R_{min} = min\{R(m), m \in M\}$

The proof is given in [F] p135.

Definition 1 We define:

$$M_L = \{ (\psi, \phi, A, A', f) \in \Gamma(S^+)^2 . C(P)^2 . Map(M, S^1) : \mathcal{D}_A \psi = \mathcal{D}_{A'} \phi = 0,$$

$$\Omega_A^+ = -(1/4)\omega(\psi), \Omega_{A'}^+ = -(1/4)\omega(\phi), (f^2)^* A = (1/f^2)^* A' \} / G$$

Theorem 2 M_L is compact.

 $\mathbf{Proof}:$ Let

$$F(L) = \{ \omega \in \Lambda(M) : d\omega = 0, [\omega]_{DR} = c_1(L) \}$$

Since the curvature form is gauge invariant, we obtain a mapping:

$$P: M_L \to F(P), P[A, A', \psi, \phi, f] = \Omega_A = \Omega_{A'}$$

4.1 First step

 $P(M_L) \to F(L)$ is a compact subset.

The proof is given in [F] P136-137.

4.2 Second step

Let be $P_1, P_2: M_L \to \mathcal{C}(P)/G(P)$,

$$P_1(\psi, \phi, A, A', f) = A,$$

and

$$P_2(\psi, \phi, A, A', f) = A',$$

then $P_1, P_2(M_L) \subset \mathcal{C}(P)/G(P)$ are compact subsets. We use Weyl's theorem. The mapping $\mathcal{C}(P) \to F(P), A \to \Omega_A$ is a fibration with compact fibre $Pic(M) = H^1(M, \mathbf{R})/H^1(M, \mathbf{Z})$. The following diagram commutes:

$$\begin{array}{ccc} M_L & \rightarrow^{P_1} & \mathcal{C}(P)/G(P) \\ \downarrow^P & & \downarrow \\ F(L) & = & F(L) \end{array}$$

 $P_1, P_2(M) \subset \mathcal{C}(P)/G(P)$ are compact subsets.

4.3 Third step

Let be $F: M_L \to G(P), F(\psi, \phi, A, A', f) = f$, then $F(M_L) \subset G(P)$ is a compact subset.

Consider the map: $K: M_L \to \Lambda^1(M)$,

$$K(A, A', \psi, \phi, f) = \frac{df}{f}$$

then $K(M_L) \subset \Lambda^1(M)$ is compact. Indeed, $4\frac{df}{f} = A' - A$ which is compact. And the fiber is $\frac{df}{f} = \frac{df'}{f'}$, $f/f' = cst \in S^1$

4.4 Fourth step: M_L is compact

 $P_1^{-1}(A), P_2^{-1}(A'), F^{-1}(\alpha)$ consists of the solutions of

$$\mathcal{D}_A f \psi = \mathcal{D}_{A'}(1/f)\phi = 0, \max(|\psi(x)|, |\phi(x)|) \le -R_{min}$$

This is bounded ball in a finite-dimensional vector space.

References

- [B] N.Berline, E.Getzler, M.Vergne, "Heat kernels and Dirac operators", Springer-Verlag, 1992.
- $[{\rm F}]$ T. Friedrich, "Dirac operators in Riemannian Geometry", Graduate Studies in Mathematics vol 25, AMS, 2000.
- [K] M.Karoubi, "Algèbres de Clifford et K-théorie", Ann. Scient. Ec. Norm. Sup. 4 ser. 1 (1968), 161-270.
- [M] J.Morgan, "The Seiberg-Witten equations and applications to the topology of smooth four-manifolds", Mathematical Notes, Princeton University Press, 1996.
- [W] E.Witten, "Monopoles and four-manifolds", Math.Res.Lett. 1(1994), 769-796.