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Abstract

One of the greatest unsolved problems in quantum mechanics is related to time operators. Since the Pauli
objection was first raised in 1933, time has only been considered a parameter in quantum mechanics and not
as an operator. The Pauli objection basically asserts that a time operator must be Hermitian and self-adjoint,
something the Pauli objection points out is actually not possible. Some theorists have gone so far as to claim
that time between events does not exist in the quantum world. Others have explored various ideas to establish
an acceptable type of time operator, such as a dynamic time operator, or an external clock that stands just
outside the framework of the Pauli objection. However, none of these methods seem to be completely sound.
We think that a better approach is to develop a deeper understanding of how elementary particles can be seen,
themselves, as ticking clocks, and to examine more broadly how they relate to time.
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1 A New Consistent Time Operator

Time operators have not been commonly used in quantum mechanics. The main resistance against a time
operator can be traced back to Wolfgang Pauli’s strong objection [1] regarding the existence of a self-adjoint
time operator. Pauli’s objections have encountered several counterexamples, criticisms, and discussions; see,
for example, [2–16]. Some have taken the Pauli objection to the extreme, and argued that time between two
events is meaningless in quantum mechanics, [17], “I prove that quantum theory rules out the possibility of any
quantity that one might call ’the time interval between two events.’”. Others have creatively tried to come up
with acceptable time operators by introducing dynamic time operators or clocks that are outside the quantum
system and therefore may be able to bypass the Pauli objection. Here we will suggest a logicial, new time
operator. Modern physics, despite enormous progress in understanding time (in particular through the work of
Larmor [18] and Einstein’s special relativity theory), does not have an in-depth understanding of what time is
or is not at the deepest quantum level.

Haug has suggested a model where mass is closely related to the tick of time; see [19, 20]. (This is my first
working paper on the subject and provides useful background information).

In this paper, we will here suggest a new way to look at particles that is related to Schrödinger’s [21]
hypothesis in 1930 of a (”trembling motion” in German) in the electron. Schrödinger indicated that the electron

was in a sort of trembling motion 2mc2

h̄ ⇡ 1.55269 ⇥ 1021 per second. We will suggest that the electron is in
a Planck mass state c

�̄e
⇡ 7.76344 ⇥ 1020 per second (exactly half of that of Schrödinger’s “Zitterbewegung”

frequency). However, each Planck mass state only lasts for one Planck second and we therefore get the normal
electron mass from
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⇡ 9.10938⇥ 10�31 kg (1)

We can also look at the same idea from a slightly di↵erent angle. It is well-known that the mass of any
elementary particle can be expressed as
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This can be rewritten as
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The part �̄
c we can call the reduced Compton time t, and we have
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Be also aware that h̄
c2

indeed is identical to the Planck mass times one Planck second. Further the plane
wave function of the Klein–Gordon equation can be written as
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Now, taking the partial derivative with respect to the plane wave function with respect to time we get
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since t = �̄
c and if we assume x = �̄ we get
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This means that the time momentum operator is
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c
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(8)

and the time operator we suggest is simply t̂ = t. These two operators are time operators: the momentum
time operator and the time operator. Based on its construction, this time operator we are quite sure must be
Hermitian and self-adjoint. In other words, the Pauli objection likely does not hold in this instance. What
quantum mechanics seems to have been missing is that elementary particles are functions of time; they are
quantum clocks that tick in every reduced Compton time period. Each tick is the Planck mass that last for one
Planck second mptp = h̄

c2
.

Next we will check to see whether the momentum operator and time operator commute or not

[p̂, t̂] = [p̂t̂� t̂p̂] 
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As we can see they do not commute. Further, we get the following uncertainty relation
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and since
R
 ⇤ dt must sum to 1, we are left with

�p�t � 1
2
|i h̄
c
|

�p�t � h̄
2
1
c

(11)

That is, we have a new momentum time uncertainty principle that possibly leads to further directions in the
study of time and physics. Establishing a consistent time operator could be important to making progress in
quantum gravity [22], for example. Clearly, more work is needed on this area of quantum physics in all its forms.
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