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1 Recalls of Lie group theory

A Lie group G is a differentiable manifold with differentiable group structure
[W]. The tangent fiber bundle at any point is the Lie algebra, due to the product
of the Lie group. So a vector field is a map m : G → g of G in the tangent space
at unity. The Killing form is an invariant Riemann metric over the group.

2 The Dirac operator over a Lie group

Let be an orthonormal basis Ei of the Lie algebra g.

Definition 1 The Dirac operator D for the Lie group G is acting over the

vector fields:

D(m) =
∑

i

[Ei, ∇Ei
(m)]

with ∇ the Levi-Civita connection over the Riemann manifold G and [, ] the Lie

bracket of vector fields.

Theorem 1 The definition is independant of the choice of the basis.

Demonstration 1

The choice of another basis E′

i define an orthogonal matrice, so:

E′

i =
∑

j

aijEi

and as
∑

j aijakj = δk
i , the Kronecker symbol, the Dirac operators are identical.
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