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Abstract

In this pedagogical article, we elucidate on direct derivation of total power
emitted by an accelerating charged particle, known as Liénard’s generali-
sation.

INTRODUCTION

Larmor’s formula [1] for total power radiated by an accelerating non-relativistic
charged particle is a regular theme in M.Sc. electrodynamics course. Gener-
alisation of Larmor’s formula for arbitrary velocity, via putting it in covariant
form[2] is known as Liénard’s generalisation and is also a regular feature in any
electrodynamics text-book. What is missing is straightforward derivation of to-
tal power for arbitrary velocity of charge, starting from electric and magnetic
fields of a radiating charge through Poynting vector through angular emission of
power to total power on integration over 4π solid angle. One may look in [3] for
similar derivation. David J. Griffiths[4] poses it as a problem and writes ”It’s not
a picnic”. Here, in this pedagogical article, we elucidate on one straightforward
derivation.
In the far-field region for an acclerating point charge q, electric field, is given
by ([2], [5],[4]),

~E =
Z0

4π

q

R

n̂× ((n̂− ~β) × ~̇β)

(1 − n̂.~β)3
.

where, ~β = 1
c~v, ~v being the velocity of the charged particle. This electric field is

called ”accelerating field”. There is another part, called, ”velocity field”, which
falls off with distance as 1

R2 and hence negligible compared to the ”accelerating
field” in the far-field domain. Magnetic field in that region is given by

~B =
1

c
n̂× ~E.

where, n̂ is a unit vector from the charge to an observer. Z0 is vacuum impedance,
µ0c, with value 378 ohm. Z0

4π goes over to 1
c in CGS unit.
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Total power emitted

Poynting vector, ~S, given by

~S =
1

µ0

~E × ~B

is a measure of energy passing out per unit time(observer’s time) per unit area
about an observer in the far-field region along the direction of radiated elec-
tromagnetic wave. As a result power received per unit solid angle about the

charged particle, at a time, t, by the observer is given by dP (t)
dΩ = ~S.n̂R2. Con-

sequently, total power emitted by a charged particle, in its time tr, is given
by

P (tr) =

∫
dΩ~S.n̂R2 dt

dtr
.

But dt
dtr

= 1− n̂.~β ([2],[4]). On the top of it, n̂ and ~E are perpendicular to each
other. Expression for the total power reduces to

P (tr) =

∫
dΩ

1

Z0
E2R2 dt

dtr
.

implying

P (tr) =
Z0

(4π)2
q2

∫
dΩ(

n̂× ((n̂− ~β) × ~̇β)

(1 − n̂.~β)3
)2(1 − n̂.~β)

or,

P (tr) =
Z0

(4π)2
q2

∫
dΩ

(n̂× ((n̂− ~β) × ~̇β))2

(1 − n̂.~β)5

Using the vector identity ~a× (~b× ~c) = −~c(~a.~b) +~b(~a.~c),

P (tr) =
Z0

(4π)2
q2[−

∫
dΩ

1

γ2

(n̂.~̇β)2

(1 − n̂.~β)5
+

∫
dΩ

(β̇)2

(1 − n̂.~β)3
+2(~β.~̇β)

∫
dΩ

n̂.~̇β

(1 − n̂.~β)4
]

From now onwards, for the sake of simplicity, we shall drop the subscript r in t
and denote the retarded time as t.

Evaluation of the three integrals

Second integral : ∫
dΩ

1

(1 − n̂.~β)3
= 4πγ4
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(see appendix).
To evaluate the third integral, we observe,

d

dt

1

(1 − n̂.~β)3
= 3

1

(1 − n̂.~β)4
n̂.~̇β

Hence, the third integral:

2(~β.~̇β)

∫
dΩ

n̂.~̇β

(1 − n̂.~β)4
=

2

3
(~β.~̇β)

∫
dΩ

d

dt

1

(1 − n̂.~β)3

=
2

3
(~β.~̇β)

d

dt

∫
dΩ

1

(1 − n̂.~β)3

=
2

3
(~β.~̇β)

d

dt
4πγ4

=
32π

3
γ6(~β.~̇β)2

To compute the first integral, we use

d2

dt2
1

(1 − n̂.~β)3
= 3

1

(1 − n̂.~β)4
n̂.~̈β + 12(n̂.~̇β)2 1

(1 − n̂.~β)5

which implies

1

12γ2

d2

dt2
1

(1 − n̂.~β)3
=

1

4γ2

1

(1 − n̂.~β)4
n̂.~̈β +

1

γ2
(n̂.~̇β)2 1

(1 − n̂.~β)5

which further implies

1

12γ2

∫
dΩ

d2

dt2
1

(1 − n̂.~β)3
=

1

4γ2

∫
dΩ

1

(1 − n̂.~β)4
n̂.~̈β+

1

γ2

∫
dΩ(n̂.~̇β)2 1

(1 − n̂.~β)5

which yields the first integral:

1

γ2

∫
dΩ(n̂.~̇β)2 1

(1 − n̂.~β)5
=

1

12γ2

∫
dΩ

d2

dt2
1

(1 − n̂.~β)3
− 1

4γ2

∫
dΩ

1

(1 − n̂.~β)4
n̂.~̈β

=
1

12γ2

d2

dt2
(4πγ4) − 1

4γ2

16π

3
γ6(~̈β.~β)

=
π

3γ2
[24γ8(~β.~̇β)2 + 4γ6(~̈β.~β + β̇2)] − 4π

3
γ4(~̈β.~β)

=
4π

3
γ4[β̇2 + 6γ2(~β.~̇β)2]

Hence, putting the three integration results in, we get

P (t) =
Z0

(4π)2
q2[−4π

3
γ4β̇2 − 24π

3
γ6(~β.~̇β)2 + 4πγ4β̇2 +

32π

3
γ6(~β.~̇β)2]

=
2

3

Z0

4π
q2γ6[(~β.~̇β)2 + γ−2β̇2]

=
2

3

Z0

4π
q2γ6[β̇2 − (~β × ~̇β)2].
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which is Liénard’s generalisation of Larmor’s formula,

CONCLUSION

In this pedagogical article, we have elucidated on a straightforward derivation of
total power emitted by an accelerating point charge moving with any velocity
upto velocity of light. The expression for total power is known as Liénard’s
generalisation of Larmor’s formula.

Appendix

∫
dΩ

1

(1 − n̂.~β)3
= 2π

∫ 1

−1

d(cosθ)
1

(1 − βcosθ)3
= −2π

β

1

2
[

1

(1 + β)2
− 1

(1 − β)2
]

= 4π
1

(1 − β2)2
= 4πγ4.

∫
dΩ

n̂.~̈β

(1 − n̂.~β)4
=

∫
dΩ

β̈zcosθ + β̈xsinθcosφ+ β̈ysinθsinφ

(1 − βcosθ)4

= 2πβ̈z

∫ 1

−1

d(cosθ)
cosθ

(1 − βcosθ)4
=

16π

3
β̈zβγ

6 =
16π

3
(~̈β.~β)γ6.

where, ~β is taken as z-direction for spherical polar coordinate system.

d

dt
γ4 =

d

dt
γ2γ2 = 2γ2 d

dt
(1 − β2)−1 = 2γ22(~̇β.~β)γ4 = 4(~̇β.~β)γ6

d2

dt2
γ4 =

d

dt
(4(~̇β.~β)γ6) = 4

d

dt
(γ2)3(~̇β.~β)+4γ6(β̇2+~̈β.~β) = 24γ8(~̇β.~β)2+4γ6(β̇2+~̈β.~β)
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