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Abstract

In this paper we will revisit the derivation of Heisenberg’s uncertainty principle. We will see how the
Heisenberg principle collapses at the Planck scale by introducing a minor modification. The beauty of
our suggested modification is that it does not change the main equations in quantum mechanics; it only
gives them a Planck scale limit where uncertainty collapses. We suspect that Einstein could have been
right after all, when he stated, “God does not throw dice.” His now-famous saying was an expression
of his skepticism towards the concept that quantum randomness could be the ruling force, even at the
deepest levels of reality. Here we will explore the quantum realm with a fresh perspective, by re-deriving
the Heisenberg principle in relation to the Planck scale.

Our modified theory indicates that renormalization is no longer needed. Further, Bell’s Inequality
no longer holds, as the breakdown of Heisenberg’s uncertainty principle at the Planck scale opens up
the possibility for hidden variable theories. The theory also suggests that the superposition principle
collapses at the Planck scale. Further, we show how this idea leads to an upper boundary on uncertainty,
in addition to the lower boundary. These upper and lower boundaries are identical for the Planck mass
particle; in fact, they are zero, and this highlights the truly unique nature of the Planck mass particle.

1 Introduction to the Momentum and Energy operator

A commonly used wave function1 in quantum mechanics is

 (x, t) = ei(kx�!t) (1)

where ! = E
h̄ , and

k =
2⇡
�

(2)

From the de Broglie matter wave, we know that

� =
h
p

(3)

This means we have

k =
p
h̄

(4)

and this means we can write the wave equation also as (well known)

 = ei(
p
h̄x�E

h̄ t) (5)

Next we take the partial derivative with respect to x and get

@ 
@x

=
ip
h̄
 (6)

Multiplying each side with h̄
i we get

1 The plane wave solution to the Klein–Gordon equation and the Schröedinger equation.
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h̄
i
@ 
@x

= p 

�ih̄
@ 
@x

= p (7)

and from this we have the well-known momentum operator

p̂ = �ih̄
@
@x

(8)

and the partial derivative of the wave equation with respect to time is

h̄
i
@ 
@t

= E 

�ih̄
@ 
@t

= E (9)

which means the energy operator must be

Ê = �ih̄
@
@t

(10)

Next, we will use this information to derive Heisenberg’s uncertainty principle.

2 Introduction to Commutators, Operators, and Heisen-
berg’s Uncertainty Principle

We will first introduce the standard approach to obtain the Heisenberg uncertainty relation. A standard
commutator is given by

[Â, B̂] = ÂB̂ � B̂Â (11)

If [Â, B̂] 6= 0, then Â and B̂ do not commute. If [Â, B̂] = 0, then Â and B̂ do commute. Based on
this, we have the following uncertainty

�A�B =
1
2
|hÂ, B̂i| = 1

2
|
Z
 ⇤[Â, B̂] dt| (12)

and we see from the expression above that if Â and B̂ commute there is no uncertainty. The Heisenberg
uncertainty principle [1, 2] can be derived from the following commutator

[p̂, x̂] = p̂x̂� x̂p̂ (13)

where the p̂ is the momentum operator and x̂ is the position operator. Again, the momentum operator
is given by

p̂ = �ih̄
@
@x

(14)

and the position operator is given by

x̂ = x (15)

From this we have

[p̂, x̂] = [p̂x̂� x̂p̂] 

=

✓
�ih̄

@
@x

◆
(x) � (x)

✓
�ih̄

@
@x

◆
 

= �ih̄

✓
 + x

@ 
@(x)

◆
+ ih̄x

@ 
@(x)

= �ih̄

✓
 + x

@ 
@(x)

� @ 
@(x)

◆

= �ih̄ (16)



3

And we have the following uncertainty

�p�x � 1
2
|
Z
 ⇤[p̂, x̂] dt|

� 1
2
|
Z
 ⇤(�ih̄) dt|

� 1
2
|� ih̄

Z
 ⇤ dt| (17)

and since
R
 ⇤ dt must sum to 1 ( there must be 100% probability for the particle to be somewhere

), we are left with

�p�x � 1
2
|� ih̄|

�p�x � h̄
2

(18)

that is as expected, we arrive at the Kennard version of Heisenberg’s uncertainty principle. The
Heisenberg uncertainty principle is the foundation of many of the results and interpretations of quantum
mechanics. If we derive the uncertainty principle from the energy and time operator instead, we get

�E�t � h̄
2

(19)

This is shown in detail in the Appendix.

3 The Planck Scale and Haug’s Maximum Velocity for Mat-
ter

In 1899, Max Planck [3, 4] introduced what he called the ‘natural units’: the Planck mass, the Planck
length, the Planck time, and the Planck energy. He derived these units using dimensional analysis,
assuming that the Newton gravitational constant, the Planck constant and the speed of light where the
most important universal constants. Lloyd Motz, while working at the Rutherford Laboratory in 1962,
[5, 6, 7] suggested that there was probably a very fundamental particle with a mass equal to the Planck
mass that he called the “Uniton.” Motz acknowledged that his Unitons (Planck mass particles) had far
too much mass compared to known subatomic masses. He tried to address this issue by claiming that
the Unitons had radiated most of their energy away:

According to this point of view, electrons and nucleons are the lowest bound states of two
or more Unitons that have collapsed down to the appropriate dimensions gravitationally and
radiated away most of their energy in the process. – Lloyd Motz

Others have suggested that there were plenty of Planck mass particles around just after the Big Bang;
see [8], but that most of the mass of these super-heavy particles has radiated away. Modern physics
has also explored the concept of a hypothetical Planck particle that has

p
⇡ more mass than the Uniton

originally suggested by Motz. Some physicists, including Motz and Hawking, have suggested such particles
could be micro-black holes [9, 10, 11]. Planck mass particles have even been proposed as candidates for
cosmological dark matter, [12, 13]. 2

We will suggest that the Planck mass particle only lasts for one Planck second and that its mass
should be seen as approximately 1.17⇥10�51 kg. The Planck mass particle is, in our view, the mass-gap.
It is a time-dependent mass. We suspect that all other masses are time-dependent as well, but this will
first be noticeable when one is trying to measure their mass below their reduced Compton time. The
electron’s mass can be found from the electron’s reduced Compton length, for example.

In a series of recent publications, Haug [14, 15, 16, 17] has suggested that there is a maximum velocity
for anything with rest-mass given by

vmax = c

r
1�

l2p
�̄2

(20)

where lp is the Planck length, and �̄ is the reduced Compton wavelength of the elementary particle
in question. For any observed particle, the maximum velocity will be very close to that of the speed of

2We are quite skeptical towards the interpretation of dark matter, but that is beyond the scope of this paper.
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light, but considerably above the speed achieved in the Large Hadron Collider. An electron has a reduced
Compton wavelength of �̄e ⇡ 3.86159⇥ 10�13 m and can never be accelerated to a velocity faster than

v = c

s

1�
l2p
�̄2
e

= c⇥ 0.99999999999999999999999999999999999999999999912416 (21)

In the above calculation, we have assumed a Planck length of 1.616199 ⇥ 10�35. As there is consid-
erable uncertainty about the exact value for the Planck length, there is also some uncertainty about the
theoretical value for the maximum speed limit of the electron. In our framework, the Planck length and
the Planck mass can be measured independent of any prior knowledge of Newtonian gravity or the grav-
itational constant, as recently shown by [17, 18]. For additional context, Haug’s maximum velocity was
first derived in [14], and has later been derived from Heisenberg’s uncertainty principle when assuming
the minimum uncertainty in position is x = lp. Here we will show that the Heisenberg uncertainty prin-
ciple breaks down at the Planck scale if the maximum velocity for matter follows this expression, which
can be derived from special relativity equations by assuming that the reduced Compton wavelength can
never can undergo more length contraction than the Planck length. Alternatively, we can assume that
the maximum frequency is the Planck frequency, or that the maximum relativistic mass of an elementary
particle is the Planck mass.

This also means there is a maximum limit on the relativistic momentum of

Pmax =
mvmaxq
1� v2

max
c2

=
mc

q
1� l2p

�̄2s

1�

 
c

r
1�

l2p
�̄2

!2

c2

= mpc

r
1�

l2p
�̄2

(22)

Further, the maximum kinetic energy is given by

Ek =
mc2q

1� v2
max
c2

�mc2

=
mc2s

1�

 
c

r
1�

l2p
�̄2

!2

c2

�mc2

=
mc2q

1� 1 +
l2p
�̄2

�mc2

= mpc
2 �mc2

=
h̄
lp

1
c
c2 � h̄

�̄

1
c
c2

= h̄c

✓
1
lp

� 1

�̄

◆
(23)

This means the wave function at the suggested maximum velocity for the anything with rest- mass is
given by

 = e
i

✓
pmax

h̄ x�2⇡ Emax
h̄

◆

= e
i

✓
mpc

s

1�
l2p
�̄2

h̄ x�
h̄c

✓
1
lp

� 1
�̄

◆

h̄ t

◆

(24)

from this we have

@ 
@x

=
impc

q
1� l2p

�̄2

h̄
 

h̄
i
@ 
@x

= mpc

r
1�

l2p
�̄2
 

�ih̄
@ 
@x

= p (25)
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so the momentum operator is

p̂ = �ih̄
@
@x

(26)

and the energy operator must be

Ê = �ih̄
@
@t

(27)

That is, the same momentum and energy operator are just as before, so this will not change Heisen-
berg’s uncertainty principle. However, there is one exception to the rule, namely for a Planck mass
particle where the reduced Compton wavelength is �̄ = lp. Inserted into the wave equation, we get

 = e
i

✓
mpc

vuut1�
l2p
l2p

h̄ x�
h̄c

✓
1
lp

� 1
lp

◆

h̄ t

◆

= e
i

✓
mpc

p
1�1

h̄ x� h̄c(1�1)
h̄ t

◆

= e
i

✓
mpc⇥0

h̄ x� h̄c⇥0
h̄ t

◆

= 0 (28)

This means we have

@ 
@x

= 0 (29)

and

@ 
@t

= 0 (30)

That is the momentum operator and the energy operator must be zero for the Planck mass particle.
This means we must have

[p̂, x̂] = [p̂x̂� x̂p̂] 

=

✓
�0⇥ @

@x

◆
(x) � (x)

✓
�0⇥ @

@x

◆
 

= 0 (31)

That is p̂ and x̂ commute for the Planck particle, but do not commute for any other particle. For
formality’s sake, the uncertainty in the special case of the Planck particle must be

�p�x � 1
2
|
Z
 ⇤[p̂, x̂] dt|

� 1
2
|
Z
 ⇤(0) dt|

� 1
2
|� 0⇥

Z
 ⇤ dt| = 0 (32)

and also

�E�t � 1
2
|
Z
 ⇤[Ê, t̂] dt|

� 1
2
|
Z
 ⇤(0) dt|

� 1
2
|� 0⇥

Z
 ⇤ dt| = 0 (33)

In the special case of the Planck mass particle, the uncertainty principle collapses to zero. In more
technical terms this implies that the quantum state of a Planck mass particle can simultaneously be a
position and a momentum eigenstate. That is, for the special case of the Planck mass particle we have
certainty.
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4 Maximum Uncertainty in Addition to Minimum Uncer-
tainty

Next let us look at the maximum kinetic energy multiplied by the relativistic reduced Compton time of
the particle in question

Ekt =

0

@ mc2q
1� v2

max
c2

�mc2

1

A �̄
c

r
1� v2

c2

=

0

BBBB@
mc2s

1�

 
c

r
1�

l2p
�̄2

!2

c2

�mc2

1

CCCCA
�̄
c

vuuut
1�

✓
c
q

1� l2p
�̄2

◆2

c2

=

0

@ mc2q
1� 1 +

l2p
�̄2

�mc2

1

A �̄
c

r
1� 1 +

l2p
�̄2

= (mpc
2 �mc2)

lp
c

=

✓
h̄
lp

1
c
c2 � h̄

�̄

1
c
c2
◆

lp
c

= h̄� h̄
lp
�̄

= h̄

✓
1� lp

�̄

◆
(34)

we will suggest this is the maximum uncertainty for an elementary particle, so that we must have

h̄
2
 �E�t  h̄

✓
1� lp

�̄

◆
(35)

This means we have an extended uncertainty principle with lower boundary, similar to that of Heisen-
berg, and an upper boundary. However, in the special case of a Planck mass particle the lower and upper
boundaries on uncertainty are zero. The correct interpretation here is that for the Planck mass particle
we have a certainty principle. The energy times time for a Planck mass particle is always

Eptp = mpc
2 lp
c

= h̄ (36)

Basically, this means if we detect a Planck mass particle we know it is at rest and it has a reduced
Compton wavelength of lp that cannot undergo any length contraction, which is why it is at rest. This
is also why its reduced Compton wavelength is certain. Other particles have a velocity that can vary
from zero to almost c; this means great uncertainty in their position, their relativistic reduced Compton
wavelength, and their relativistic mass. This interpretation is not the standard one, but we find it to be
more logical.

The Planck mass particle, in our view, is also linked to photon-photon collisions. The velocity of a
light particle at the precise moment when it collides with another light particle is the mmeting point of
light and matter; see also [19].

Our analysis is fully consistent with our maximum velocity and the relativistic energy momentum
relation
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E =
p

p2c2 + (mc2)2

E =

vuuut

0

@ mvmaxq
1� v2

max
c2

1

A
2

c2 + (mc2)2

E =

s
m2v2maxc2

1� v2
max
c2

+m2c4

E =

vuutm2 v2
max
c2

c4

1� v2
max
c2

+m2c4

E =

vuuut
m2c4

⇣
v2
max
c2

� 1
⌘

1� v2
max
c2

+
m2c4

1� v2
max
c2

+m2c4

E =

s
�m2c4 +

m2c4

1� v2
max
c2

+m2c4

E =

s
m2c4

1� v2
max
c2

E =
mc2q

1� v2
max
c2

(37)

But for a Planck mass particle it is

E =
p

p2c2 + (mpc2)2

E =

vuuut

0

@ mp ⇥ 0q
1� 02

c2

1

A
2

c2 + (mpc2)2

E = mpc
2 (38)

The uncertainty principle is, in this new perspective, actually an uncertainty about the velocity of the
particle in question, that again is linked to the uncertainty in the relativistic reduced Compton wavelength
of the particle. The uncertainty in the reduced Compton wavelength of a particle with momentum or
kinetic energy di↵erent from zero must be

lp � �̄
q

1� (�v)2

c2
 �̄

lp � �x  �̄ (39)

while for the Planck mass particle we have �� = 0 because it is for the Planck mass particle always
�̄ = lp, this again must mean the Planck mass particle not can move, it is at absolute rest for one Planck
second.

5 Implications

Our maximum velocity of matter, which is directly linked to the Planck scale, has a series of important
implications for quantum mechanics.

Renormalization

Renormalization should no longer be needed. Even if renormalization has become an accepted method
over time, this was not the case originally. One prominent critic of renormalization was Richard Feynman
[20]. Clearly, he had a central role in the development of quantum electrodynamics, and yet he claimed
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The shell game that we play ... is technically called ’renormalization’. But no matter how
clever the word, it is still what I would call a dippy process! Having to resort to such hocus-pocus
has prevented us from proving that the theory of quantum electrodynamics is mathematically
self-consistent. It’s surprising that the theory still hasn’t been proved self-consistent one way or
the other by now; I suspect that renormalization is not mathematically legitimate. – Richard
Feynman, 1985

In 1987, Feynman [21] again commented on renormalization

Some twenty years ago one problem we theoretical physicists had was that if we combined
the principles of quantum mechanics and those of relativity plus certain tacit assumptions, we
seemed only able to produce theories (the quantum field theories), which gave infinity for the
answer to certain questions. These infinities are kept in abeyance (and now possibly eliminated
altogether) by the awkward process of renormalization. – Richard Feynman, 1987

Again, our maximum velocity limit provides a clear cut-o↵ point on energy limits in elementary
particles and renormalization should no longer be needed.

Bell’s Theorem

Several researchers have pointed out that by implicitly assuming all possible Bell measurements occur
simultaneously, then all proofs of Bell’s Theorem [22] violate Heisenberg’s uncertainty principle [23]. We
wonder what it could mean for the interpretation of Bell’s Theorem if Heisenberg’s uncertainty principle
breaks down at the Planck scale and we then go from uncertainty to certainty (determinism). Interestingly,
Clover states [24]

By implicitly assuming that all measurements occur simultaneously, Bell’s Theorem only
applied to local theories that violated Heisenberg’s uncertainty principle.

If Heisenberg’s uncertainty principle breaks down at the Planck scale, this should open up the pos-
sibility of hidden variables, as suggested by Einstein, Podolsky, and Rosen in 1935; see [25]. We have
shown that, under our theory, Planck mass particles can commute. Further, we claim that the Planck
mass particle may be the building block of all other particles. Our theory again opens up the way for
hidden variable theories and in this framework, Bell’s theorem likely is invalid.

Negative Probabilities and Negative Energy: A New Logical Interpretation

In addition to a minimum uncertainty of �p�x � h̄
2 , there is a maximum uncertainty of

�E�t  h̄c

✓
1� lp

�̄

◆
(40)

Assume that we now multiply both sides with minus one and we get

� �E�t � �h̄c

✓
1� lp

�̄

◆
(41)

In other words, we are basically flipping the sign of the energy operator (and the momentum operator).
We speculate that the theoretical negative energy one can mathematically get from the relativistic energy
momentum relationship when used in connection to for example the Klein–Gordon equation should be
interpreted to mean that there is an upper limit on the relativistic energy level of elementary particles.
Negative probabilities could be linked to negative uncertainty, which naturally is impossible, but mathe-
matically it simply means we have flipped the sign of the inequality and that there is a maximum limit on
uncertainty, in addition to a lower bound. As we have discussed, in the special case of the Planck mass,
the upper and lower bound are zero, and thus there is no uncertainty in that case. There are no negative
probabilities per-se, they are just an indication of an also upper boundary condition on the maximum
velocity for anything with rest-mass.

6 Conclusion

Based on Haug’s recently suggested maximum velocity for matter, we have shown that the momentum
and position operators, as well as the energy and time operators, commute at the Planck scale, but not
before that. This means that Einstein may have been right, as it opens up the possibility for hidden
variable techniques, and also means that Bell’s Inequality does not necessarily hold. Further, this means
that we get a relativistic quantum mechanics where there should no longer be a need for renormalization,
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as we get an exact upper limit on energies linked to the Planck scale. Our new theory seems to be
consistent in all aspects. It means Lorentz symmetry is broken at the Planck scale, but not before that,
something that a series of quantum gravity theories predict could be the case. We think potentially that
the so-called negative energies that come out from the relativistic energy momentum relationship and
therefore are embedded in the Klein–Gordon equation could be reinterpreted, as there also is an upper
energy limit?

Appendix

Here we will derive the Kennard version of Heisenberg’s uncertainty principle relation from the energy
and time operator (instead of momentum and position operator)

[Ê, t̂] = Êt̂� t̂Ê (42)

where Ê is the energy operator and t̂ is the time operator. The energy operator is given by

Ê = �ih̄
@
@t

(43)

and the time operator is given by

t̂ = t (44)

From this we have

[Ê, t̂] = [Êt̂� t̂Ê] 

=

✓
�ih̄

@
@t

◆
(t) � (t)

✓
�ih̄

@
@t

◆
 

= �ih̄

✓
 + t

@ 
@(t)

◆
+ ih̄t

@ 
@(t)

= �ih̄

✓
 + t

@ 
@(t)

� @ 
@(t)

◆

= �ih̄ (45)

And we have the following uncertainty

�E�t � 1
2
|
Z
 ⇤[Ê, t̂] dt|

� 1
2
|
Z
 ⇤(�ih̄) dt|

� 1
2
|� ih̄

Z
 ⇤ dt| (46)

and since
R
 ⇤ dt must sum to 1 (there must be 100% probability for the particle to be somewhere),

we are left with

�E�t � 1
2
|� ih̄|

�E�t � h̄
2

(47)

that is, we get the same uncertainty relation as derived from the momentum and position operators.
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