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Abstract

We derive the photon power spectrum, including the radiative corrections,
generated by charged particle moving within 2D graphene sheet with implanted
ions forming dielectric medium. It enables the experimental realization of the
Vavilov-Čerenkov radiation. The relation of the Vavilov-Čerenkov radiation
to light emission diode (LED) is discussed. LED dielectric sheets can be the
crucial components of detectors in experimental particle physics. So, the article
represents the starting point of the unification of graphene physics with the
physics of elementary particles.

1 Introduction

The fast moving charged particle in a medium when its speed is faster than the speed

of light in this medium produces electromagnetic radiation which is called the Vavilov-

Čerenkov radiation.

The prediction of Cerenkov radiation came long ago. Heaviside (1889) investigated the

possibility of a charged object moving in a medium faster than electromagnetic waves in

the same medium becomes a source of directed electromagnetic radiation. Kelvin (1901)
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presented an idea that the emission of particles is possible at a speed greater than that

of light. Somewhat later, Sommerfeld (1904) proposed the hypothetical radiation with

a sharp angular distribution. However, in fact, from experimental point of view, the

electromagnetic Čerenkov radiation was first observed in the early 1900’s by experiments

developed by Marie and Pierre Curie when studying radioactivity emission. In essence

they observed the emission of a bluish-white light from transparent substances in the

neighborhood of strong radioactive source. But the first attempt to understand the origin

of this was made by Mallet (1926; 1929a; 1929b), who observed that the light emitted

by a variety of transparent bodies placed close to a radioactive source always had the

same bluish-white quality, and that the spectrum was continuous, with no line or band

structure characteristic of fluorescence.

Unfortunately, these investigations were forgotten for many years. Čerenkov experi-

ments (Čerenkov, 1934) was performed at the suggestion of Vavilov who opened a door

to the true physical nature of this effect1 (Bolotovskii, 2009).

This radiation was first theoretically interpreted by Tamm and Frank (Tamm et

al., 1937) in the framework of the classical electrodynamics. The source theoretical

description of this effect was given by Schwinger et al. (Schwinger et al., 1976) at the

zero temperature regime and the classical spectral formula was generalized to the finite

temperature situation and for the massive photons by author (Pardy, 1989; 2002). The

Vavilov-Čerenkov effect was also used by author (Pardy, 1997;) to possible measurement

of the Lorentz contraction.

2 Source theory of the Vavilov-Čerenkov effect

Let us start with the source theory formulation of the problem (Schwinger et al., 1976).

The basic formula in the source theory is the vacuum to vacuum amplitude:

< 0+|0− >= e
i
h̄
W (S), (1)

where the minus and plus tags on the vacuum symbol are causal labels, referring to any

time before and after space-time region where sources are manipulated. The exponential

form is introduced with regard to the existence of the physically independent experimental

arrangements which has a simple consequence that the associated probability amplitudes

multiply and corresponding W expressions add.

The electromagnetic field is described by the amplitude (1) with the action

W (J) =
1

2c2

∫
(dx)(dx′)Jµ(x)D+µν(x− x′)Jν(x′), (2)

where the dimensionality ofW (J) is the same as the dimensionality of the Planck constant

h̄. Jµ is the charge and current densities, where quantity Jµ is conserved. The symbol

1So, the adequate name of this effect is the Vavilov-Čerenkov effect. In the English literature, however, it is usually
called the Čerenkov effect.
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D+µν(x− x′), is the photon propagator and its explicit form will be determined later.

It may be easy to show that the probability of the persistence of vacuum is given by

the following formula (Schwinger et al., 1976):

| < 0+|0− > |2 = exp{−2

h̄
ImW} d

= exp{−
∫

dtdω
P (ω, t)

h̄ω
}, (3)

where we have introduced the so called power spectral function P (ω, t) (Schwinger et al.,

1976). In order to extract this spectral function from ImW , it is necessary to know the

explicit form of the photon propagator D+µν(x− x′).

The electromagnetic field is described by the four-potentials Aµ(φ,A) and it is

generated, including a particular choice of gauge, by the four-current Jµ(cϱ,J) according

to the differential equation, (Schwinger eta l., 1976):(
∆− µε

c2
∂2

∂t2

)
Aµ =

µ

c

(
gµν +

n2 − 1

n2
ηµην

)
Jν (4)

with the corresponding Green function D+µν :

Dµν
+ =

µ

c
(gµν +

n2 − 1

n2
ηµην)D+(x− x′), (5)

where ηµ ≡ (1,0), µ (in the fraction µ/c)is the magnetic permeability of the dielectric

medium with the dielectric constant ε, c is the velocity of light in vacuum, n is the index

of refraction of this medium, and D+(x − x′) was derived by (Schwinger et al., 1976) in

the following form:

D+(x− x′) =
i

4π2c

∫ ∞

0
dω

sin nω
c
|x− x′|

|x− x′|
e−iω|t−t′|. (6)

Using formulas (2), (3), (5) and (6), we get for the power spectral formula the following

expression (Schwinger eta l., 1976):

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dt′

sin nω
c
|x− x′|

|x− x′|
cos[ω(t− t′)]×

×
{
ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
. (7)

3 Spectral formula for the two-dimensional Vavilov-Čerenkov
effect

Now, we apply the last formula to the situations of the two-dimensional dielectric medium.

We derive here the power spectrum of photons generated by charged particle moving

within the plane of the graphene-like structure with index of refraction n. However, we

cannot immediately apply the formula (7) to the graphene-like 2D structures because

the index of refraction n is n(x, y, z) = 1, z > 0, n(x, y, z) = const > 1, z = 0 and
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n(x, y, z) = 1, z < 0. It means that the situation is not the Vavilov-Čerenkov problem but

the problem with the transition radiation which was solved by Ginzburg and Tsytovič

(Ginzburg et al., 1984) for thin dielectric film. The problem of the transition radiation

when electron is moving with the arbitrary angle with respect to the boundary is discussed

by Bass et al. (Bass et al., 1965). Our goal is to solve only the Vavilov-Čerenkov radiation

of charge when moving within the plane of dielectric sheet. So, it needs some modified

approach.

While the graphene sheet is conductive, some graphene-like structures, for instance

graphene with implanted ions, or, also 2D-glasses, are dielectric media, and it means that

it enables the experimental realization of the Vavilov-Čerenkov radiation. Some graphene-

like structure can be represented by graphene-based polaritonic crystal sheet (Bludov et

al., 2012) which can be used to study the Vavilov-Čerenkov effect. We calculate it from

the viewpoint of the Schwinger theory of sources.

The charge and current density of electron moving with the velocity v and charge e is

as it is well known:

ϱ = eδ(x− vt); J = evδ(x− vt). (8)

In case of the the two-dimensional Vavilov-Čerenkov radiation by source theory

formulation, the form of equations (2) and (3) is the same with the difference that

ηµ ≡ (1,0) has two space components, or ηµ ≡ (1, 0, 0), and the Green function D+

as the propagator must be determined by the two-dimensional procedure. In other words,

the Fourier form of this propagator is with (dk) = dk0dk = dk0dk1dk2 = dk0kdkdθ

D+(x− x′) =
∫ (dk)

(2π)3
1

k2 − n2(k0)2
eik(x−x′), (9)

or, with R = |x− x′|

D+(x− x′) =
1

(2π)3

∫ 2π

0
dθ
∫ ∞

0
kdk

∫ ∞

−∞

dω

c

eikR cos θ−iω(t−t′)

k2 − n2ω2

c2
− iε

. (10)

Using exp(ikR cos θ) = cos(kR cos θ) + i sin(kR cos θ) and (z = kR)

cos(z cos θ) = J0(z) + 2
∞∑
n=1

(−1)nJ2n(z) cos 2nθ (11)

and

sin(z cos θ) =
∞∑
n=1

(−1)nJ2n−1(z) cos(2n− 1)θ, (12)

where Jn(z) are the Bessel functions (Kuznetsov. 1962), we get after integration over θ:

D+(x− x′) =
1

(2π)2

∫ ∞

0
kdk

∫ ∞

−∞

dω

c

J0(kR)

k2 − n2ω2

c2
− iε

e−iω(t−t′). (13)
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The ω-integral in (13) can be performed using the residuum theorem after integration

in the complex half ω-plane.

The result of such integration is the propagator D+ in the following form:

D+(x− x′) =
i

2πc

∫ ∞

0
dωJ0

(
nω

c
|x− x′|

)
e−iω|t−t′|. (14)

The spectral formula for the two-dimensional Vavilov-Čerenkov radiation is the ana-

logue of the formula (7), where the charge density and current involves only two-

dimensional velocities and integration is also only two-dimensional.

The difference is in the replacing mathematical formulas as follows:

sin nω
c
|x− x′|

|x− x′|
−→ J0

(
nω

c
|x− x′|

)
. (15)

So, After insertion the quantities (8) and (9) into (7), we get:

P (ω, t) =
e2

2π

µωv

c2

(
1− 1

n2β2

)∫
dt′J0

(
nvω

c
|t− t′|

)
cos[ω(t− t′)], β = v/c, (16)

where the t′-integration must be performed. Putting τ = t′ − t, we get the final formula:

P (ω, t) =
e2

2π

µωv

c2

(
1− 1

n2β2

)∫ ∞

−∞
dτJ0 (nβωτ) cos(ωτ), β = v/c. (17)

The integral in formula (17) is involved in the tables of integrals (Gradshteyn et al.,

1963). Or,

J =
∫ ∞

0
dxJ0 (ax) cos(bx) =

1√
a2 − b2

, 0 < b < a,

J = ∞, a = b; J = 0, 0 < a < b, (18)

In our case we have a = nβω and b = ω. So, the power spectrum in eq. (16) is as

follows with J0(−z) = J0(z):

P =
e2

π

µv

c2

(
1− 1

n2β2

)
2√

n2β2 − 1
, nβ > 1, β = v/c. (19)

and

P = 0; nβ < 1, (20)

which means that the physical meaning of the quantity P is really the Vavilov-Čerenkov

radiation. And it is in our case the two-dimensional form of this radiation.

The fundamental features of the 3D and 2D Vavilov-Čerenkov radiation are as follows:

1) The radiation arises only for particle velocity greater than the velocity of light in the

dielectric medium.
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2) It depends only on the charge and not on mass of the moving particles

3) The radiation is produced in the visible interval of the light frequencies and partly in

the ultraviolet part of the frequency spectrum. The radiation does not exists for very

short waves, which follows from the dispersion theory of the index of refraction n, where

n < 1.

4) The spectral dependency on the frequency is linear for the 3D homogeneous medium.

5) The radiation generated in the 3D medium at given point of the trajectory spreads

on the surface of the Mach cone with the vertex at this point and with the axis identical

with the direction of motion of the particle. The vertex angle of the cone is given by the

relation cosΘ = c/nv.

6) There is no Mach cone in the 2D dielectric medium. There is only the Mach angle

in the 2D sheet. It follows from the fact that Vavilov-Čerenkov effect is the result of

the collective motion of the 2D dielectric medium and it also follows from the quantum

definition of the Vavilov-Čerenkov effect in the 2D structures. The conservation laws of

momentum and energy for the Vavilov-Čerenkov effect is as follows:

pi = pf + h̄k, (21)

Ei = Ef + h̄ω, (22)

where index i concerns the initial momentum and energy of an electron and index f

concerns the final momentum and energy of an electron. Symbol k is the wave vector of

emitted photon and h̄ω is its energy. With regard to the situation that the motion of an

electron is realized in the plane x−y, the 3D Mach cone cannot be realized (The existence

of Mach cone in our situation is the nonphysical escape of photons from 2D plane to the

extra-dimension). So, the nonexistence of the Mach cone in the 2D structures is not

mysterious.

4 The 3D an 2D Vavilov-Čerenkov efect with radiative coeec-
tions

According to (Dittrich, 1978; Schwinger, 1973) the photon propagator with radiative

correction is in the momentum representation of the form:

D̃(k) = D(k) + δD(k), (23)

or,

D̃(k) =
1

|k|2 − n2(k0)2 − iϵ
+

+
∫ ∞

4m2
dM2 a(M2)

|k|2 − n2(k0)2 + M2c2

h̄2 − iϵ
, (24)
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where the last term in equation (24) is derived on the virtual photon condition

|k|2 − n2(k0)2 = −M2c2

h̄2 , (25)

where n is the index of refraction of the medium. The weight function a(M2) has been

derived in the following form (Dittrich, 1978; Schwinger, 1973)

a(M2) =
α

3π

1

M2
(1 +

2m2

M2
)(1− 4m2

M2
)1/2. (26)

The x-representation of D(k) in eq. (23) is as follows:

D+(x− x′) =
∫ (dk)

(2π)4
eik(x−x′)D(k). (27)

Or,

D+(x− x′) =
∫ (dk)

(2π)4
eik(x−x′)

|k2| − n2(k0)2 − iϵ
=

=
i

c

1

4π2

∫ ∞

0
dω

sin nω
c
|x− x′|

|x− x′|
e−iω|t−t′|. (28)

Now, with regard to the definition of x-representation (27) and (28) of the D+(x−x′),

we get the x-representation of the δD+ in the following form:

δD+(x− x′) =
i

c

1

4π2

∫ ∞

4m2
dM2a(M2)×

×
∫

dω
sin[n

2ω2

c2
− M2c2

h̄2 ]1/2|x− x′|
|x− x′|

e−iω|t−t′|. (29)

The function (29) differs from the the original function D+ especially by the factor

(
ω2n2

c2
− M2c2

h̄2

)1/2

(30)

and by the additional mass-integral which involves the radiative corrections to the original

Čerenkov effect. In order determine the explicit analytical radiative contribution, we

employ the Schwinger source theory (Dittrich, 1978; Schwinger, 1973).

So, we get after extracting P (ω, t) the following general expression for this spectral

function:

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dt′ ×

sin nω
c
|x− x′|

|x− x′|
+
∫ ∞

4m2
dM2a(M2)

sin[n
2ω2

c2
− M2c2

h̄2 ]1/2]|x− x′|
|x− x′|

 ×
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cos[ω(t− t′)][ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)] (31)

Now, let us apply the formula (14) in order to get the Čerenkov radiation with radiative

corrections. The Čerenkov radiation is produced by charged particle of charge e moving

at a constant velocity v. In such a way we can write for the charge density and for the

current density (8), where v = |v|.
After insertion of eq.(8) into eq. (31), we get

Ptotal(ω, t) = P (ω, t) + δP (ω, t) (32)

with

P (ω, t) =
e2

4π2

vωµ

c2

(
1− 1

n2β2

)∫ ∞

−∞

dτ

τ
sin(nβωτ) cosωτ (33)

and

δP (ω, t) =
e2

4π2

vµω

c2

(
1− 1

n2β2

)
×

∫ ∞

4m2
dM2a(M2)

∫ ∞

−∞

dτ

τ
sin

(
[
n2ω2

c2
− M2c2

h̄2 ]1/2vτ

)
cosωτ (34)

where we have put τ = t′ − t, β = v/c. In case of eq. (33) it was derived by Schwinger

et al., 1976), that

P (ω, t) =

{
0 nβ < 1
e2

4π
µω
c2
v
(
1− 1

n2β2

)
nβ > 1,

(35)

which is the well known spectral formula for the classical Čerenkov spectrum, with the

threshold behavior nβ > 1 .

In case of the δP (ω, t) the situation is more complex. The first step is the necessity of

evaluation of the τ -integral. For this integral we have:

∫ ∞

−∞

dτ

τ
sin

(
[
n2ω2

c2
− c2M2

h̄2 ]1/2vτ

)
cosωτ =

=

{
π, 0 < M2 < h̄2ω2

c2v2
(n2β2 − 1)

0, M2 > h̄2ω2

c2v2
(n2β2 − 1).

(36)

From eq. (36) immediately follows thatM2 > 0 implies the Čerenkov threshold nβ > 1.

From eq. (34) and (36) we get that the radiative corrections to the original spectral

formula of the Čerenkov radiation are given by the formula

δP =
e2

4π

vωµ

c2

(
1− 1

n2β2

)∫ M2
2

M2
1

dM2 a(M2) (37)
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where

M2
1 = 4m2, M2

2 = (n2β2 − 1)
h̄2ω2

c2v2
. (38)

By the substitution

t =

(
1− 4m2

M2

)1/2

(39)

and after some elementary integration , we get the radiative contribution to the

Čerenkov effect in the following form:

δP (ω, t) = α
e2

4π2

vµω

c2

(
1− 1

n2β2

)
×

(
s2

9
− 2

3
s+

1

3
ln
∣∣∣∣1 + s

1− s

∣∣∣∣
)
, nβ > 1 (40)

where

s =

(
1− 4mc2v2

(n2β2 − 1)h̄2ω2

)1/2

, s ≥ 0 (41)

The condition s ≥ 0 in eq. (41) implies the existence of the radiative corrections to

the original Frank-Tamm formula for

ω2 >
4m2c2v2

h̄2(n2β2 − 1)
(42)

For n =
√
2 and v ≈ c, we get from eq. (42) h̄ω ≈ 2mc2, which can be interpreted as

the condition for creation of the electron-positron pair by the gamma quantum.

The radiative corrections (40) to the original power spectral formula of the Čerenkov

radiation is derived in the framework of the source theory for the first time and to our

knowledge there is no conventional derivation of this effect in QED and at the same time

it has no classical analogue.

The two-dimensional reduction of the formula (14) is analogical to the transformation

(15), where the transformation involves also the mass term. Or,

sin[n
2ω2

c2
− M2c2

h̄2 ]1/2]|x− x′|
|x− x′|

−→ J0

(
[
n2ω2

c2
− M2c2

h̄2 ]1/2]|x− x′|
)

(43)

It means that after some operations we get instead the formula (34) the following

radiative correction caused by the massive term:

δP (ω, t) =
e2

4π2

vµω

c2

(
1− 1

n2β2

)
×

∫ ∞

4m2
dM2a(M2)

∫ ∞

−∞

dτ

τ
J0

(
[
n2ω2

c2
− M2c2

h̄2 ]1/2vτ

)
cosωτ (44)
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In order to find the final contribution by mass term, we are forced to determine the

τ -integral in eq. (44). The integral in formula (44) is involved in the tables of integrals

(Gradshteyn, 1963) . Or,

J =
∫ ∞

0
dxJ0 (ax) cos(bx) =

1√
a2 − b2

, 0 < b < a,

J = ∞, a = b; J = 0, 0 < a < b, (45)

In our case we have

a = [
n2ω2

c2
− M2c2

h̄2 ]1/2, b = ω (46)

.

Or,

∫ ∞

−∞

dτ

τ
J0

(
[
n2ω2

c2
− c2M2

h̄2 ]1/2vτ

)
cosωτ =

=


1√

ω2(n2β2−1)− v2c2

h̄2
M2

, 0 < M2 < h̄2ω2

c2v2
(n2β2 − 1)

0, M2 > h̄2ω2

c2v2
(n2β2 − 1)

(47)

From eq. (41) immediately follows thatM2 > 0 implies the Čerenkov threshold nβ > 1.

From eq. (44) and (47) we get that the radiative corrections to the original spectral

formula of the Čerenkov radiation are given by the formula (with J0(−z) = J0(z)):

δP =
e2

4π2

vωµ

c2

(
1− 1

n2β2

)∫ M2
2

M2
1

dM2 a(M2)
1√

ω2(n2β2 − 1)− v2c2

h̄2 M2
, (48)

where

M2
1 = 4m2, M2

2 = (n2β2 − 1)
h̄2ω2

c2v2
. (49)

By the substitution

t =

(
1− 4m2

M2

)1/2

(50)

we get the integral boundaries as follows:

t1 = 0; t2 = s =

(
1− 4mc2v2

(n2β2 − 1)h̄2ω2

)1/2

, s ≥ 0 (51)

Then, after some elementary integration , we get the radiative contribution to the

Čerenkov effect (48) in the following form:

δP =
e2

4π2

vωµ

c2

(
α

3π

)(
1− 1

n2β2

)
×
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∫ s

0

t2(3− t2)√
1− t2

h̄dt√
ω2h̄2(1− t2)(n2β2 − 1)− 4v2m2c2

, (52)

The integral in eq. (52) is not tableted and it must by evaluated by the special

integration technique.

The condition s ≥ 0 in eq. (51) implies the existence of the radiative corrections to

the original Frank-Tamm formula for

ω2 >
4m2c2v2

h̄2(n2β2 − 1)
. (53)

For n =
√
2 and v ≈ c, we get from eq. (51) h̄ω ≈ 2mc2, which can be interpreted as

the condition for creation of the electron-positron pair by the gamma quantum.

5 Discussion

While the formula for the three dimensional (3D) Vavilov-Čerenkov radiation is well

known from textbooks and monographs, the two-dimensional (2D) form of the Vavilov-

Čerenkov radiation is new. Zuev (2009) considers the Vavilov-Čerenkov phenomenon in

nanofilms from Au, Ag, Cu, where the Vavilov-Čerenkov phenomenon is realized only as

the surface plasmons which cannot escape the 2D medium.

The fundamental importance of the Vavilov-Čerenkov radiation is in its use for the

modern detectors of very speed charged particles in the high energy physics. The detection

of the Vavilov-Čerenkov radiation enables to detect not only the existence of the particle,

however, also its direction of motion and its velocity and also its charge. The two-

dimensional Vavilov-Čerenkov radiation was still not applied in physics, nevertheless, it

is the promising application in LED, the light-emitting diode.

The light-emitting diode, LED, consists of several layers (sheets) of semiconducting

materials. Electrical voltage drives electrons (from the n-layer) and holes (from the p-

layer) to the active layer, where they recombine forming light. Anode, the p-electrode, and

cathode, the n-electrode are connected to the voltage element as a source. The LED is no

larger than a grain of sand. In case of the blue LED lamp, it consists of several different

layers of gallium nitride (GaN). By mixing in indium (In) and aluminium (Al), the Nobel

prize laureates, Isamu Akasaki (Nagoya University, Japan), Hiroshi Amano (Nagoya

University, Japan), Huji Nakamura (American citizen, University of California, Santa

Barbara, USA) succeeded in increasing the lamps efficiency (Royal Swedish Academy of

Sciences, 2014). White LEDs currently reach more than 300 lm/W, representing more

than 50% wallplug efficiency.

The Relation of Vavilov-Čerenkov effect to LED is based on the following arguments.

Namely, when LED (with additional dielectric sheet) is irradiated by high-energy electrons

with velocity greater than the velocity of light in the sheet, then LED produces the 2D

Vavilov-Čerenkov radiation if and only if the electrons moves within the dielectric sheet
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inside the LED. The set of small grain-sand LED (fixed in adequate viscous gel emulsion)

forms then the new detector of elementary particle physics. The two-dimensional Vavilov-

Čerenkov radiation was still not applied, nevertheless, it is not excluded that it is the

crucial effect in LED.

The condition (47) concerns the gamma photons rather than the optical ones. The

possibility of the existence of the gamma Čerenkov radiation is discussed by Ion and

Stocker (1993) in nuclear physics. The so called nuclear gamma Čerenkov radiation

requires a special experimental technique in order to extract such radiation from the

background produced by other mechanism. Such ”coherent” techniques are well known

in nuclear physics and we can expect that sooner or later the existence of the gamma

Čerenkov radiation in nuclear physics and graphene physics will be confirmed together

with the corresponding radiative corrections.

The present theory can be generalized to the situation with the string-like objects which

play important role in the present theoretical physics of elementary particles (Manoukian,

1991; 1992). The article is based on the author articles (Pardy, 2015, 1994).
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