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Abstract. In this paper, we consider the recovery of group sparse signals corrupted
by impulsive noise. In some recent literature, researchers have utilized stable data
fitting models, like l1-norm, Huber penalty function and Lorentzian-norm, to substitute
the l2-norm data fidelity model to obtain more robust performance. In this paper,
a stable model is developed, which exploits the generalized lp-norm as the measure
for the error for sparse reconstruction. In order to address this model, we propose
an efficient alternative direction method of multipliers, which includes the proximity
operator of lp-norm functions to the framework of Lagrangian methods. Besides, to
guarantee the convergence of the algorithm in the case of 0 ≤ p < 1 (nonconvex case),
we took advantage of a smoothing strategy. For both 0 ≤ p < 1 (nonconvex case)
and 1 ≤ p ≤ 2 (convex case), we have derived the conditions of the convergence for
the proposed algorithm. Moreover, under the block restricted isometry property with
constant δτk0 < τ/(4− τ) for 0 < τ < 4/3 and δτk0 <

√
(τ − 1)/τ for τ ≥ 4/3, a sharp

sufficient condition for group sparse recovery in the presence of impulsive noise and its
associated error upper bound estimation are established. Numerical results based on
the synthetic block sparse signals and the real-world FECG signals demonstrate the
effectiveness and robustness of new algorithm in highly impulsive noise.
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1 Introduction

In the last decade, the problem to find sparse solutions has attracted much interest and been
extensively studied, especially in fields of applied mathematics, statistics, machine learning, signal
processing [1–4], etc. Assume that x ∈ RN is the unknown signal that we want to reconstruct.
Meanwhile, we suppose that x is sparse in terms of the orthonormal basis, that is, the number
of non-zero entries in x is far smaller than its dimensionality, which is denoted by ∥x∥0. Define
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Φ ∈ Rn×N be a measurement matrix with n≪ N and b ∈ Rn be a vector of measurements, fulfilling
the following relationship

b = Φx.

Then, one could recover the true signal x from the linear equations of underdetermined system
b = Φx by means of certain recovery algorithm. But, there exist infinite solutions, since the number
of the unknown variable is far lager than that of the linear equations, i.e., it is ill-conditioned.

In the compressive sensing (CS), provided that x is (approximately) sparse, one could naturally
consider looking for the sparsest solution among all those, i.e.,

min
x̂∈RN

∥x̂∥0, subject to b = Φx̂+ z, (1.1)

where ∥x∥0 counts the number of the non-zero components in x, and z is a vector of measurement
noise. Unfortunately, l0-problem (1.1) is combinatorial and computationally complicated. In CS,
an alternative approach is to substitute the l0-problem with the l1-problem, which is the so-called
basis pursuit (BP) problem [5]:

min
x̂∈RN

∥x̂∥1, subject to b = Φx̂+ z. (1.2)

Candès [6] proved that the solutions to problem (1.2) are equivalent to those of (1.1) with over-
whelming probability under some favorable conditions. The constrained minimization problem
generally can be transformed into the regularized least squares problem (also called basis pursuit
denoising or LASSO):

min
x̂∈RN

∥x̂∥1 +
1

ν
∥Φx̂− b∥22, (1.3)

where ν is a positive regularization parameter, which plays an important role in trading off both
terms. It has been showed that l1 minimization is an effective method to reconstruct sparse signals,
since it is convex and easily tractable. Thus, its applications are extremely broad in the area
of sparse recovery. As in (1.3) and its variants, with respect to maximum likelihood context,
the data fitting model in l2-norm is best for Gaussian noise. However, in a variety of practical
scenarios, the measuring residual error may be of various types or combinations. Impulsive noise is
a representative type. It has been extensively investigated in modern statistics and can be utilized
to simulate large residual errors in the observations. A lot of image processing and nonlinear
signal processing literature have proposed impulsive disturbance, which is caused by missing data
in the sampling process, communication issues [7, 8], malfunctioning pixels [9], and buffer overflow
[10]. Under these settings, it has been showed that the fluctuation of least squares estimation is
remarkably large, since it is easily affected by outliers in the measuring process. Consequently, it
is inefficient to use the data fitting model in l2-norm.

In recent years, researchers have proposed various stable models for CS to repress the outliers
in the observations. In [11], the researchers have employed the l1-norm as the data fitting model
to establish a stable formulation:

min
x̂∈RN

∥x̂∥1 +
1

ν
∥Φx̂− b∥1. (1.4)

The researchers in [11] have proved that when observation data is corrupted by impulsive noise, the
formulation consisting of a data fitting model measured in the l1-norm performs better than that
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of the l2-norm. Later, the researchers in [12] have introduced more efficient alternating direction
algorithm for above formulation. In 2017, the researchers in [13] substituted the l1-norm data
fidelity term of the problem (1.4) with the generalized lp-norm (p ∈ [0, 2)) to give the stable
formulation as follows:

min
x̂∈RN

∥x̂∥1 +
1

ν
∥Φx̂− b∥pp, (1.5)

where ∥u∥p = (
∑n

i=1 |ui|p)
1/p, u ∈ Rn. Observe that when p = 2 and p = 1, formulation (1.5)

respectively degenerates to the formulations (1.3) and (1.4). In addition, when the noise constraint
term p = 1, it could be used to restrain the Laplace noise. This idea of using l1-norm constraint
noise has attracted attention, see [14].

However, there are some real signals have additional structure information. In practical appli-
cations, it has been showed that a broad class of signals possess some “group sparsity” structure.
This means the signal has a natural grouping of its coefficients, and the coefficients with a group
are probably either all zeros or all non-zeros. Such group sparse signals have a large number of
applications such as expression quantitative trait locus mapping [15], graphical statistics [16], Mod-
eling disease progression [17], Video-to-Shot Tag Propagation [18], click through rate prediction in
display advertising [19], classification problems [20], etc. Let x ∈ RN be the signal that we wish to
capture. Suppose that {xgi ∈ RNi : i = 1, 2, · · · , k} is the grouping of x with gi ⊆ {1, 2, · · · , N}
standing for an index set associated with the i-th group, where xgi indicates the subvector of x
that is indexed by gi. In general, gi can be any index set, and based on prior information, we could
preset them. The recovery of group sparse signals recently has triggered many study activities.
In particular, the block sparse optimization is one of the group sparse optimization which attracts
many researchers’ interest; for more details, we refer readers to see [21–28].

In this paper, to be more general, we propose the following model to stably reconstruct the
group sparse signals contaminated by impulsive noise:

min
x̂∈RN

∥x̂∥2,I +
1

ν
∥Φx̂− b∥pp, (1.6)

where the definition of the parameters ν, p are the same as above mention, the l2,I-norm is deter-

mined by ∥x∥2,I =
∑k

i=1 ∥xgi∥2.
In order to study the theoretical analysis of new model (1.6), the restricted isometry property

(RIP) [29] is extended to the block restricted isometry property (block-RIP) [30], which we will
give in Section 3.

In recent year, researchers have done some work concerning the reconstruction of block sparse
signals, which includes various central results about block-RIP condition or others. For the Gaussian
noise case, see [21, 22, 30]. Furthermore, various sufficient conditions and other results on recovery
of block sparse signals were gained in contributions [23–28]. However, all these researches are
discussed only in Gaussian noise case, that is, the observation measurement b is disturbed by
Gaussian noise. From the viewpoint of application, the exploration on recovering block sparse
signals in the setting of impulsive noise is more practical.

Main contributions of this paper are abbreviated here. Firstly, we provide a sharp sufficient
condition and associated error upper bound estimation for recovery of block sparse signals in
the presence of impulsive noise, to the best of our knowledge, which first considers the issue of
reconstructing block sparse signals disturbed by impulsive noise. Secondly, we propose an efficient
algorithm to solve the new model. Thirdly, for both the convex and nonconvex situations, we
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prove the convergence of the new algorithm. Finally, a series of numerical experiments to recover
the synthetic block sparse signals and the real-world FECG signals are carried out to show better
performance of the new algorithm.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries, which
is used in later section. Section 3 provides some analysis on the proposed formulation and a
new algorithm is proposed in Section 4 to solve that formulation. In Section 5, we present the
convergence condition of the proposed algorithm. In Section 6, we offer simulation results. Finally,
the conclusion is addressed in Section 7.

2 Some preliminaries

It is known that for x ∈ RN , the proximity operator of some function f(x) with the regularization
parameter µ is defined as follows:

proxf,µ(s) = argmin
x

{
f(x) +

µ

2
∥x− s∥22

}
. (2.1)

When f(x) = c∥x∥pp with c ∈ (0,+∞) and p ∈ [0, 2), solving the problem (2.1) degenerates to
resolving N single variable minimization problems. Accordingly, it is computationally no difficult
to calculate. According to the range of p, the computation of proxf,µ(s) is divided into following
four cases:

a. p = 0. The proximity operator returns to the known hard thresholding operator

proxf,µ(s)i =

{
0, |si| ≤

√
2c/µ,

si, otherwise,
(2.2)

where si denotes the i-th component of the vector s.

b. p = 1. The researchers [31] presented an explicit form of the proximity operator as follows:

proxf,µ(s)i = max

{
|si| −

c

µ
, 0

}
sign(si) = Shrink

(
si,

c

µ

)
, (2.3)

where sign(·) is the sign function, and “Shrink (·, ·)” indicates the well-known one dimensional
shrinkage or soft thresholding [11] [12].

c. p ∈ (0, 1). Due to [32], the proximity operator obeys

proxf,µ(s)i =


0, |si| ≤ σ,

{0, sign(si)ϕ}, |si| = σ,

sign(si)zi, |si| > σ,

(2.4)

where σ = cpϕp−1/µ + ϕ, ϕ2−p = 2c(1 − p)/µ, zi ∈ (ϕ, |si|) fulfils the equation g1(z) = cpzp−1 +
µz − µ|si| = 0.

d. p ∈ (1, 2). It is not hard to check that f(x) has the smoothness and convexity. The
researchers [33] gained the explicit expression of the proximity operator

proxf,µ(s)i = sign(si)zi, (2.5)
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where zi ≥ 0, and zi satisfies the following equation

g2(z) = cpzp−1 + µz − µ|si| = 0. (2.6)

One can easily verify that in the case of si ̸= 0, g2(z) meets the inequalities g2(0) < 0 < g2(|si|).
Besides, the function g2(z) has the concavity, and it ascends as z increases. Therefore, the solution
of (2.6) such that 0 < zi < |si| holds, where si ̸= 0. And we could employ a Newton’s method to
calculate it. Set ζ = µ|si|/(pc + µ). One could pick a positive lower bound of the solution as the
initial value as follows:

z0i =

{
ζ1/(p−1), ζ < 1,

ζ, otherwise.
(2.7)

However, in practical operation, in the case of ζ < 1 and p→ 1, the computational value of ζ1/(p−1)

is probably extreme small. In order to resolve this problem, when ζ < 1, the corresponding initial
value is provided by

z0i =

{
χ, g2(χ) ≤ 0,

0, g2(χ) > 0,

where χ is a small positive constant which is preseted like χ = 10−10.

In the following, we provide the definitions of three different impulsive noise and their corre-
sponding p-moments.

(i) Sα̃S noise

Researchers [34] [13] showed that symmetric α̃-stable (abbreviated Sα̃S) distribution can be
used to model impulsive noise. Although one cannot analytically present the probability density
function (pdf) for a general stable distribution, the general characteristic function can be. Any pdf
is given by the Fourier transform of its characteristic function φ(w) by:

f̃(x) =
1

2π

∫ +∞

−∞
φ(w)eiwx dw.

If the characteristic function is given by

φ(w) = exp
(
iaw − γα̃|w|α̃

)
,

then a variable random X is said to follow the Sα̃S distribution [35, 36]. Here, a is the location
parameter, γ is the scale parameter, and α̃ is the characteristic exponent measuring the thickness
of the distributional tail with α̃ ∈ (0, 2]. If the value of α̃ is smaller, then the tail of the Sα̃S
distribution is thicker and consequently the noise is more impulsive. Assume that a = 0, for
independently identically distributed (iid) Sα̃S noise, it follows from [13] that the p-th moment of
noise vector z

E{∥z∥pp} =

{
nC(p, α̃)γp, 0 < p < α̃,

+∞, p ≥ α̃,
(2.8)

where C(p, α̃) = 2p+1Γ(p+1
2 )Γ(− p

α̃)/(α̃
√
πΓ(−p

2)) and Γ(θ) =
∫ +∞
0 xθ−1e−x dx denotes the gamma

function (Γ(1/2) =
√
π).
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(ii) GGD/GED noise.

Since the pdf of Sα̃S distribution doesn’t have the explicit representation, it is hard to apply in
some contexts. As one of its alternative, one can also employ the generalized Gaussian distribution
(for short GGD) or general error distribution (for short GED) to model impulsive noise. The pdf
of X ∼ GGD with zero mean is determined by

f̃(x) =
ṽ

2σ̃Γ( 1ṽ )
exp

(
−
[
|x|
σ̃

]ṽ)
(2.9)

where σ̃ > 0 is a scale parameter, and ṽ > 0 is a shape parameter controlling the distribution shape.
In some literature, the properties of it have been well studied, see [37–40]. This is a parametric
family of symmetric distributions. This family includes the Gaussian distribution when ṽ = 2 and
it incorporates the Laplace distribution when ṽ = 1. This family allows for tails that are either
heavier than Gaussian (when 0 < ṽ < 2) or lighter than Gaussian (when ṽ > 2). Therefore, it
models impulsive noise is appropriate in the case of 0 < ṽ < 2. For iid GGD noise, it is no difficult
to verify that the p-th order moment is [13]

E{∥z∥pp} = nσ̃pΓ

(
p+ 1

ṽ

)/
Γ

(
1

ṽ

)
. (2.10)

(iii) Gaussian mixture noise.

A two-term Gaussian mixture model is defined by

(1− λ)N(0, σ̃2) + λN(0, κσ̃2), (2.11)

where λ represents the portion of outliers in the noise with λ ∈ [0, 1) and κ is the power of outliers
with κ > 1. It is easy to see that its pdf is

f̃(x) =
1

σ̃
√

2π(1− λ+ κλ)
exp

(
− x2

2(1− λ+ κλ)σ̃2

)
, x ∈ R. (2.12)

In this model, the first term stands for the background noise as well as another term denotes
the impulsive property of the noise. For related recent research, see [41]. Observe that the total
variance of the noise is (1 − λ + κλ)σ̃2. It follows from some elementary calculation that the p-th
order moment of such noise is [13]

E{∥z∥pp} =
n2

p
2 (1− λ+ κλ)

p
2 σ̃pΓ

(
p+1
2

)
√
π

. (2.13)

The result concerning an explicit bound on ∥z∥p in terms of n and N is given in Appendix,
which holds with high probability for the three types of impulsive noise in the paper. Concretely,
for the results on Gaussian noise and Gaussian mixture noise, it follows from the proof of Lemma
III.3 [42] and the fact that ∥x∥p ≤ ∥x∥q ≤ n1/q−1/p∥x∥p for given 0 < q < p ≤ ∞ and any
x ∈ Rn; as to the result on the generalized Gaussian noise, the ideal of its proof is from the proof
of concentration inequality for sums of independent sub-exponential random variables; for the
result regarding symmetric α̃-stable noise, the thought of its deduction is motivated by Markov’s
inequality about random vector, which is an extension of Markov’s inequality. For more detailed
contents and the associating proofs, see Appendix.
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Remark 2.1. For the classical Gaussian noise, the bound of its l2-norm has been given in [42].
However, as far as we know, we don’t find the results on the bounds of the lp-norm for the three
impulse noises here. To remedy this defect, we do our best to provide the lp-norm bounds for the
Gaussian noise, the Gaussian mixture noise, the generalized Gaussian noise and the symmetric α̃-
stable noise. Furthermore, how to extend the result of bounded noise to random noise is a meaningful
topic, and it will be one of future work.

3 Analysis on the proposed formulation

In this place, we show in the case that the original signal is contaminated by impulsive noise,
the proposed formulation can guarantee the stable recovery of the true signal. For simplification,
suppose that the special grouping of x is as follows:

x = [x1, · · · , xd1︸ ︷︷ ︸
xg1

, xd1+1, · · · , xd1+d2︸ ︷︷ ︸
xg2

, · · · , xN−dk+1, · · · , xN︸ ︷︷ ︸
xgk

]T , (3.1)

where N ≫ k ≥ 2 is an integer, and xgi stands for the ith group of x associated with the group
size di and N = d1 + d2 + · · ·+ dk.

Eldar and Mishali [30] introduced the definition of block restricted isometry property (block-
RIP) of a measurement matrix to describe the condition under which the desired signal could be
robustly reconstructed with small or zero error. Let Φ ∈ Rn×N be a measurement matrix. If there
exists a constant δk0 such that

(1− δk0)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δk0)∥x∥22 (3.2)

holds, for every x ∈ RN that is block k0-sparse over J = {d1, d2, · · · , dk}, then Φ is said to have the
block-RIP over J with constant δk0 , where a block k0-sparse signal x is a signal of the form (3.1)
in which xgi is nonzero for at most k0 indices gi. Suppose that x̃ is the solution to the following
problem

min
x̂∈RN

∥x̂∥2,I , subject to ∥Φx̂− b∥2 ≤ η. (3.3)

Eldar and Mishali [30] also proved that if Φ satisfies (3.2) with δ2k0 <
√
2− 1 and ∥z∥2 ≤ η, then

∥x− x̃∥2 ≤
4
√

δ2k0

1− (1 +
√
2)δ2k0

η. (3.4)

The above result shows that based on the method (3.3), the unknown signal could be robustly
reconstructed with an error depending on the noise level if the variance of the noise is finite.
However, in the case of impulsive noise that its variance is infinite, the method (3.3) isn’t stable.
In this setting, the formulation (1.6) is better.

Theorem 3.1. Let x̃ be the solution to the problem (1.6) with ∥Φx̃−b∥p ≤ η. Assume that x ∈ RN
is some block k0-sparse signal that we want to recover with k0 ≤ k and ∥z∥p ≤ η.

(a) For τ ≥ 4/3, if the sensing matrix Φ satisfies the block-RIP with constant δτk0 <
√

(τ − 1)/τ ,
the solution satisfies

∥x− x̃∥2 ≤
2
√

2τ(τ − 1)(1 + δτk0)

τ(
√

τ−1
τ − δτk0)

η, (3.5)
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∥x− x̃∥2,p ≤
2

1
p
+1

τ
1
p
−1

k
1
p
− 1

2

0

√
(τ − 1)(1 + δτk0)√

τ−1
τ − δτk0

η (1 ≤ p ≤ 2), (3.6)

∥x− x̃∥2,p ≤
2(1 + k1−p)

1
p τ

1
p
−1

k
1
p
− 1

2

0

√
(τ − 1)(1 + δτk0)√

τ−1
τ − δτk0

η (0 < p < 1), (3.7)

where ∥x∥2,p = (
∑k

i=1 ∥xgi∥
p
2)

1/p, k is the number of partitioning group of the vector x, and it equals
to N/d with d = di, i = 1, · · · , k in the simulation experiment.

(b) For 0 < τ < 4/3, if the sensing matrix Φ satisfies the block-RIP with constant δτk0 <
τ/(4− τ), the solution satisfies

∥x− x̃∥2 ≤
2
√

2(1 + δτk0)max{
√
τ , τ}

(4− τ)( τ
4−τ − δτk0)

η, (3.8)

∥x− x̃∥2,p ≤
2

1
p
+1

k
1
p
− 1

2

0

√
1 + δτk0 max{

√
τ , τ}

(4− τ)( τ
4−τ − δτk0)

η (1 ≤ p ≤ 2), (3.9)

∥x− x̃∥2,p ≤
2(1 + k1−p)

1
pk

1
p
− 1

2

0

√
1 + δτk0 max{

√
τ , τ}

(4− τ)( τ
4−τ − δτk0)

η (0 < p < 1). (3.10)

Remark 3.1. The inequalities (3.5) and (3.8) present an upper bound estimation of the recon-
structed error on the formulation (1.6). Compared with the assumption of the noise of the problem
(3.3) that ∥z∥2 ≤ η, in Theorem 3.1, it extends the assumption of the noise to ∥z∥p ≤ η, p ∈ [0, 2).
The assumption of the noise on robust reconstruction is relaxed from that associating variance is
finite to that associating pth-order moment is finite. This shows that when the noise is impulsive
having infinite variance, the desired signal x could be robustly reconstructed by the proposed model.
Furthermore, for both 0 < τ < 4/3 and τ ≥ 4/3 cases, the bound of block-RIP constant δτk0 are
sharp, that is, it is impossible to improve the bound of constant δτk0; for more details, see [43, 44].

Remark 3.2. We show that different choices of τ can lead to different conditions. Observe that
when τ = 2, we get the condition δ2k0 <

√
2/2 ≈ 0.707. Therefore, we obtain a weaker condition

than δ2k0 <
√
2 − 1 ≈ 0.414 provided in [13]. In Figure 3.1, the error bound constant is plotted

versus δ2k0. From the observation of Figure 3.1, the error bound constant in (3.5) is smaller than
that of (9) in Theorem 1 in [13].
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Fig. 3.1: Error bound constant versus δ2k0

8



Remark 3.3. Note the fact that ∥x∥2,2 = (
∑k

i=1 ∥xgi∥22)1/2 = ∥x∥2, for any x ∈ RN . Therefore, in
terms of Theorem 3.1, when p = 2, it is easy to verify that l2,p-norm error estimation degenerates to
l2-norm error estimation, i.e., as p = 2, the equations (3.6) and (3.9) are the same as the equations
(3.5) and (3.8), respectively. The result shows that the l2,p-norm error bound doesn’t become large.
In contrast, it is more natural to use l2-norm to measure the error.

Proof. Since the proofs of two cases are similar, we only give the proof of the case of τ ≥ 4/3. It
is similar to that of Theorem 1 in [13]. Suppose that x̃ = x+ h is a solution to the problem (1.6),
where x is the original signal. Chen and Li [43] showed that if the matrix Φ fulfils the block-RIP
with δτk0 <

√
(τ − 1)/τ for τ ≥ 4/3 (for 0 < τ < 4/3, see [44]), then the following equation

∥h∥2 ≤
√

2τ(τ − 1)(1 + δτk0)

τ(
√

τ−1
τ − δτk0)

∥Φh∥2 (3.11)

holds. By the condition of noise of the theorem, we get

∥Φx− b∥p ≤ η and ∥Φx̃− b∥p ≤ η. (3.12)

Note that when p ∈ (0, 2], for any u ∈ Rn,

∥u∥2 ≤ ∥u∥p. (3.13)

Combining with (3.12) and (3.13), we get

∥Φh∥2 ≤ ∥Φx− b∥2 + ∥Φx̃− b∥2
≤ ∥Φx− b∥p + ∥Φx̃− b∥p
≤ 2η. (3.14)

Substituting (3.14) into (3.11), it leads to (3.5).

In what follows, we estimate the l2,p-error. In the sequel, we still follow the notations of [43].
First of all, we take into account the case of 1 ≤ p < 2.

Chen and Li have obtained that

∥h[T c0 ]∥2,I ≤ ∥h[T0]∥2,I . (3.15)

Combining the above inequality with Lemma 2.2 [43], it implies that for 1 ≤ p < 2,

∥h[T c0 ]∥2,p ≤ ∥h[T0]∥2,p. (3.16)

Besides, They have also proved that

∥h[T0] + h[T1]∥2,2 ≤
√

τ(τ − 1)(1 + δτk0)

τ(
√

τ−1
τ − δτk0)

∥Φh∥2,

which deduces that

∥h[T0] + h[T1]∥2,p
(a)

≤ (τk0)
1
p
− 1

2 ∥h[T0] + h[T1]∥2,2

≤ (τk0)
1
p
− 1

2

√
τ(τ − 1)(1 + δτk0)

τ(
√

τ−1
τ − δτk0)

∥Φh∥2, (3.17)
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where (a) follows from the fact that h[T0] + h[T1] is block τk0-sparse and ∥x∥p ≤ n1/p−1/2∥x∥2 for
given 1 ≤ p < 2 and any x ∈ Rn. Consequently,

∥h∥2,p = (∥h[T0]∥p2,p + ∥h[T
c
0 ]∥

p
2,p)

1
p

(a)

≤ 2
1
p ∥h[T0]∥2,p

(b)

≤ 2
1
p ∥h[T0] + h[T1]∥2,p

(c)

≤ 2
1
p (τk0)

1
p
− 1

2

√
τ(τ − 1)(1 + δτk0)

τ(
√

τ−1
τ − δτk0)

∥Φh∥2

(d)

≤
2

1
p
+1

τ
1
p
−1

k
1
p
− 1

2

0 η
√

(τ − 1)(1 + δτk0)√
τ−1
τ − δτk0

,

where (a) is due to (3.16), (b) follows from the fact that T0
∩

T1 = ∅, (c) is from (3.17) and (d)
follows from (3.14).

Now, we prove the situation of 0 < p < 1.

By applying Reverse Hölder’s inequality, we get

∥h[T c0 ]∥2,I =
∑
j∈T c

0

∥h[j]∥2 ≥

∑
j∈T c

0

∥h[j]∥p2

 1
p
∑
j∈T c

0

1
p

p−1

1− 1
p

≥ k
1− 1

p ∥h[T c0 ]∥2,p. (3.18)

Moreover,

∥h[T0]∥2,I =
∑
i∈T0

∥h[i]∥2 ≤

∑
i∈T0

∥h[i]∥p2

 1
p

= ∥h[T0]∥2,p, (3.19)

where we have employed the fact that (a+ b)p ≤ ap + bp for a, b ≥ 0 and 0 < p < 1.

A combination of (3.18) and (3.19), we get

∥h[T c0 ]∥2,p ≤ k
1
p
−1∥h[T0]∥2,p.

The rest of the proof is similar to the case of 1 ≤ p < 2. Accordingly, we complete the proof of the
result.

4 Algorithm

In this section, based on the alternating direction method of multipliers (ADMM), we propose
an efficient algorithm to address the formulation (1.6).

A. Block-Lp-ADM without smoothing

With a new variable u ∈ Rn, the problem (1.6) is equivalent to

min
x,u
∥x∥2,I +

1

ν
∥u∥pp, s.t. u = Φx− b. (4.1)
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Then the associated augmented Lagrangian function is

Lp(x, u, y) = ∥x∥2,I +
1

ν
∥u∥pp − ⟨y,Φx− b− u⟩+ α

2
∥Φx− b− u∥22, (4.2)

where y ∈ Rn denotes the Lagrangian multiplier, and α represents a positive parameter associated
to the augmented term. Now, applying ADMM to (4.2) and some elementary calculation produces
the iterations as follows:

ut+1 = arg min
u∈Rn

{
1

ν
∥u∥pp +

α

2
∥Φxt − b− u− yt

α
∥22
}
, (4.3)

xt+1 = arg min
x∈RN

{
∥x∥2,I +

α

2
∥Φx− b− ut+1 − yt

α
∥22
}
, (4.4)

yt+1 = yt − γα
(
Φxt+1 − b− ut+1

)
, (4.5)

where γ is a positive constant. In the rest of this paper, set γ = 1.

Firstly, observe that the minimizer ut+1 of (4.3) is a form of the proximity operator (2.1), thus
we can compute it as

ut+1 = prox 1
ν
∥u∥pp,α(ξ

t) =



solved as (2.2), p = 0,

solved as (2.4), p ∈ (0, 1),

Shrink
(
ξt, 1

αν

)
, p = 1,

solved as (2.5), p ∈ (1, 2),
ναξt

να+2 , p = 2,

(4.6)

where ξt = Φxt − b− yt/α, and Shrink(·, ·) is component-wise.

Secondly, we consider the minimization problem (4.4). Set vt = b+ ut+1 + yt

α . Let

h1(x
t) = Φ⊤(Φxt − vt)

denote the gradient of 1
2∥Φx− vt∥22 at xt. Instead of directly solving (4.4), it can be approximated

by

xt+1 ≈ arg min
x∈RN

{
∥x∥2,I + α

(
(h1(x

t))⊤(x− xt) +
ρ1
2
∥x− xt∥22

)}
= arg min

x∈RN

{
∥x∥2,I +

αρ1
2
∥x− xt +

h1(x
t)

ρ1
∥22
}
, (4.7)

where ρ1 is a positive proximal parameter. By simple computation, (4.7) is equivalent to

arg min
x∈RN

k∑
i=1

{
∥xgi∥2 +

αρ1
2
∥xgi − ri∥22

}
, (4.8)

where ri = (xt)gi−(h1(x
t))gi/ρ1. Applying the one-dimensional shrinkage formulate, we can obtain

a closed form solution as follows:

xgi = max

{
∥ri∥2 −

1

αρ1
, 0

}
ri
∥ri∥2

, for i = 1, 2, · · · , k. (4.9)

The convention 0 · 0/0 = 0 is followed.
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B. Block-Lp-ADM utilizing smoothed l1-regularization for nonconvex case

When 1 ≤ p < 2 (convex case), under the condition of a reasonable choice of the parameter
ρ1, the convergence of the above Block-Lp-ADM algorithm can be ensured. But, when 0 ≤ p < 1
(nonconvex case), the convergence of this algorithm is not ensured. In order to resolve this problem,
adding a smoothed parameter to the l2,I regularization term, we derive a smoothed version of the
problem (1.6) as follows:

min
x∈RN

∥x∥ϵ2,I +
1

ν
∥Φx− b∥pp, (4.10)

where

∥x∥ϵ2,I =

k∑
i=1

(
ϵ2 + ∥xgi∥22

) 1
2 ,

and ϵ is a positive constant. Similar to (4.1), the above problem can be converted into

min
x,u
∥x∥ϵ2,I +

1

ν
∥u∥pp, s.t. u = Φx− b. (4.11)

The augmented lagrangian function is of the form

Lp,ϵ(x, u, y) = ∥x∥ϵ2,I +
1

ν
∥u∥pp − ⟨y,Φx− b− u⟩+ α

2
∥Φx− b− u∥22. (4.12)

For fixed u = ut+1 and y = yt, the minimizer xt+1 of (4.12) with respect to x is provided by

xt+1 = arg min
x∈RN

{
∥x∥ϵ2,I +

α

2
∥Φx− vt∥22

}
. (4.13)

Note that the objective function of (4.13) has the smoothness, thus one could make use of general
iterative approaches to address this minimization problem. Nevertheless, in order to get efficiency
of the method, the technique of ADMM is employed again to resolve (4.13). More precisely, for a
fixed xt, the regularization term ∥x∥ϵ2,I is linearized as

∥x∥ϵ2,I ≈ ∥xt∥ϵ2,I +
(
h2(x

t)
)⊤

(x− xt) +
ρ2
2
∥x− xt∥22, (4.14)

where h2(x
t) = ∇∥xt∥ϵ2,I is the gradient of ∥x∥ϵ2,I at xt, and ρ2 is a positive proximal parameter.

Plugging (4.14) into (4.13), we gain

xt+1 ≈ arg min
x∈RN

{
(h2(x

t))⊤(x− xt) +
ρ2
2
∥x− xt∥22 +

α

2
∥Φx− vt∥22

}
= arg min

x∈RN

{
1

2
x⊤
(
ρ2IN + αΦ⊤Φ

)
x+

(
h2(x

t)− ρ2x
t − αΦ⊤vt

)⊤
x

}
. (4.15)

Observe that it is a convex quadratic problem, consequently it degenerates to solving the linear
system as follows: (

ρ2IN + αΦ⊤Φ
)
x = ρ2x

t − h2(x
t) + αΦ⊤vt. (4.16)

The Block-Lp-ADM algorithm for problem (1.6) is summarized in Algorithm 1.
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Algorithm 1 : Block-Lp-ADM

1: Initialize x0 ∈ RN and y0 ∈ Rn. Constants k, ν, α, ρ1, and ρ2. Set t = 0.
2: while stopping criterion is not satisfied do
3: ut+1 ← applying (4.6);

4: xt+1 ←

{
applying (4.9), 1 ≤ p < 2,

solving (4.16), 0 ≤ p < 1;

5: yt+1 ← yt − α
(
Φxt+1 − b− ut+1

)
;

6: t = t+ 1;

5 Convergence analysis

First, for 1 ≤ p < 2, in the case that the minimizer xt+1 of the problem (4.4) is solved by (4.9),
the condition of the convergence for Block-Lp-ADM will be established.

Theorem 5.1. For any α > 0, 1 ≤ p < 2, under the assumption of ρ1 > λmax(Φ
⊤Φ), the sequence

(xt, ut, yt) generated by Algorithm 1 from any initiated value (x0, y0) converges to a solution to
(4.1).

Proof. By using optimization theory, we have

0 ∈ ∇xLp(x, u, y) = ∂∥x∥2,I − Φ⊤y + αΦ⊤(Φx− b− u),

0 = ∇uLp(x, u, y) =
1

ν
∇∥u∥pp + y − α(Φx− b− u). (5.1)

Define (x̂, û) be the solution of (4.1) with Φx̂ − û = b. Then, (5.1) shows that there is ŷ ∈ Rn
satisfying the following equations:

Φ⊤ŷ ∈ ∂∥x̂∥2,I , ∇∥û∥pp + νŷ = 0, and Φx̂− û = b. (5.2)

Set x̃ = xt+1, ũ = ut+1 and ỹ = yt − α (Φx̃− b− ũ). For fixed x = xt and y = yt, the minimizer
ut+1 of (4.2) with respect to u such that

1

ν
∇∥ut+1∥pp + yt − α

(
Φxt − b− ut+1

)
= 0 (5.3)

holds. By the definitions of x̃, ũ and ỹ, (5.3) is transformed into

∇∥ũ∥pp = ν
[
−ỹ − αΦ

(
x̃− xt

)]
. (5.4)

Combining with the convexity of ∥u∥pp, (5.4) and the fact that ∇∥û∥pp + νŷ = 0, we derive

(ũ− û)⊤
(
ŷ − ỹ − αΦ

(
x̃− xt

))
≥ 0. (5.5)

The inequality (5.5) is just the equation (A.3) of Theorem 2.1 in [11]. The reminder of the proof is
from the proof of Theorem 2.1 in [11].

Next, in the case that the minimizer xt+1 is solved by (4.16), the condition of the convergence
for Algorithm 1 will be established.
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Theorem 5.2. Assume that ϵ > 0 and ΦΦ⊤−ϑIn ≽ 0 (ϑ > 0). The sequence (xt, ut, yt) generated
by Algorithm 1 from any bounded initialization (x0, y0) converge to a critical point of (4.11) for
any 0 ≤ p < 1, provided that ρ2 >

C
2 and

α >
2ρ22 + 2(ρ2 + C)

ϑ(ρ2 − C)
,

where C =
√

2(1 + dmax)/ϵ, and dmax = max{d1, d2, · · · , dk}.

Remark 5.1. Wen et al. [13] address the problem of robust sparse recovery in compressive sens-
ing in the presence of impulsive measurement noise. We used Wen et al.’s sectional techniques.
Moreover, some other alternative skills have also been used such as the skills employed in [21]. As
the reviewer points out, it is a good and effective way that utilize the weighted l1-norm to deal with
the lp problem, for the related works, see [45], etc.

Applying the technique presented by the literature above, we can also solve the subproblem (4.3)
by a weighted l1-norm instead of the equations (4.6) as follows.

Utilizing the lp-norm approximation ∥ut+1∥pp =
∑n

i=1(|uti|+ ϵ∗)p−1|ui| (at the t+1-th iteration),
we get

ut+1 = argmin

{
1

ν

n∑
i=1

(|uti|+ ϵ∗)p−1|ui|+
α

2
∥u− ξt∥22

}
= argmin

{
∥Wu∥1 +

α

2
∥u− ξt∥22

}
where ϵ∗ is a smoothing parameter, ξt = Φxt − b − yt/α and W is the weight matrix, which is a
diagonal matrix with i-th diagonal element is (|uti|+ ϵ∗)p−1/ν =: wi.

By (2.3), we attain

ut+1
i = max

{
|ξti | −

wi
α
, 0
}
sign(ξti),

which is an extension of the classical soft thresholding.

If this skill is adopted, the convergence of the algorithm also holds.

In order to prove the main result, some auxiliary lemmas are presented.

Lemma 5.1. ∇∥x∥ϵ2,I is C-Lipschitz continuous, i.e., for any x, y ∈ RN , the equation

∥∇∥x∥ϵ2,I −∇∥y∥ϵ2,I∥2 ≤ C∥x− y∥2

holds, where C =
√
2(1 + dmax)/ϵ, and dmax = max{d1, · · · , dk}.

Proof.

It is easy to check that the gradient of ∥x∥ϵ2,I is

∇∥x∥ϵ2,I =

[
x1

(ϵ2 + ∥xg1∥22)
1
2

,
x2

(ϵ2 + ∥xg1∥22)
1
2

, · · · , xN

(ϵ2 + ∥xgk∥22)
1
2

]⊤
. (5.6)
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Next, we compute the constant C that satisfies for any x, y ∈ RN ,

∥∇∥x∥ϵ2,I −∇∥y∥ϵ2,I∥2 ≤ C∥x− y∥2. (5.7)

For convenience of discussion, (5.7) is rewritten as

∥∇∥x∥ϵ2,I −∇∥y∥ϵ2,I∥22 ≤ C2∥x− y∥22. (5.8)

It follows from (5.6) that

∥∇∥x∥ϵ2,I −∇∥y∥ϵ2,I∥22

=

(
x1

(ϵ2 + ∥xg1∥22)
1
2

− y1

(ϵ2 + ∥yg1∥22)
1
2

)2

+

(
x2

(ϵ2 + ∥xg1∥22)
1
2

− y2

(ϵ2 + ∥yg1∥22)
1
2

)2

+ · · · . (5.9)

Set

li =

(
xi

(ϵ2 + ∥xgj∥22)
1
2

− yi

(ϵ2 + ∥ygj∥22)
1
2

)2

, i = 1, 2, · · · , N, j = 1, 2, · · · , k,

where xi is the component of xgj . Observe that

li =

{
(xi − yi)(ϵ

2 + ∥ygj∥22)
1
2 + yi[(ϵ

2 + ∥ygj∥22)
1
2 − (ϵ2 + ∥xgj∥22)

1
2 ]

(ϵ2 + ∥xgj∥22)
1
2 (ϵ2 + ∥ygj∥22)

1
2

}2

. (5.10)

Set

∆i =
(xi − yi)(ϵ

2 + ∥ygj∥22)
1
2 + yi[(ϵ

2 + ∥ygj∥22)
1
2 − (ϵ2 + ∥xgj∥22)

1
2 ]

(ϵ2 + ∥xgj∥22)
1
2 (ϵ2 + ∥ygj∥22)

1
2

.

Applying the triangular inequality to above equality, we have

|∆i| ≤
|xi − yi|

(ϵ2 + ∥xgj∥22)
1
2

+
|yi|
∣∣∣(ϵ2 + ∥ygj∥22) 1

2 − (ϵ2 + ∥xgj∥22)
1
2

∣∣∣
(ϵ2 + ∥xgj∥22)

1
2 (ϵ2 + ∥ygj∥22)

1
2

≤ |xi − yi|
(ϵ2 + ∥xgj∥22)

1
2

+
|yi|
∣∣∥ygj∥22 − ∥xgj∥22∣∣

(ϵ2 + ∥xgj∥22)
1
2 (ϵ2 + ∥ygj∥22)

1
2

[
(ϵ2 + ∥ygj∥22)

1
2 + (ϵ2 + ∥xgj∥22)

1
2

] (5.11)

Note that

∥ygj∥22 − ∥xgj∥22 = (∥ygj∥2 + ∥xgj∥2)(∥ygj∥2 − ∥xgj∥2)
≤ (∥ygj∥2 + ∥xgj∥2)∥xgj − ygj∥2, (5.12)

where for the above equality, we used the inverse triangular inequality. Plugging (5.12) into (5.11),
we get

|∆i| ≤
|xi − yi|

(ϵ2 + ∥xgj∥22)
1
2

+
|yi|(∥ygj∥2 + ∥xgj∥2)∥xgj − ygj∥2

(ϵ2 + ∥xgj∥22)
1
2 (ϵ2 + ∥ygj∥22)

1
2

[
(ϵ2 + ∥ygj∥22)

1
2 + (ϵ2 + ∥xgj∥22)

1
2

]
≤ |xi − yi|

(ϵ2 + ∥xgj∥22)
1
2

+
∥xgj − ygj∥2
(ϵ2 + ∥xgj∥22)

1
2

≤ 1

ϵ
(|xi − yi|+ ∥xgj − ygj∥2). (5.13)

15



By (5.13), we get

li ≤
1

ϵ2
(|xi − yi|+ ∥xgj − ygj∥2)2

≤ 2

ϵ2
(|xi − yi|2 + ∥xgj − ygj∥22), (5.14)

where the second inequality follows from the fact that ∥u∥1 ≤
√
N∥u∥2, for any u ∈ RN . Substi-

tuting (5.14) into (5.9), we get

∥∇∥x∥ϵ2,I −∇∥y∥ϵ2,I∥22

≤ 2

ϵ2

d1∑
i=1

|xi − yi|2 +
2

ϵ2

d2∑
i=d1+1

|xi − yi|2 + · · ·+
2

ϵ2

N∑
i=N−dk+1

|xi − yi|2 +
2

ϵ2

k∑
j=1

dj∥xgj − ygj∥22

≤ 2

ϵ2

 N∑
i=1

|xi − yi|2 + dmax

k∑
j=1

∥xgj − ygj∥22


≤ 2

ϵ2
(1 + dmax) ∥x− y∥22

=:C2∥x− y∥22, (5.15)

where dmax = max{d1, d2, · · · , dk} indicates the maximum of the group size {d1, d2, · · · , dk}. The
equation (5.15) shows that the gradient of ∥x∥ϵ2,I is C-Lipshitz continuous.

Lemma 5.2. Set L̃p,ϵ(x, u, y, x̂) = Lp,ϵ(x, u, y) + a1∥x− x̂∥22 (a1 > 0). Assume that ϵ > 0, ρ2 > C
2

and for ϑ > 0, ΦΦ⊤ ≽ ϑIn. If constant α obeys the following inequality

α >
2ρ22 + 2(ρ2 + C)2

ϑ(ρ2 − C
2 )

,

then

L̃p,ϵ(x
t+1, ut+1, yt+1, xt) ≤ L̃p,ϵ(x

t, ut, yt, xt−1)− a2∥xt+1 − xt∥22,

where

a1 =
2(ρ2 + C)2

αϑ
, a2 = ρ2 −

2ρ22 + 2(ρ2 + C)2

ϑα
− C

2
> 0.

Proof.

By (4.15), solving minimizer xt+1 of (4.13) is equivalent to solving the minimizer of the function
as follows:

(∇∥xt∥ϵ2,I)⊤(x− xt) +
ρ2
2
∥x− xt∥22 +

α

2
∥Φx− b− ut+1 − yt

α
∥22 =: Sxt(x). (5.16)

It follows from the above equation, we have

Sxt(x
t) =

α

2
∥Φxt − b− ut+1 − yt

α
∥22. (5.17)
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According to the minimality of xt+1, we get

∇Sxt(xt+1) = 0. (5.18)

By ρ2-strongly convexity of Sxt(x), we get

Sxt(x
t) ≥ Sxt(x

t+1) + (∇Sxt(xt+1))⊤(xt − xt+1) +
ρ2
2
∥xt − xt+1∥22, (5.19)

for any xt ∈ RN . Combining with (5.16)-(5.19), we get

(∇∥xt∥ϵ2,I)⊤(xt+1 − xt) +
α

2
∥Φxt+1 − b− ut+1 − yt

α
∥22

≤α

2
∥Φxt − b− ut+1 − yt

α
∥22 − ρ2∥xt − xt+1∥22. (5.20)

By Lemma 5.1 and the fact that ∥x∥ϵ2,I is convex, we get

∥xt+1∥ϵ2,I ≤ ∥xt∥ϵ2,I + (∇∥xt∥ϵ2,I)⊤(xt+1 − xt) +
C
2
∥xt+1 − xt∥22, (5.21)

for any xt, xt+1 ∈ RN . A combination of (5.20) and (5.21), we have

∥xt+1∥ϵ2,I +
α

2
∥Φxt+1 − b− ut+1 − yt

α
∥22

≤∥xt∥ϵ2,I +
α

2
∥Φxt − b− ut+1 − yt

α
∥22 +

(
C
2
− ρ2

)
∥xt+1 − xt∥22. (5.22)

Since ΦΦ⊤ ≽ ϑIn for ϑ > 0, we get

ϑ∥yt+1 − yt∥22 ≤ ∥Φ⊤(yt+1 − yt)∥22. (5.23)

By (5.18), we have

∇∥xt∥ϵ2,I + ρ2(x
t+1 − xt) + αΦ⊤(Φxt+1 − b− ut+1 − yt

α
) = 0. (5.24)

Substituting (4.5) into the above equality, we get

Φ⊤yt+1 = ∇∥xt∥ϵ2,I + ρ2(x
t+1 − xt). (5.25)

By (5.25) and Lemma 5.1, we get

∥Φ⊤(yt+1 − yt)∥22

≤
(
∥∇∥xt∥ϵ2,I −∇∥xt−1∥ϵ2,I∥2 + ρ2∥xt+1 − xt∥2 + ρ2∥xt − xt−1∥2

)2

≤
(
C∥xt − xt−1∥2 + ρ2∥xt+1 − xt∥2 + ρ2∥xt − xt−1∥2

)2

≤ 2(C + ρ2)
2∥xt − xt−1∥22 + 2ρ22∥xt+1 − xt∥22. (5.26)

Combining with (5.23) and (5.26), we have

∥yt+1 − yt∥22 ≤
2(C + ρ2)

2

ϑ
∥xt − xt−1∥22 +

2ρ22
ϑ
∥xt+1 − xt∥22. (5.27)
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By the definition of the minimizer ut+1, we get

Lp,ϵ(x
t, ut+1, yt)− Lp,ϵ(x

t, ut, yt) ≤ 0. (5.28)

By (5.22), we get

Lp,ϵ(x
t+1, ut+1, yt)− Lp,ϵ(x

t, ut+1, yt) ≤
(
C
2
− ρ2

)
∥xt+1 − xt∥22. (5.29)

By the definition of Lp,ϵ(x, u, y) and (4.5), we get

Lp,ϵ(x
t+1, ut+1, yt+1)− Lp,ϵ(x

t+1, ut+1, yt) ≤ 1

α
∥yt+1 − yt∥22. (5.30)

Combining with (5.28)-(5.30) and (5.27), it follows that

Lp,ϵ(x
t+1, ut+1, yt+1)− Lp,ϵ(x

t, ut, yt)

≤
(
2ρ22
αϑ

+
C
2
− ρ2

)
∥xt+1 − xt∥22 +

2(C + ρ2)
2

ϑα
∥xt − xt−1∥22. (5.31)

By (5.31) and some elementary manipulation, the desired result will be obtained. In order to ensure
constant a2 > 0, the regularization parameter α needs to satisfy the following equation

ρ2 −
C
2
>

2ρ22 + 2(ρ2 + C)2

ϑα
. (5.32)

Lemma 5.3. Set z̃t = (ut, xt, yt). Under the conditions of Lemma 5.2, we gain

lim
t→∞
∥z̃t+1 − z̃t∥22 = 0,

and any cluster point of z̃t is one critical point of Lp,ϵ.

Proof.

Due to (5.25) and the fact that ∥∇∥x∥ϵ2,I∥22 ≤ N , for any x ∈ RN , we get

∥Φ⊤yt∥22
≤
(
∥∇∥xt−1∥ϵ2,I∥2 + ρ2∥xt − xt−1∥2

)2
≤ 2∥∇∥xt−1∥ϵ2,I∥22 + 2ρ22∥xt − xt−1∥22
≤ 2N + 2ρ22∥xt − xt−1∥22. (5.33)

Similar to (5.23), we get

∥Φ⊤yt∥22 ≥ ϑ∥yt∥22. (5.34)

By (5.33) and (5.34), we get

∥yt∥22 ≤
2N

ϑ
+

2ρ22
ϑ
∥xt − xt−1∥22. (5.35)
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Set zt = (ut, xt, yt, xt−1). It follows from Lemma 5.2 and (5.35) that

L̃p,ϵ(z
1) ≥ L̃p,ϵ(z

t)

= ∥xt∥ϵ2,I +
1

ν
∥ut∥pp +

α

2
∥Φxt − b− ut − yt

α
∥22 −

1

2α
∥yt∥22 + a1∥xt − xt−1∥22

≥ ∥xt∥ϵ2,I +
1

ν
∥ut∥pp +

α

2
∥Φxt − b− ut − yt

α
∥22 −

N

αϑ
−
(
ρ22
αϑ
− 2(ρ2 + C)2

αϑ

)
∥xt − xt−1∥22. (5.36)

Furthermore, (5.36) shows that L̃p,ϵ(z
t) is bounded. Notice that ∥xt∥ϵ2,I and ∥ut∥pp are coercive and

using (5.35), xt, ut and yt are bounded. Hence, zt is bounded.

According to the boundedness of zt, there is a convergent subsequence ztj tending to some
cluster point z⋆. By Lemma 5.2, we get

a2

m∑
t=1

∥xt+1 − xt∥22

≤
m∑
t=1

(L̃p,ϵ(z
t)− L̃p,ϵ(z

t+1))

≤ L̃p,ϵ(z
1)− L̃p,ϵ(z

m+1)

≤ L̃p,ϵ(z
1)− L̃p,ϵ(z

⋆) <∞, (5.37)

where the third inequality follows from the facts that L̃p,ϵ(z
t) is convergent and for any t > 0,

L̃p,ϵ(z
t) ≥ L̃p,ϵ(z

⋆). When m→∞, we get

∞∑
t=1

∥xt+1 − xt∥22 <∞. (5.38)

By (5.27) and (5.38), we get

∞∑
t=1

∥yt+1 − yt∥22 <∞. (5.39)

By (4.5), we get

∥ut+1 − ut∥2 ≤
1

α
∥yt+1 − yt∥2 +

1

α
∥yt − yt−1∥2 + ∥Φ∥2∥xt+1 − xt∥2. (5.40)

By (5.38) and (5.39), we get

∞∑
t=1

∥ut+1 − ut∥2 <∞. (5.41)

Therefore, we derive

∞∑
t=1

∥z̃t+1 − z̃t∥22 <∞ and ∥z̃t+1 − z̃t∥22 → 0, as t→∞.

Now, we prove that any cluster point of sequence {z̃t} is a critical point of Lp,ϵ. By the optimality
theory and (4.5), we get

0 ∈ ∂∥ut+1∥pp + ανΦ(xt+1 − xt) + νyt+1,
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0 = ∇∥xt∥ϵ2,I + ρ2(x
t+1 − xt)− Φ⊤yt+1,

yt+1

α
=

yt

α
−
(
Φxt+1 − b− ut+1

)
. (5.42)

Due to limt→∞ ∥z̃t+1 − z̃t∥22 = 0, for a convergent subsequence z̃ti , both z̃ti and z̃ti+1 converge to
the point z∗ := (u∗, x∗, y∗). Taking the limit in (5.42) along the subsequence z̃ti results in

0 ∈ ∂∥u∗∥pp + νy∗, Φ⊤y∗ = ∇∥x∗∥ϵ2,I , and Φx∗ − u∗ = b.

Consequently, z∗ is one critical point of Lp,ϵ.

Proof of Theorem 5.2:

The proof of Theorem 5.2 includes two steps as follows:

(i) There is a positive constant a3 that satisfies

dist
(
∂L̃p,ϵ(z

t+1), 0
)
≤ a3

(
∥xt+1 − xt∥2 + ∥xt − xt−1∥2 + ∥xt−1 − xt−2∥2

)
;

By Lemma 5.3, it follows that limt→∞ dist(∂L̃p,ϵ(z
t+1), 0) = 0.

(ii) Set z̃t = (ut, xt, yt). The sequence {z̃t} satisfies the following equation

∞∑
t=0

∥z̃t+1 − z̃t∥2 <∞,

that is, its length is finite; It leads to the sequence {z̃t} is a Cauchy sequence; Accordingly, it is
convergent.

Based on the above lemmas, the proofs of (i) and (ii) follow from the proof of Theorem III.3
and Theorem III.4 in [46]. Combining with (i), (ii) and Lemma 5.3, the desired result follows.

6 Numerical simulations

In this section, we carry out several numerical experiments to show the robustness of new
method. Two kinds of signals are used as the test signals, which incorporate the synthetic block
sparse signals and the real-world FECG signals (which can be regarded as approximately block
sparse signals). For the rest of the paper, let x∗ denote the solution provided by the algorithm.

6.1 Experiments on synthetic signals

In our experiments, without loss of generality, we discuss the block sparse signal with even
block size, i.e. d1 = d2 = · · · = dk = d and set the signal length N = 256. For each trial, we
firstly randomly produce block sparse signal x with coefficients following a Gaussian distribution of
mean 0 and variance 1, and randomly produce a 100× 256 measurement matrix Φ from Gaussian
ensemble. Employing x and Φ, we generate the measurements b by means of b = Φx+ z, where z is
(impulsive) bit errors like noise / Laplace noise / generalized Gaussian noise. In each experiment,
the average results over independent 100 trails are reported.
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To look for the better regularization parameter ν that derives the minimal recovery error, we
conduct a set of trails. In the set of trails, we produce the signals with 10 nonzero blocks by choosing
128 blocks uniformly at random, i.e. d = 2. In Figure 6.2, the average normalized reconstruction
error (RelError, RelError = ∥x∗ − x∥2/∥x∥2) is plotted versus the regularization parameter ν for
different p values, p = 0.5, 0.8, 1 in (impulsive) bit errors like noise and Laplace noise, respectively
and the figure indicates that the parameter ν = 1 × 104 is an appropriate choice. The average
normalised reconstruction error versus the block size d is plotted in Figure 6.3, where we fix the
number of non-zero elements of signal to be recovered as 64 and the value of d is 2, 4, 8, 16, 32, 64.
Figure 6.3 shows that parameter d = 2 is a good choice. Figure 6.4(a) the signal-to-noise ratio (SNR,
SNR= 20 log10(∥x∥2/∥x∗ − x∥2)) is plotted versus the values p in four different impulsive noises
and the values of p range from 0.2 to 2. Figure 6.4(a) shows that when p = 0.8, SNR is highest,
so we choose p = 0.8 to conduct several simulation experiments for testing recovery performance
of Block-Lp-ADM. Figure 6.4 (b) shows simulation results concerning the performance of the non-
block algorithm and the block algorithm in several different impulsive noises, where p = 0.8. Two
curves of SNR are described via Lp-ADM [13] and Block-Lp-ADM. Figure 3.1(b) demonstrates the
signal structure is very significant in the signal recovery. In Figure 6.5, the number of non-zero
components of k0 ranges from 12 to 72. Figure 6.5 reveals that the performance of Block-Lp-ADM
is better than that of Lp-ADM.
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Fig. 6.2: Recovery performance of Block-Lp-ADM versus ν for the block size d = 2,
(a) (impulsive) bit errors like noise case, (b) Laplace noise case
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Fig. 6.3: Recovery performance of Block-Lp-ADM versus block size
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Fig. 6.4: (a) Recovery performance of Block-Lp-ADM versus the value of p for the block size d = 2,
(b) Recovery performance of Lp-ADM and Block-Lp-ADM with p = 0.8

12 24 36 48 60 72

k

0

10

20

30

40

50

60

70

80

S
N

R

d=1
d=2
d=4

Fig. 6.5: SNR versus the number of non-zero components k with p = 0.8

Finally, we compared the performance of our Block-Lp-ADM algorithm for p = 0.5, 0.8, 1 with
the other representative algorithms including Group Lasso algorithm (Group-Lasso) [47], Huber-
fast iterative shrinkage/thresholding algorithm (Huber-FISTA) [48], Lq-regularized algorithm (Lq-
min) [49], BP-SEP [50] and orthogonal greedy algorithm (OGA) [51]. We utilize the relative error
(RelErr) to measure the algorithm capability. Figure 6.6 presents the relative error versus the
sparsity k0. Observe that the performance of Block-Lp-ADM algorithm is much better than that
of the other algorithms.
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Fig. 6.6: Comparison of execution efficiency with respect to RelErr (a) Laplace noise and (b)
(impulsive) bit errors like noise
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Fig. 6.7: Recovery performance of the compared algorithms in the presence of bit errors like
corruption. (a) Test signal. (b) Measurements without noise. (c) Corrupted measurements. (d)
Measurement noise. (e) Group-Lasso, RelErr= 1.429. (f) Lq-min, RelErr= 101.332. (g) Group-
YALL1, RelErr= 0.001. (h) Huber-FISTA, RelErr= 0.739. (i) BP-JP, RelErr= 0.193. (j) BP-SEP,
RelErr= 0.601. (k) block-Lp-ADM (p = 0.5), RelErr= 0.167. (l) block-Lp-ADM (p = 0.8),
RelErr= 0.169.

6.2 Experiments on FECG signals

In order to further validate the recovery performance of our Block-Lp-ADM algorithm in some
practical applications, we employ our proposed method, together with the methods we exploited
to reconstruct the FECG signals [52]. Actually, compressed sensing and application communities
have studied this sort of signals, see [53] and therein literature.

Figure 6.8(a) displays a segment of such FECG signals. In this segment, we can regard the
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sections from 20 to 60 and from 200 to 250 time points as two major non-zero blocks, and other
sections can be regarded as cascades of zero blocks. Approximately, we can regard this segment as
a block 2-sparse signal. For the remainder of this paper, the FECG signals recovery experiment is
conducted in the (impulsive) bit errors like noise setting.

In general, since we beforehand don’t know the position of non-zero coefficients in FECG, it is
hard for us to utilize the block-structured ways diametrically. Therefore, analogy to [53], suppose
that this segment comprises same 10 blocks with block size d = 25. Figure 6.8(b) depicts the
relative error versus the block size d, where the value of d is 5, 10, 25, 50, 125 (the dimension of
the segment from FECG signals is 250). One can easily see that d = 25 is relatively suitable. In
addition, similar with [53], the same matrix is used as the sensing matrix.

In order to facilitate the optimal performance of these methods, their regularization parame-
ters are selected from {10−4, 10−3, · · · , 108}, and return their best reconstructed signals which are
determined by RelError as the final results. Figure 6.9 demonstrates the results which are derived
by Block-Lp-ADM method with p = 0.8, Lp-ADM method with p = 0.8, group-lasso method and
OGA method. It is easy to observe that both our Block-Lp-ADM method with p = 0.8 and Lp-
ADM method with p = 0.8 perform much better than other methods, and the recovered segments
are very approximate to the original segment. But, from the opinion of recovered relative error,
our Block-Lp-ADM method with p = 0.8 expresses somewhat better than Lp-ADM method with
p = 0.8.

Then, to testify the performance of our Block-Lp-ADM method, the identical sensing matrix
is utilized to compress all FECG signals which are given in Figure 6.10. Note that the dimension
of each FECG signal is 2500, so we first equally partition each of them into 10 segments and then
reconstruct those segments sequently. Table 6.1 shows the derived results. It is easy to see that
the recovering efficiency of our method is best, followed by Lp-ADM method and Group-Lasso
sequently. These results again demonstrate the effectiveness of the proposed method.
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Fig. 6.8: (a) Segment from FECG signals, (b) Recovery performance of Block-Lp-ADM versus
block size for FECG signals
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Fig. 6.9: Reconstructed results by different methods
(a) Block-Lp-ADM method with RelError=0.0005, (b) Lp-ADM method with RelError=0.0031,
(c) Group-Lasso method with RelError=0.7791, (d) OGA method with RelError= 0.9257
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Fig. 6.10: All FECG signals

Table 6.1: RelError results obtained by different methods

Algorithm a b c d e f g h

Block-Lp-ADM 0.0013 0.0007 0.0010 0.0015 0.0008 0.0001 0.0001 0.0001

Lp-ADM 0.0660 0.0036 0.0595 0.1504 0.0042 0.0005 0.0059 0.0004

Group-Lasso 0.8927 0.8557 0.9242 0.9969 0.8140 0.7955 0.7504 0.7414
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7 Conclusions

This paper investigates the problem of the block sparse reconstruction which is corrupted by
impulsive noise. We have put forward a robust model for block signal recovery, which exploited the
generalized lp-norm (0 ≤ p < 2) to measure the residual error. For the model, we have proposed
an efficient algorithm to solve it, comprising the approximate operator for lp-norm functions into
the frame of augmented Lagrangian methods. Based on block-RIP, we have provided a sharp
sufficient condition and the error upper bound estimation of recovering block-sparse signals in the
presence of impulsive noise. Furthermore, the convergence condition of new algorithm for both the
nonconvex (0 ≤ p < 1) and convex (1 ≤ p < 2) cases has been analyzed. Simulation experiments
that are based on the synthetic block-sparse signals and the real-world FECG signals manifested
that when observation measurement is disturbed by impulsive noise, the better performance of the
Block-Lp-ADM algorithm is expressed by comparing with other well-known algorithms.

Appendix

The following results demonstrate that Gaussian noise, Gaussian mixture noise, GGD noise and
Sα̃S noise belong to bounded sets with large probability. We first give the results, and then prove
them.

Lemma 7.1.

(i) The Gaussian noise z ∼ N(0, σ̃2In) obeys

P
(
∥z∥p ≤ σ̃n1/p

√
1 + 2

√
n−1 log n

)
> 1− 1

n
. (7.1)

(ii) The Gaussian mixture noise z ∼ (1− λ)N(0, σ̃2In) + λN(0, κσ̃2In) meets with

P
(
∥z∥p ≤

√
1− λ+ κλσ̃n1/p

√
1 + 2

√
n−1 log n

)
> 1− 1

n
. (7.2)

Lemma 7.2.

(i) Given p ∈ (0, 1], the GGD noise z with independent zi ∼ GGD (i = 1, · · · , n) with ṽ > 0
satisfies

P
(
∥z∥p ≤ n

1
p
−1

t
)

≥ 1− exp

{
−1

2
min

[
(CΣ− t)2

4C2e2σ2
,

t− CΣ

Cemaxi ∥zi∥ψ1

− σ2

(maxi ∥zi∥ψ1)
2

]}
(7.3)

for t > CΣ,

P
(
∥z∥p ≤ n

1
p
−1

t
)

≥ 1− exp

{
−1

2
min

[
(CΣ− t)2

4C2e2σ2
,

CΣ− t

Cemaxi ∥zi∥ψ1

− σ2

(maxi ∥zi∥ψ1)
2

]}
(7.4)

for 0 ≤ t < CΣ, where C is an absolute constant, Σ =
∑

i ∥zi∥ψ1 and σ2 =
∑

i ∥zi∥2ψ1
.
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(ii) The GGD noise z with independent zi ∼ GGD (i = 1, · · · , n) with ṽ ≥ 2 fulfils

P

(
∥z∥p ≤ n1/pσ̃(n−1/2t+ 1)

√
Γ

(
3

ṽ

)/
Γ

(
1

ṽ

))
≥ 1− exp

(
− ct2

K4

)
(7.5)

for given p ∈ (1, 2) and all t ≥ 0, where K =
(
σ̃
√

Γ(3/ṽ)/Γ(1/ṽ)
)−1

maxi ∥zi∥ψ2 and c is an

absolute constant.

(iii) Given p ∈ (1, 2), the GGD noise z with independent zi ∼ GGD (i = 1, · · · , n) with 0 < ṽ < 2
satisfies

P (∥z∥p ≤ t)

≥ 1− exp

{
−1

2
min

[
(CΣ− t)2

4C2e2σ2
,

t− CΣ

Cemaxi ∥zi∥ψ1

− σ2

(maxi ∥zi∥ψ1)
2

]}
(7.6)

for t > CΣ,

P (∥z∥p ≤ t)

≥ 1− exp

{
−1

2
min

[
(CΣ− t)2

4C2e2σ2
,

CΣ− t

Cemaxi ∥zi∥ψ1

− σ2

(maxi ∥zi∥ψ1)
2

]}
(7.7)

for 0 ≤ t < CΣ, where C is an absolute constant, Σ =
∑

i ∥zi∥ψ1 and σ2 =
∑

i ∥zi∥2ψ1
.

Lemma 7.3. The Sα̃S noise z with independent zi ∼ Sα̃S distribution, i = 1, · · · , n with 1 < α̃ <
2, γ > 0 and a = 0 obeys

P
(
∥z∥p ≤ n1/p+1C(α̃)γ

)
≥ 1− 1

n

for 0 < p ≤ 1,

P
(
∥z∥p < n2C(α̃)γ

)
≥ 1− 1

n

for 1 < p < 2, where C(α̃) = −2Γ(−1/α̃)/(πα̃) > 0.

Proof of Lemma 7.1.

Since the proofs of two results are similar, we only give the proof of (ii). Similar to the proof of
Lemma III.3 [42], by elementary probability calculations, we get

P
(
∥z∥2 ≤

√
1− λ+ κλσ̃

√
n+ 2

√
n log n

)
≥ 1− 1

n
. (7.8)

It follows from the fact that ∥x∥p < n1/p−1/2∥x∥2 for given 0 < p < 2 and any x ∈ Rn that

P
(
n

1
2
− 1

p ∥z∥p ≤
√
1− λ+ κλσ̃

√
n+ 2

√
n log n

)
> P

(
∥z∥2 ≤

√
1− λ+ κλσ̃

√
n+ 2

√
n logn

)
. (7.9)

A combination of (7.8) and (7.9), the desired result follows.
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In order to give a bound of ∥z∥p with high probability for the GGD noise, we need to present one
definition and several lemmas. The ideal of the proof is motivated by a concentration inequality for
sums of independent sub-exponential random variables. Concretely, we firstly show that x ∼ GGD
is a sub-exponential random variable (rv); then, we give the definition of sub-exponential norm;
afterwards, we provide an upper bound for the moment generating function (mgf) of |x|; finally,
combining with these results above, the desired result will be derived. The lemma below shows
that GGD is a sub-exponential df.

Lemma 7.4. Let F denote the cumulative distribution function (cdf) of the GGD with ṽ > 0.
Then F is a sub-exponential df (abbreviated as F ∈ S).

Proof. First, we consider the case of 0 < ṽ ≤ 1.

In order to use the existing conclusions, we need to transform the pdf of the GGD. Set σ̃ = 21/ṽλ
with λ = [2−2/ṽΓ(1/ṽ)/Γ(3/ṽ)]1/2. Then,

f̃(x) =
ṽ

λ21+1/ṽΓ(1/ṽ)
exp

{
−1

2

∣∣∣x
λ

∣∣∣ṽ} .

By using Theorem 2.1 [37], for all y > 0, we get

lim
x→∞

1− F (x− y)

1− F (x)
= 1,

that is, F ∈ L, where L represents the class of long-tailed distributions.

Now, we show that F ∈ D, where D represents the class of dominated varying distributions.
Due to Lemma 3.1(ii) [40], we obtain

lim
x→∞

1− F (x/2)

1− F (x)
≤ 2−1,

i.e., F ∈ D.
A combination of Corollary 2(i) [54], F ∈ L

∩
D indicates F ∈ S for 0 < ṽ ≤ 1.

Now, we take into account the situation of ṽ > 1.

In the sequel, p is a positive integer. One can easily check that g(x) = x log x is a monotone
increasing function for x ≥ 1. For ṽ > 1, as 1 < ṽ ≤ 2, we choose p ≥ 1/(ṽ − 1); as ṽ ≥ 2, we make
choice of p ∈ Z+. Then, (p+ 1)/ṽ ≤ p. By applying the monotonicity of g(x), we get

p+ 1

ṽ
log

p+ 1

ṽ
≤ p log p.

Combining with the above inequality and the monotonicity of ex, we get(
p+ 1

ṽ

)(p+1)/ṽ

≤ pp. (7.10)

In the sequel, z stands for the random variable obeying the GGD. Then,

∥z∥Lp = (E|z|p)1/p
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(a)
= σ̃

(
1

Γ( 1ṽ )

)1/p [
Γ

(
p+ 1

ṽ

)]1/p
(b)

≤ σ̃

Γ( 1ṽ )

[(
p+ 1

ṽ

)(p+1)/ṽ
]1/p

(c)

≤ σ̃

Γ( 1ṽ )
(pp)1/p

=: K2p,

where (a) follows from (2.10), (b) is due to the fact that Γ(x) ≤ xx by Stirling’s approximation,
and (c) is from (7.10).

Accordingly, by Proposition 2.7.1 and Definition 2.7.5 [55], we derive that F is a sub-exponential
df for ṽ > 1. This completes the proof.

Definition 7.1. [55] A random variable x satisfying one of the equivalent properties 1-4 Proposition
2.7.1 is called a sub-exponential random variable. The sub-exponential norm of x, denoted by ∥x∥ψ1,
is defined to the smallest K3 in property 3. In other words,

∥x∥ψ1 = inf{t > 0 : E exp(|x|/t) ≤ 2}.

By Definition 7.1 and Proposition 2.7.1 [55], one can easily check that the following facts hold.
If x is a sub-exponential rv, then |x| is also a sub-exponential rv and ∥x∥ψ1 = ∥|x|∥ψ1 . The following
lemma gives a bound on the mgf of |x|.

Lemma 7.5. The moment generating function of |x| satisfies

E exp(λ|x|) ≤ exp(Cλ∥x∥ψ1 + 2C2e2∥x∥2ψ1
λ2) (7.11)

for all |λ| ≤ 1/(2Ce∥x∥ψ1), where C is an absolute constant.

Proof. By Proposition 2.7.1 [55], we get

(E|x|p)1/p ≤ C∥x∥ψ1p for all p ≥ 1. (7.12)

Applying Taylor series of exp(x), we get

E exp(λ|x|) = E

1 + λ|x|+
∞∑
p=2

(λ|x|)p

p!


(a)

≤ 1 + λC∥x∥ψ1 +
∞∑
p=2

(λC∥x∥ψ1p)
p

p!

(b)

≤ 1 + λC∥x∥ψ1 +
∞∑
p=2

(λC∥x∥ψ1p)
p

(p/e)p

= 1 + λC∥x∥ψ1 +

∞∑
p=2

(λCe∥x∥ψ1)
p
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= 1 + λC∥x∥ψ1 +
(λCe∥x∥ψ1)

2

1− λCe∥x∥ψ1

(7.13)

provided that |λCe∥x∥ψ1 | < 1, in which situation the geometric series above converges, where (a)
follows from (7.12) and (b) due to the fact that p! ≥ (p/e) by Stirling’s approximation. Furthermore,
if |λCe∥x∥ψ1 | < 1/2 then we can further bound the quantity above by

1 + λC∥x∥ψ1 + 2(λCe∥x∥ψ1)
2 ≤ exp(λC∥x∥ψ1 + 2λ2C2e2∥x∥2ψ1

).

Therefore, the desired result follows.

Proof of Lemma 7.2. (i): We begin the proof in the same way as Vershynin argued about the
concentration inequalities for S =

∑n
i=1 zi, e.g. Theorems 2.3.1 and 2.8.1 [55]. Multiply both sides

of the inequality
∑n

i=1 |zi| ≥ t by a parameter λ, exponentiate, and then make use of Markov’s
inequality and independence. This implies the following bound:

P

(
n∑
i=1

|zi| ≥ t

)
= P

(
exp

(
λ

n∑
i=1

|zi|

)
≥ eλt

)
≤ e−λtΠni=1E exp(λ|zi|). (7.14)

By applying Lemma 7.5, we get that

E exp(λ|zi|) ≤ exp(Cλ∥zi∥ψ1 + 2C2e2∥zi∥2ψ1
λ2) (7.15)

for all

|λ| ≤ 1/(2Cemax
i
∥zi∥ψ1). (7.16)

Putting (7.15) into (7.14), we get

P

(
n∑
i=1

|zi| ≥ t

)
≤ exp(−λt+ CΣλ+ 2C2e2σ2λ2) (7.17)

for all |λ| ≤ 1/(2Cemaxi ∥zi∥ψ1), where Σ =
∑

i ∥zi∥ψ1 and σ2 =
∑

i ∥zi∥2ψ1
.

Now, we minimize (7.17) in λ subject to the constraint (7.16). Here we only present the proof of
the situation of t > CΣ since the proofs of two situations are similar. When t > CΣ, the optimum
point is

λ = min

(
− CΣ− t

4C2e2σ2
,

1

2Cemaxi ∥zi∥ψ1

)
.

Plugging it into (7.17), we obtain

P (∥z∥1 ≥ t) ≤ exp

{
−1

2
min

[
(CΣ− t)2

4C2e2σ2
,

t− CΣ

Cemaxi ∥zi∥ψ1

− σ2

(maxi ∥zi∥ψ1)
2

]}
. (7.18)

Observe that ∥z∥1 ≤ ∥z∥p ≤ n1/p−1∥z∥1 for given p ∈ (0, 1]. Further, we gain that ∥z∥p ≤ n1/p−1t
since ∥z∥1 ≤ t for t ≥ 0. Consequently,

P
(
∥z∥p ≤ n

1
p
−1

t
)
≥ 1− exp

{
−1

2
min

[
(CΣ− t)2

4C2e2σ2
,

t− CΣ

Cemaxi ∥zi∥ψ1

− σ2

(maxi ∥zi∥ψ1)
2

]}
.

30



(ii) By (2.10), we get

(Ez2i )
1/2 = σ̃

√
Γ

(
3

ṽ

)/
Γ

(
1

ṽ

)
, i = 1, · · · , n.

Set yi = zi/
[
σ̃
√

Γ
(
3
ṽ

)
/Γ
(
1
ṽ

)]
, i = 1, · · · , n and (y1, · · · , yn)⊤ =: y. Then, Ey2i = 1, i =

1, · · · , n.
It has been showed [13] that the random variable zi ∼ GGD with ṽ > 2 is sub-gaussian. Since

standardization doesn’t change the nature of distribution, yi is sub-gaussian. By Lemma 2.7.6 [55],
we get that y2i − 1 is sub-exponential. Additionally, it is known that the GGD with ṽ > 2 is a
symmetric distribution. The remainder proof is similar to that of Theorem 3.1.1 [55]. Accordingly,

P
(
∥y∥2 ≥ t+

√
n
)
≤ exp

(
− ct2

K4

)

for all t ≥ 0, where K =
(
σ̃
√

Γ
(
3
ṽ

)
/Γ
(
1
ṽ

))−1

maxi ∥zi∥ψ2 (∥zi∥ψ2 is the sub-gaussian norm of zi,

for more details, please see Definition 2.5.6 [55]) and c is an absolute constant. Combining with

the fact that ∥x∥p ≤ n
1
p
− 1

2 ∥x∥2 for given p ∈ [1, 2] and all x ∈ Rn, we derive

P

(
∥z∥p ≤ n1/pσ̃(n−1/2t+ 1)

√
Γ

(
3

ṽ

)/
Γ

(
1

ṽ

))
≥ 1− exp

(
− ct2

K4

)
for given p ∈ (1, 2) and all t ≥ 0.

(iii) Note that ∥z∥p ≤ ∥z∥1 for given p ∈ (1, 2) and z ∈ Rn. And ∥z∥1 ≤ t implies ∥z∥p ≤ t for
all t ≥ 0. Combining with (7.18), we obtain

P (∥z∥p ≤ t) ≥ 1− exp

{
−1

2
min

[
(CΣ− t)2

4C2e2σ2
,

t− CΣ

Cemaxi ∥zi∥ψ1

− σ2

(maxi ∥zi∥ψ1)
2

]}
,

for t > CΣ. The proof of the case of 0 ≤ t < CΣ is similar.

The proof is complete.

Proof of Lemma 7.3.

By using Markov’s inequality, we have

P(∥z − Ez∥ ≥ t) ≤ E∥z − Ez∥k

tk
(7.19)

for all t > 0 and given k is an integer number. By (2.8), we get

E∥z∥1 = nC(α̃)γ (7.20)

for 1 < α̃ < 2, where C(α̃) = −2Γ(−1/α̃)/(πα̃) > 0. Since Ez = 0, a combination of (7.19) and
(7.20), we get

P
(
∥z − Ez∥1 ≥ n2C(α̃)γ

)
≤ E∥z∥1

n2C(α̃)γ
=

1

n
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with 1 < α̃ < 2. The rest of the proof for the case of 0 < p ≤ 1 is similar to that of Lemma 7.2 (i).
The remainder of the proof for 1 < p < 2 is similar to that of Lemma 7.2 (iii). This completes the
proof.
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