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Abstract
In this paper we suggest that working with the Planck mass and its link to other particles in a simple way it

possible to “convert” the Heisenberg uncertainty principle into a very simple quantum probabilistic model. We
further combine this with key elements from special relativity theory and get an interesting quantum relativistic
probability theory. Some of the key points presented here could help to eliminate negative (pseudo) probabilities
that often are used in standard quantum mechanics. These fake probabilities may be rooted in a failure to
understand the Heisenberg principle fully in relation to the Planck mass. When properly understood, the
Heisenberg principle seems to give a probabilistic range of quantum probabilities that are sound. There are no
instantaneous probabilities and the maximum probability is always unity. In our formulation, the Planck mass
particle is always related to a probability of one. Thus, we have certainty at the Planck scale for the Planck
mass particle or for particles accelerated to reach Planck energy, but only for one Planck second.

Key words: Heisenberg’s uncertainty principle, quantum probabilities, relativistic probabilities, from un-
certainty to certainty.

1 From Heisenberg’s Uncertainty Principle to Quantum Prob-

abilities

Heisenberg’s uncertainty principle [1] is given by

�p�x � ~ (1)

assume now that p is the Planck momentum, p = mpc. This is actually the only momentum that is directly
linked to the speed c. For all non-Planck mass elementary particles, we have a momentum related to a velocity
v < c. The velocity v is not certain and can take a large range of values so the momentum cannot be certain
for non-Planck mass particles. Inputting the Planck momentum in the equation for Heisenberg’s uncertainty
principle, we get

mpc�x � ~ (2)

Since the Planck momentum always is mpc, we will claim that the inequality should be exchanged for an
equality in this special case. If so, we must have �x = lp, where lp is the Planck length first introduced by Max
Planck in 1899 [2, 3]. In other words, we claim there is a certainty principle for the Planck mass

mpclp = ~ (3)

This we can also write as

mp =
~
lp

1
c

(4)

which is a known expression for the Planck mass. We also have

�pc�x � ~c

�pc
�x
c

� ~

�E
�x
c

� ~ (5)
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Again, in the special case of the Planck mass we have a momentum of p = mpc, so we will claim there is no
uncertainty in the Planck momentum and therefore we have

mpc
2�x

c
= ~ (6)

Since mp = ~
lp

1
c , the relationship above can only hold true if �x = lp, and

lp
c is the Planck time. The fact

that this is related to the Planck time is significant. However, this certainty in the Planck mass, the Planck
momentum, and even the Planck mass particle only exists for one Planck second. In other words, we o↵er a
hypothesis that there is a certainty principle that lasts for one Planck second, which is related to the Planck
mass particle, the Planck momentum, and the Planck energy. We will see how this plays an important role in
taking us from uncertainty in momentum and position in Heisenberg’s uncertainty principle for all non-Planck
masses towards a simple probabilistic quantum theory.

It is well-known that any subatomic mass can be written as

m =
~
�̄

1
c

(7)

where �̄ is the reduced Compton wavelength of the particle in question. For example, for an electron we have

me =
~
�̄e

1
c
⇡ 9.10938⇥ 10�31 kg (8)

We also show that the mass of any particle can be described as a function of the Planck mass by the following
formula

m = mp
lp
�̄

(9)

this simple relationship was possibly first pointed out by Hoyle, Burbidge, and Narlikar in 1994; see [4].
Based on this, the electron mass can also be written as

me =
~
lp

1
c
lp
�̄e

= mp
lp
�̄e

(10)

We will suggest that the term
lp
�̄e

can also be considered a quantum probability that is linked to a one Planck
second observational time window. The electron mass in its probabilistic form for one Planck second is therefore
just an expected rest-mass

E[me] = mp
lp
�̄e

= me (11)

The electron mass in a very short observational window is simply an expectation and a function of the Planck
mass. The idea is that the Planck mass particle make up all other masses. We suggest that an electron consists
of c

�̄e
⇡ 7.76344⇥ 1020 Planck masses per second. However, each Planck mass only lasts for one Planck second,

so the mass of the electron must be

me =
c

�̄e
⇥ 1.17337⇥ 10�51 ⇡ 9.10938⇥ 10�31 kg (12)

The value 1.17337 ⇥ 10�51 is simply a Planck mass in one Planck second. This is somewhat similar to
Schrödinger’s [5] hypothesis in 1930 of a Zitterbewegung (”trembling motion” in German) in the electron that
he indicated was approximately

2mc2

~ =
2c

�̄e
⇡ 1.55269⇥ 1021 (13)

This is exactly twice our assumed Planck mass frequency in the electron per second. We think our number is
the more relevant one here, but it is interesting to see that the old Masters where probably not far from similar
ideas. In any case, what is important here is that every mass can be expressed as a function of the Planck mass
multiplied by its quantum probability. And each particle has a quantum probability equal to

P =
lp
�̄

(14)

For a proton, we will get an expected rest-mass in a Planck second observational time window of

E[mP] = mp
lp
�̄P

⇡ 1.67262⇥ 10�27 kg (15)

Next we will move on to take this concept further to relativistic probabilities.



3

2 Relativistic Quantum Probabilities

We will claim that our introduced quantum probabilities must follow relativistic rules. We will claim every
elementary particle must have a relativistic quantum probability that is

P =
lp
�̄q

1� v2

c2

=
lp

�̄
q

1� v2

c2

(16)

Many will likely protest here, because if we only rely on combining this with Einstein’s special relativity
theory [6] it means we can get relativistic probabilities above unity and even close to infinite probabilities. This
would be absurd and would not lead to a good theory. However, this problem has actually already indirectly
been solved (without the author knowing that this also was related to sound quantum probabilities before now).
In recent years, Haug has published a series of papers [7, 8, 9] where he shows strong theoretical evidence in
favor of the idea that elementary particles have a maximum velocity of

vmax = c

r
1�

l2p
�̄2

(17)

For example, for an electron this means the maximum velocity is

vmax = c

s

1�
l2p
�̄2
e

⇡ c⇥ 0.99999999999999999999999999999999999999999999912412 (18)

More important here is that at this maximum velocity for each particle, the quantum relativistic probability
can take on a maximum value of

P =
lp

�̄
q

1� v2
max
c2

P =
lp

�̄

s

1�

 
c

r
1�

l2p
�̄2

!2

c2

P =
lp

�̄

s

1�
c2

 
1�

l2p
�̄2

!

c2

P =
lp

�̄
q

1� 1 +
l2p
�̄2

P =
lp
�̄

�̄
lp

= 1 (19)

Thus Haug’s maximum velocity very elegantly leads to a maximum quantum probability of one. This means
we get a boundary condition on the quantum probability for each elementary particle for each Planck second of

lp
�̄

 P  1 (20)

Still, the relativistic quantum probability range will be di↵erent for each elementary particle. The maximum
relativistic mass a particle can take is directly linked to its maximum velocity and thereby to its maximum
probability of one. The maximum relativistic mass for any particle is the Planck mass multiplied by the maximum
relativistic probability, which is one, and not surprisingly we get

Expected relativistic maximum mass electron = mp
lp

�̄e

q
1� v2

max
c2

= mp ⇥ 1 = mp (21)

How should we interpret this? It means at its maximum velocity any subatomic particle becomes a Planck
mass, when relying on quantum probabilities. This also means that the original Heisenberg uncertainty principle
collapses and become the certainty principle at the Planck scale. In addition, the Lorentz symmetry is broken
at the Planck scale.

The Planck mass particle is a particularly interesting case; its reduced Compton wavelength is �̄ = lp, which
gives a probability range for the Planck mass particle of
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lp
lp

 Pp  1

1  Pp  1 (22)

This can only be true if the Planck particle quantum probability always is Pp = 1. This naturally means
there is no uncertainty for the Planck mass particle. One could criticize this approach and say this is not so
strange, since we have defined the Planck momentum as certain from the beginning. However, there is more
to it and this shows that the theory is consistent. As also pointed out by Haug in several earlier papers, the
maximum velocity for the Planck mass particle is also very unique; it is

vmax = c

s

1�
l2p
l2p

= 0 (23)

and this makes the relativistic quantum probability of the Planck mass particle consistent; it is

Pp =
lp

lp

q
1� v2

max
c2

=
lp

lp
q

1� 02

c2

=
lp
lp

= 1 (24)

Our interpretation here is that the Planck mass particle is the very collision point of the light particles
making up each elementary particle. This also explain why a Planck mass particle can have momentum of mpc.
Naturally, the Planck mass particle must follow relativistic rules, so we must have

pp =
mcq
1� v2

c2

= mc (25)

which can only happen if v = 0. Our interpretation is that the Planck mass particle bursts into energy within
one Planck second and the entire momentum is used internally to achieve that transformation. We also get a

hint about the lifetime of a Planck particle from the Planck acceleration, ap = c2

lp
⇡ 5.56092⇥ 1051 m/s2. The

Planck acceleration is assumed to be the maximum possible acceleration by several physicists; see [10, 11], for
example. The velocity of a particle that undergoes Planck acceleration will actually reach the speed of light

within one Planck second: aptp = c2

lp

lp
c = c. However, we know that nothing with rest-mass can travel at the

speed of light, so no “normal” particle can undergo Planck acceleration if the shortest possible acceleration time
interval is the Planck second. The solution is simple. The Planck acceleration is an internal acceleration inside
the Planck particle that within one Planck second turns the Planck mass particle into pure energy.

Further, the Planck mass particle is the same from every reference frame across reference frames. It clearly
breaks Lorentz symmetry, something that also several quantum gravity theories predict, among them a newly
introduced quantum gravity theory that is derived from the Heisenberg principle that relies on the quantum
probability approach presented here.

3 Probabilistic Summary

In this short section we will summarize some of our key findings in tables. Table 1 shows the range for the
relativistic quantum probability for an electron, a proton, and a Planck mass particle.

Probability range Probability range

Electron quantum probability lp
�̄e

 Pe  1 4.18532⇥ 10�23  Pe  1

Proton quantum probability lp
�̄P

 PP  1 7.6849⇥ 10�20  PP  1

Planck particle quantum probability lp
lp

 Pp  1 Pp = 1

Table 1: The table show the range for the relativistic quantum probability for an electron, a proton, and a Planck
mass particle. .

Table 2 shows the standard relativistic mass as well as the probabilistic approach; they are consistent. Be
aware that there must be a maximum velocity limit on anything with mass; this will be equal to Haug’s maximum
velocity.
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Standard appproache Probabilisitic approach
observation in one Planck second

Electron mass m = meq
1� v2

c2

=
~
�̄e

1
cq

1� v2

c2

E[m] = mpPe = mp
lp

�̄e

q
1� v2

c2

� me

Proton mass m = mPq
1� v2

c2

=
~

�̄P

1
cq

1� v2

c2

E[m] = mpPP = mp
lp

�̄P

q
1� v2

c2

� mP

Planck mass particle mp = mpq
1� 02

c2

= mp E[m] = mpPp = mp
lp

lp

q
1� 02

c2

= mp

Table 2: This table shows the standard relativistic mass as well as the probabilistic approach. Be aware of the
notation di↵erence between the Planck mass mp and the proton rest mass mP.

Standard appproache Probabilisitic approach
observation in one Planck second

Electron mass m = mer
1� v2

max
c2

= mp E[m] = mpPe = mp
lp

�̄e

r
1� v2

max
c2

= mp ⇥ 1 = mp

Proton mass m = mPr
1� v2

max
c2

= mp E[m] = mpPP = mp
lp

�̄P

r
1� v2

max
c2

= mp ⇥ 1 = mp

Planck mass particle mp = mpr
1� v2

max
c2

= mp E[m] = mpPp = mp
lp

lp

r
1� v2

max
c2

= mp ⇥ 1 = mp

Table 3: This table shows the standard relativistic mass as well as the probabilistic approach at the maximum
velocity only.

4 Something is Rotten in Standard Probabilistic Quantum Me-

chanics

We will claim there is something rotten in modern quantum mechanics, despite its extreme success in predicting
what we observe in experiments. The Wigner [12] quasi-probability distribution is well-known can take on
negative values and values above unity, see also . Even if these negative probabilities never are observed in
practice, they play a central role in quantum mechanics to get the math to fit observations. Renormalization is
another ad-hoc method that has been used repeatedly for years; over time it has become an acceptable procedure
that few physicists are questioning these days.

However, an important critic of renormalization was Feynman [14]. Clearly, he had a central role in the
development of quantum electrodynamics, and yet he claimed

The shell game that we play ... is technically called ’renormalization’. But no matter how clever the

word, it is still what I would call a dippy process! Having to resort to such hocus-pocus has prevented

us from proving that the theory of quantum electrodynamics is mathematically self-consistent. It’s

surprising that the theory still hasn’t been proved self-consistent one way or the other by now; I

suspect that renormalization is not mathematically legitimate. – Richard Feynman, 1985

We strongly suspect that the negative and above unity probabilities, as well as renormalization in standard
quantum mechanics, could be related to the fact that modern physics does not have an exact maximum velocity
limit on anything with rest-mass. They only have the limit v < c, which means that one can get basically as
close to infinite kinetic energies and infinite relativistic masses as one wants. No matter how close the speed
v is to the speed of light, one can always get a little closer to the speed of light. If the probabilistic approach
presented here is correct, this means that standard quantum mechanics likely has embedded within it quantum
probabilities above unity ? something that is absurd. The flawed ad-hoc adjustment for this is to add a
probability function that allows negative probabilities to get the sum of probabilities in order now to not break
other basic probabilistic rules. Two fake probabilities: negative and above unity may give a correct prediction,
but it can also lead to spooky interpretations. Further, the assumption of instantaneous probabilities could also
lead to fake probabilities. If the shortest possible time interval is one Planck second, then the ultimate quantum
probabilities should be linked up to that observational time window as we have done here. The Planck length
and the Planck second are closely connected, and so are the probabilistic presented in this paper.
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5 Conclusion

In this paper we have suggested that
lp
�̄

can be interpreted as quantum probability related to the rest-mass of

each particle. Further, we claim the relativistic version of this quantum probability simply is
lp

�̄

r
1� v2

c2

. This

can only hold true if elementary particles are limited by Haug’s suggested maximum velocity for elementary

particles. This speed limit is vmax = c
q

1� v2

c2
, which actually corresponds to a maximum velocity that Haug

has recently derived from the Heisenberg principle when simply assuming that the Planck length is the shortest
length one can measure. Because standard physics does not have such a speed limit, but simply maintains
that v < c, we suspect this is the reason for the reliance on fake probabilities such as negative and above-unity
quasi-probabilities. By studying this paper and other recent and related papers by Haug, it is possible that we
may be able to solve some of the big challenges in quantum mechanics in a new and more elegant way, which
also reduces the amount of spooky interpretations that exist in today’s quantum mechanics.
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