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The Borsuk-Ulam theorem is a general principle able to describe a large amount of brain functions.  However, when
assessing the neurodata extracted from EEG and fMRI, the BUT-related methods, based on projections and mappings
among different functional brain dimensions, are impractical and computationally expensive.  Here we show how the
BUT’s antipodal features with matching description (say, two far apart brain areas that are activated simultaneously and
display the same value of entropy) can be described in terms of closed paths on a Möbius strip.  This allows to evaluate
the nervous system’s dynamics in terms of trajectories taking place onto the well-established, easily manageable phase
space of a twisted cylinder.
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The Borsuk-Ulam theorem (BUT) has been proven suitable for the description of different nervous functions and
activities.  The BUT suggests that the neural properties endowed in the physical and biological spaces of the brain can
be translated to abstract mathematical ones (Tozzi and Peters, 2016a).  To make a few examples, Tozzi and Peters
(2016b) assessed logistic maps of neural chaotic activities and were able to describe their nonlinear dynamics in linear
terms.  Furthermore, the BUT apparatus sheds new light on the puzzling phenomena of (spatial) fractals and (temporal)
power laws (Tozzi et al., 2017a), that are ubiquitous during brain oscillations (Friston and Ao, 2012; Beggs and Timme,
2012).  Tozzi and Peters (2016b) proposed that a brain symmetry stands for two BUT’s features with matching
description lying in higher dimensions, while a symmetry break for a single feature lying one dimension lower.  These
BUT symmetries have been correlated with neural thermodynamic activity and energy requirements/constraints during
both spontaneous and evoked nervous function (Tozzi and Peters, 2017b).  A BUT framework allows also to analyze
how the brain perceives “sharp”, non-fuzzy objects in order to tackle the problem of Kullback-Leibler perceptual
divergence (Tozzi and Peters, 2016b).  Furthermore, a symmetric, topological approach has been provided useful for the
evaluation of the multisensory information integration occurring in the cortex during perceptive tasks (Tozzi and Peters,
2017a).
However, a problem arises.  The BUT copes with projections and mappings among different functional dimensions,
while brain dynamics are experimentally described not in such terms of mappings and projections, rather of paths and
trajectories taking place in neural phase spaces.  Furthermore, the techniques of algebraic topology that assess the BUT
features are quite complex, difficult to approach and quantify.  Therefore, a framework is required that allows the
description of the BUT’s matching features in terms of dynamics taking place in more manageable phase spaces.  Here
we show that the scenario described by the BUT can be transported to a peculiar phase space, i.e., a Möbius strip, in
order that antipodal points can be tackled in terms of trajectories taking place on a rather simple abstract manifold.  This
means, for example, that the pairwise brain oscillations detected through the currently available neurotechniques (such
as EEG and fMRI) can be assessed in terms of couples of matching particles moving along the one-side surface of a
twisted cylinder.

MATERIALS AND METHODS

The Borsuk-Ulam theorem and its variants.  The Borsuk-Ulam Theorem states that (Borsuk, 1933; Borsuk, 1969):
Every continuous map : n nf S R®  must identify a pair of antipodal points.
Points  on  Sn are antipodal, provided they are diametrically opposite.  An n-dimensional Euclidean vector space is
denoted by nR .  In terms of brain activity, a feature vector nx RÎ  models the description of a brain signal.
In  other  words,  the  BUT  suggests  that  a  single  point  on  a  circumference  maps  to  two  points  on  a  sphere.   In  more
technical terms, a point embedded in lower dimensions gives rise to two points with matching description in higher
ones, provided that the function under assessment is continuous (Dodson and Parker, 1997; Matoušek 2003).  The
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original formulation of BUT displays versatile ingredients which can be modified, resulting in useful extensions of its
rather simple sketch (Tozzi et al., 2017a).  For example, antipodal points can be replaced by antipodal regions, or
shapes, with matching description (Tozzi and Peters, 2016b).  Further, instead of points, novel BUT variants allow the
assessment (from one dimension to another) of trajectories, functions, vectors and tensors, particle trajectories in phase
spaces, information and activities such as entropies (Tozzi and Peters, 2017c).  Also, the two features do not need to be
perfectly antipodal: the only requirement is that they must not share points in common and are fully separated in the
higher-dimensional manifold (Tozzi et al., 2017a).  BUT variants hold not just for concave structures, such as the
circumferences and spheres described by the classical BUT, but also for flat and concave structures (Tozzi 2016), such
as the rather intricate trajectories detected in several systems’ dynamics (Sengupta et al., 2016). Furthermore, the
dimensions  described  by  BUT  do  not  stand  just  for  spatial  dimensions  (such  as  a  circle  and  a  sphere),  but  also  for
abstract dimensions (such as for example, fractal measurements and time intervals) (Tozzi and Peters, 2016b).

Möbius strip.  The Möbius strip, also called the twisted cylinder, is a one-side surface that displays just one boundary
(Möbius, 1858; Starostin and van der Heijden 2007; t’Hooft 2018), when embedded in three-dimensional Euclidean
space.  A Möbius strip can be built by taking a paper strip and giving it a half-twist, then joining the ends in order to
form a loop.  This means that a line that starts from the seam down the middle meets back at the seam, but at the other
side.  If continued, the line meets the starting point, in a point that is double the length of the original strip.  This single
continuous curve may be described either through a parameterized subset of a three-dimensional Euclidean space, or
through cylindrical polar coordinates.  Topologically, the Möbius strip can be defined as the square [0, 1] × [0, 1], with
its top and bottom sides identified by the relation (x, 0) ~ (1 − x, 1) for 0 ≤ x ≤ 1.
Our aim is to achieve the transport of the BUT’s antipodal points to the one-side surface of such twisted cylinder.

RESULTS

If  we  embed  the  trajectories  of  two  BUT  matching  functions  x  and  –x  (Figure A)  on  a  Möbius  strip,  we  achieve  a
closed, continuous loop where the two functions are allowed to travel along constrained trajectories.  It  is easy to see
that a piece of strip of a given length, standing for a time interval, may display both x and –x at the same time (Figure
B).  The BUT dictates are preserved because, even if the two matching features are simultaneous, they do not have
points in common: indeed, they lie on the opposite surface of the same strip.  In nervous dynamics’ terms, this means
that the oscillations’ trajectories of two areas which activate together can be followed in subsequent times, even when
their matching activation has disappeared (Figure C).
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Figure.  Transport of the BUT theorem on a Möbius strip. Figure A.  Changing the radius of the hypersphere makes
the antipodal points more or less close.  Close to the center, the two points (marked with the number 3) are almost
superimposed. Figure B.  The movements of the antipodal points can be described in terms of trajectories on a Möbius
strip.  The parallelepiped stands for a slice of time, where both the antipodal features occur simultaneously. Figure C.
A theoretical example from neuroscience is provided.  A cerebral hemisphere is unfolded and flattened into a two-
dimensional reconstruction (Van Essen, 2005) that can be embedded into a circular manifold.  When two antipodal
areas display simultaneously a feature in common, e.g., the same value of pairwise entropy (Watanabe et al. 2014), we
achieve a topological description assessable in terms of BUT (left side).  Such two areas and their subsequent dynamics
can be easily visualized and assessed in terms of trajectories taking place on an abstract twisted cylinder (right side).

CONCLUSIONS

Results from far-flung scientific disciplines point towards the BUT as a universal principle able to describe and
quantitatively assess otherwise elusive biological and physical activities.  To make an example, the BUT dictates pave
the way to the description of the brain activity as taking place on a multidimensional torus (Tozzi and Peters, 2016a).
Approaching novel topological techniques of computational proximity, Peters et al. (2017a) detected a four-dimensional
moving hypersphere, located insight the nervous connectome.  Their claim has been strengthened by the recent finding
that  the  Rényi  informational  entropy in  primary  sensory  areas  is  lower  than  in  associative  ones  (Peters  et  al.,  2017b):
this corroborates the BUT-framed prevision that the brain activity lies in higher dimensions than the three-dimensional
(plus time) environment.  In such a topological context, systems operations become projections among different levels,
giving rise to apparently emergent properties in higher dimensions.  Therefore, we are facing a framework based on
mappings and projections among different activity levels.  However, the three-dimensional data extracted from neural
series achieved through, e.g., EEG and fMRI techniques (Van de Ville et al., 2010; Ezaki et al., 2017), are difficult to
manage in terms of mapping and projections.  Therefore, once established the validity on the BUT framework in the
assessment of brain activities, we require a more affordable procedure in order to visualize and process the huge amount
of available experimental data.  Here we show how the features described by BUT, that occur on an orientable manifold
with positive-curvature, can be described in terms of paths on a non-orientable manifold, i.e., a Möbius strip.  Indeed,
the Möbius strip has the mathematical property of being unorientable, and this allows to elucidate some brain puzzling
functions.  Indeed, the description of nervous trajectories, detected through experimental observation, on a twisted
cylinder instead of on the classical three-dimensional-plus time phase space, allows to notice possible unexpected
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correlations.  The possibility to locate brain oscillations on a Möbius strip allows the assessment of simultaneous
nervous activities that are spatially separated (e.g., two brain areas that display the same value of entropy in fMRI
traces).  This allows, for example, the evaluation in a single framework of the simultaneous activation of the primary
sensitive  cortex  and  the  frontal  areas  during  a  visual-related  task.   It  must  also  be  taken  into  account  that  the  BUT
requirements, such as two features with no points in common and the proper mappings, are fully preserved when
mapped to a Möbius strip.  The transport of the BUT apparatus to a Möbius strip displays also another invaluable
advantage: because the mapping achieved by making a trip around a twisted cylinder is an inversion, this permits the
preservation of the invariance under inversions, therefore obeying to the laws of conservation of energy and
information.
In sum, the study of brain oscillations on a twisted cylinder (instead of a three-dimensional Euclidean phase space) is
justified by the BUT framework and might pave the way to the detection of unexpected relationships among different
synchronous brain activities.

REFERENCES

1) Beggs JM, Timme N.  2012.  Being critical of criticality in the brain.  Front Physiol. 2012 Jun 7;3:163.
doi: 10.3389/fphys.2012.00163.

2) Borsuk K. 1933. DreiSätzeüber die n-dimensionale euklidischeSphäre. FundamentaMathematicae. 20:
177–190.

3) Borsuk K.  1969.  Fundamental retracts and extensions of fundamental sequences, 64, no. 1, 55–85.
4) Dodson CTJ, Parker PE.  1997.  A user’s guide to algebraic topology, Kluwer, Dordrecht, Netherlands,

1997, xii+405 pp. ISBN: 0-7923-4292-5, MR1430097.
5) Ezaki T, Watanabe T, Ohzeki M, Masuda N.  2017.  Energy landscape analysis of neuroimaging data.

Philos Trans A Math Phys Eng Sci. 2017 Jun 28;375(2096). pii: 20160287. doi: 10.1098/rsta.2016.0287.
6) Friston K, Ao P.  2012.  Free energy, value, and attractors. Comput Math Methods Med; 2012:937860.

doi: 10.1155/2012/937860.
7) Matoušek, J. 2003.  Using the Borsuk-Ulam Theorem.   Lectures on topological methods in combinatorics

and geometry. Written in cooperation with Anders Björner and Günter M. Ziegler.Springer-Verlag,
Berlin, 2003. xii+196 pp. ISBN: 3-540-00362-2.

8) Möbius AF. 1858.  Werke, Vol. 2. p. 519.
9) Peters JF, Ramanna S, Tozzi A, İnan E.  2017a.  Bold-Independent Computational Entropy Assesses

Functional Donut-Like Structures in Brain fMRI Images.  Front Hum Neurosci. 2017 Feb 1;11:38. doi:
10.3389/fnhum.2017.00038.

10) Peters JF, Tozzi A, Ramanna S, Inan E.  2017b. The human brain from above: an increase in complexity
from environmental stimuli to abstractions.  Cognitive Neurodynamics.  DOI: 10.1007/s11571-0-17-9428-
2.

11) Sengupta B, Tozzi A, Coray GK, Douglas PK, Friston KJ. 2016.  Towards a Neuronal Gauge Theory.
PLOS Biology 14 (3): e1002400. doi:10.1371/journal.pbio.1002400.

12) Starostin EL, van der Heijden GHM. 2007. The shape of a Möbius strip. Nature Materials. 6 (8): 563–7.
doi:10.1038/nmat1929

13) t’Hooft  G.   2018.   Virtual  Black  Holes  and  Space–Time  Structure.   Foundations  of  Physics.
DOI10.1007/s10701-017-0133-0

14) Tozzi A. 2016.  Borsuk-Ulam Theorem Extended to Hyperbolic Spaces.  In Computational Proximity.
Excursions in the Topology of Digital Images, edited by J F Peters, 169–171. doi:10.1007/978-3-319-
30262-1.

15) Tozzi  A,  Peters  JF.  2016a.   Towards  a  Fourth  Spatial  Dimension  of  Brain  Activity.   Cognitive
Neurodynamics 10 (3): 189–199. doi:10.1007/s11571-016-9379-z.

16) Tozzi A, Peters JF. 2016b.  A Topological Approach Unveils System Invariances and Broken Symmetries
in the Brain.  Journal of NeuroscienceResearch 94 (5): 351–65. doi:10.1002/jnr.23720.

17) Tozzi A, Peters JF. 2017a.  A Symmetric Approach Elucidates Multisensory Information Integration.
Information 8,1.  doi: 10.3390/info8010004.

18) Tozzi A, Peters JF.  2017b.  From abstract topology to real thermodynamic brain activity.  Cognitive
Neurodynamics.  11: 283. Doi:10.1007/s11571-017-9431-7.

19) Tozzi A, Peters JF. 2017c.  What does it mean “the same”? Progress in Biophysics and Molecular
Biology.  https://doi.org/10.1016/j.pbiomolbio.2017.10.005.

20) Tozzi A, Peters JF, Fingelkurts AA, Fingelkurts AA, Marijuán PC.  2017a.  Topodynamics of metastable
brains.  Physics of Life Reviews. http://dx.doi.org/10.1016/j.plrev.2017.03.001.

21) Van de Ville D, Britz J, Michel CM.   2010.  EEG microstate sequences in healthy humans at rest reveal
scale-free dynamics. Proc Natl Acad Sci U S A.; 107(42):18179-18184. doi: 10.1073/pnas.1007841107.



5

22) Van Essen DC. 2005. A Population-Average, Landmark- and Surface-based (PALS) atlas of human
cerebral cortex. Neuroimage. 28, 635–666.

23) Watanabe,  T.,  Kan,  S.,  Koike,  T.,  Misaki,  M.,  Konishi,  S.,  Miyauchi,  S.  Masuda,  N.  2014.  Network-
dependent modulation of brain activity during sleep. NeuroImage, 98, 1–10.
http://doi.org/10.1016/j.neuroimage.2014.04.079.


