The Mystery of Mass as Understood from Atomism

Espen Gaarder Haug*

March 20, 2018

Abstract

Over the past few years I have presented a theory of modern atomism supported by mathematics [1, 2]. In each area of analysis undertaken in this work, the theory leads to the same mathematical end results as Einstein's special relativity theory when using Einstein-Poincaré synchronized clocks. In addition, atomism is grounded in a form of quantization that leads to upper boundary limits on a long series of results in physics, where the upper boundary limits traditionally have led to infinity challenges.

In 2014, I introduced a new concept that I coined "time-speed" and showed that this was a way to distinguish mass from energy. Mass can be seen as time-speed and energy as speed. Mass can also be expressed in the normal way in form of kg (or pounds) and in this paper we will show how kg is linked to time-speed. Actually, there are a number of ways to describe mass, and when they are used consistently, they each give the same result. However, modern physics still does not seem to understand what mass truly is.

This paper is mainly aimed at readers who have already spent some time studying my mathematical atomism theory. Atomism seems to offer a key to understanding mass and energy at a deeper level than modern physics has attained to date. Modern physics is mostly a top-down theory, while atomism is a bottom-up theory. Atomism starts with the depth of reality and surprisingly this leads to predictions that fit what we can observe.

This is a first draft that we plan to develop into a longer paper later on. Thus we are laying out the most important key concepts and more detailed description will be provided in future versions of the paper. Constructive comments are welcome.

Key words: Mass, energy, time-speed, collision-time, from time-speed to kg, the Haug gravitational constant.

1 The Mystery of Mass

In modern physics, mass is rather mysterious. There is no doubt that modern physics has good insights, both mathematically and experimentally, regarding the relationship between energy and mass. However, for all of the years of analysis and theorizing, physicists still cannot really explain what energy and mass are. As once stated by Richard Feynman

It is important to realize that in physics today, we have no knowledge what energy is.
Much of modern physics is top-down, in that is one has observed a certain phenomenon and then tries to explain it by digging deeper and deeper. Atomism has an advantage here, as it is bottom-up. In a bottom-up theory, one starts with an idea concerning what the world is at the very deepest level, then derives what that idea will predict and compares it with actual observations and with other theories. Naturally a bottom-up theory must be consistent with experiment; if not, then there is clearly something wrong with the fundamentals. Further, attempting to start at the bottom does not guarantee success. However, atomism seems to have remarkable success: in our experience, nothing that atomism has predicted so far goes against the findings of traditional experiments. However, it seems to lead to a more logical and more straightforward theory.

For example, we have shown that atomism leads to all of the same mathematical end results as special relativity when using Einstein-Poincaré synchronized clocks; see [1]. In addition, atomism predicts an exact maximum velocity of matter that is just below the speed of light; this seems to remove a series of infinity challenges in special relativity theory. The prediction from atomism on the maximum velocity of anything with rest-mass is also the same limit we have found recently by combining Heisenberg's uncertainty principle with some of Max Planck's key concepts.

The mass of subatomic particles can be written as

[^0]\[

$$
\begin{equation*}
m=\frac{\hbar}{\bar{\lambda}} \frac{1}{c} \mathrm{~kg} \tag{1}
\end{equation*}
$$

\]

where \hbar is the Planck constant, $\bar{\lambda}$ is the reduced Compton wavelength of the particle in question and c is the well-known speed of light. One never sees modern physics papers discuss what the speed of light represents inside a mass formula. It is well- known that the speed of light (squared) is needed to go from mass to energy and from energy to mass, but that just shows there is potentially an enormous amount of energy in a small amount of mass. However, why also consider the speed of light inside a mass? Modern physics do not have an explanation for this. They probably just look at this as something purely mathematical that one can derive from other concepts. However, we will soon see and understand why the speed of light is so essential in a mass, and what it represents.

2 Time-Speed, Continuous Time, and Collision Time

The purest form of mass under atomism comes into being at the very collision point (counter-strike) between indivisible particles. A collision between two indivisible particles lasts for one Planck second. The number of internal collisions in an electron per second, for example, is simply the speed of light divided by the reduced Compton wavelength of the electron. That is to say, we have the following number of internal collisions in an electron per second

$$
\begin{equation*}
\frac{c}{\bar{\lambda}_{e}} \approx 7.7634 \times 10^{20} \text { collisions per second } \tag{2}
\end{equation*}
$$

This is what we can call the "internal frequency" of an elementary particle. Each elementary particle has an internal collision frequency. This is very similar to Schrödinger's [3] hypothesis in 1930 of a Zitterbewegung ("trembling motion" in German) in the electron that he indicated was approximately

$$
\begin{equation*}
\frac{2 m_{e} c^{2}}{\hbar}=\frac{2 c}{\bar{\lambda}_{e}} \approx 1.55269 \times 10^{21} \text { trembling motions per second } \tag{3}
\end{equation*}
$$

This is actually exactly twice our number, but we think our number is more relevant in this respect. Schrödinger also did not seem to have an explanation of exactly what was behind this "trembling motion." Here we are hypothesizing that it is the number of internal counter strikes inside an electron that will also make the electron stand and vibrate. Further, each collision lasts for one Planck second; see [4, 5]. This means that, in total, the collisions in an electron last for

$$
\begin{equation*}
\frac{c}{\overline{\lambda_{e}}} \frac{l_{p}}{c}=\frac{l_{p}}{\bar{\lambda}_{e}} \approx 4.18532 \times 10^{-23} \text { continuous seconds per second } \tag{4}
\end{equation*}
$$

This is actually a dimensionless number, but as we will explain, it can be seen as the number of continuous seconds per second. That is, we consider each collision as a period with continuous time and then add all the collision times together and call this continuous time, even if it consists of many discrete collisions. So one could always argue about the use of words here. We could also have looked at the amount of continuous seconds for the time it takes for light to travel one meter in a vacuum. This would be

$$
\begin{equation*}
\frac{1}{\bar{\lambda}} \frac{l_{p}}{c}=\frac{l_{p}}{\bar{\lambda}} \frac{1}{c} \tag{5}
\end{equation*}
$$

This is the amount of continuous time per meter of light travel. Alternatively, we can say that it is the amount of continuous time per approximately 3.3 nano-seconds, as light travels one meter in this time. This is directly related to the time-speed concept introduced by Haug in 2014. We consider the collisions as continuous time, or seen another way, it could be called collision time. How much time are the indivisible particles in an elementary particle spending on collisions per time unit? Bear in mind that under atomism, an elementary particle like an electron consists of (minimum) two indivisible particles moving back and forth counter-striking. The indivisible particles always move at the speed of light, with the exception of that point of collision, when they stand still for one Planck second.

Instead of calling this continuous time, we could simply call this collision time per time unit. The idea behind continuous time is that it represents the time where particles collide relative to the time the indivisible particles making up the elementary particle are not colliding. Time-speed is a ratio of collision time relative to non-collision time. In other words, it is the time in rest (collision) relative to time in internal motion of the indivisible particles. Hypothetically, in a Planck mass particle there is no distance between the indivisible particles and they are colliding as frequently as possible. The time-speed of a Planck mass is

$$
\begin{equation*}
\hat{m}=\frac{l_{p}}{l_{p}} \frac{1}{c}=\frac{1}{c} \approx 3.33564 \times 10^{-9} \text { second per meter } \tag{6}
\end{equation*}
$$

That is is 3.3 nano-seconds per meter, which is the maximum possible time-speed. In other words, it is colliding for 3.3 nano-seconds, per 3.3 nano-seconds, or per meter the light travels. A Planck mass can also be written simply as

$$
\begin{equation*}
\hat{m}=\frac{l_{p}}{l_{p}}=1 \text { continuous second per second } \tag{7}
\end{equation*}
$$

That is only a Planck mass is pure continuous time, and it only consist of collisions. All other elementary particles, $\bar{\lambda}>l_{p}$, must spend the following amount of continuous time per meter that light travels (that is per 3.03 nano-seconds)

$$
\begin{equation*}
\hat{m}=\frac{l_{p}}{\bar{\lambda}} \frac{1}{c} \text { continuous seconds per meter } \tag{8}
\end{equation*}
$$

For example, an electron is

$$
\begin{equation*}
\hat{m}_{e}=\frac{l_{p}}{\bar{\lambda}_{e}} \frac{1}{c} \approx 1.3961 \times 10^{-31} \text { continuous seconds per meter } \tag{9}
\end{equation*}
$$

That is, for every 3.03 nano-seconds an electron will have spent 1.3961×10^{-31} seconds on collisions.
It is worth noting that when we work with mass as time-speed we do not need Planck's constant. Further, when we work with mass as time-speed, then the Planck mass is easily given and it only depends on the speed of light. For all other masses, we also need the Planck length and the reduced Compton wavelength. For a Planck mass, the reduced Compton wavelength is equal to the Planck length and they cancel out, so we are only dependent on the speed of light. That is the speed of the indivisible particle in a vacuum.

3 Mass as kg and How to Go from kg to Time-speed

It is interesting to see from the mass definitions in the previous section that we have never used the Planck constant or the reduced Planck constant. As Haug has written about previously, the Planck constant is a conversion factor that is actually a composite constant, which can be written as

$$
\begin{equation*}
\hbar=\frac{c^{2}}{8.52247 \times 10^{50}} \approx 1.05457 \times 10^{-34} \mathrm{~m}^{2} \cdot \mathrm{~kg} / \mathrm{s} \tag{10}
\end{equation*}
$$

where 8.52247×10^{50} is the number of internal hits per second in one kg. The mass of any elementary particle is defined under standard physics and can also be defined under atomism

$$
\begin{equation*}
m=\frac{\hbar}{\bar{\lambda}} \frac{1}{c} \mathrm{~kg} \tag{11}
\end{equation*}
$$

For example, for an electron we have

$$
\begin{equation*}
m=\frac{\hbar}{\bar{\lambda}_{e}} \frac{1}{c} \approx 9.10938 \times 10^{-31} \mathrm{~kg} \tag{12}
\end{equation*}
$$

Now let's replace \hbar with $\frac{c^{2}}{8.52247 \times 10^{50}}$ and we get

$$
\begin{equation*}
m=\frac{\frac{c^{2}}{8.52247 \times 10^{50}}}{\bar{\lambda}} \frac{1}{c}=\frac{\frac{c}{\lambda}}{8.52247 \times 10^{50}} \tag{13}
\end{equation*}
$$

Seen at a deeper level, a mass in kg is simply the internal hit frequency in the elementary particle divided by the hit frequency in one kg . One kg is a "random" practical amount of matter that someone decided to call one kg . It was not too heavy (so it could not be carried around), but also not so light that it was hard to measure. A kilogram is basically a dimensionless number in the sense that it is a hit frequency ratio. To go from kg to time-speed in continuous seconds per meter we need to divide the mass in kg with

$$
\begin{equation*}
\frac{\hbar}{l_{p}} \approx 6.525012 \mathrm{~m} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-1} \tag{14}
\end{equation*}
$$

The reduced Planck constant divided by the Planck constant is a conversion factor needed to go from kg to time-speed, or from time-speed to kg . One kg is $\frac{1}{6.525012} \approx 0.15$ continuous seconds per meter, and 45945119.23 continuous seconds per second $\left(\frac{1}{6.525012} \times 299792458\right)$. We must have that 6.52 kg is one continuous second per meter and 299,792,458 continuous seconds per second. Also $299,792,458$ Planck masses is 6.52 kg . Any mass with a time-speed of more than one continuous second per second cannot be an elementary particle, but must consist of a collection of elementary particles. And masses with time-speeds less than one continuous second per
second can be collections of elementary particles, but they don't have to be. For example, a Planck mass is one continuous second per second.

There are actually a number of ways to describe a mass; they all are correct, and they can be converted from one to the other. Table 1 show several ways to express mass

	Time-speed per meter	Time-speed per second	Frequency per second	Frequency ratio known as kg
General formula:	$\frac{l_{p}}{\lambda} \frac{1}{c}$	$\frac{l_{p}}{\lambda}$	$\frac{c}{\lambda}$	$\frac{\hbar}{\lambda} \frac{1}{c}$
Mass-gap	5.39106×10^{-44}	5.39106×10^{-44}	1	$\frac{1}{8.52247 \times 10^{50}} \approx 1.17 \times 10^{-51}$
Electron	1.396×10^{-31}	4.18532×10^{-23}	7.763×10^{20}	$\frac{7.76 \times 10^{20}}{8.52247 \times 10^{50}} \approx 9.11 \times 10^{-31}$
Proton	2.56×10^{-28}	7.68488×10^{-20}	1.425×10^{24}	$\frac{1.43 \times 11^{24}}{8.52247 \times 10^{50}} \approx 1.67 \times 10^{-27}$
Planck mass	3.34×10^{-09}	1	1.855×10^{43}	$\frac{1.855 \times 10^{43}}{8.52247 \times 10^{50}} \approx 2.18 \times 10^{-08}$
One kg	0.153	45945119.23	8.522×10^{50}	$\frac{8.52247 \times 10^{50}}{8.52247 \times 10^{50}}=1$
6.52 kg	1	299792458	5.561×10^{51}	$\frac{5.56 \times 10^{51}}{8.52247 \times 10^{50}} \approx 6.52$

Table 1: The table shows mass as time-speed per meter, time-speed per second, and mass as kg.
Table 2 shows various ways to describe the mass of elementary particles. All of them are correct and we can go from one definition to another by using a conversion factor

	Time-speed per meter	Time-speed Per second	Frequency	Frequency ratio kg
Mass-gap	$\frac{l_{p}}{\lambda_{c}} \frac{1}{c}$	$\frac{l_{p}}{\lambda_{c}}$	1	$\frac{\hbar}{\lambda_{c}} \frac{1}{c}=" \frac{\hbar}{c^{2}} "$
Other masses	$\frac{l_{p}}{\lambda} \frac{1}{c}$	$\frac{c}{\lambda} \frac{l_{p}}{c}=\frac{l_{p}}{\lambda}$	$\frac{c}{\lambda}$	$\frac{\hbar}{\lambda} \frac{1}{c}$
Planck mass	$\frac{l_{p}}{l_{p}} \frac{1}{c}=\frac{1}{c}$	$\frac{c}{l_{p}} \frac{l_{p}}{c}=1$	$\frac{c}{l_{p}}$	$\frac{\hbar}{l_{p}} \frac{1}{c}$
One kg	$" \frac{l_{p}}{\frac{\hbar}{c}} \frac{1}{c}=\frac{l_{p}}{\hbar} "$	$" \frac{c}{\frac{\hbar}{c}} \frac{l_{p}}{c}=\frac{l_{p}}{\hbar} c "$	$" \frac{c}{\frac{\hbar}{c}}=\frac{c^{2}}{\hbar} "$	$\frac{\hbar}{\frac{\hbar}{c}} \frac{1}{c}=1$
6.52 kg	1	299792458	$\frac{c^{2}}{l_{p}}$	$\frac{\hbar}{l_{p}}$

Table 2: The table shows ways of expressing mass; all of them are correct.
In some of the formulas above, we have, on purpose, mistakenly written as

$$
\begin{equation*}
\frac{\hbar}{\bar{\lambda}_{c}} \frac{1}{c}=" \frac{\hbar}{c^{2}} " \tag{15}
\end{equation*}
$$

This is not true from a unit perspective; it is simply done because we have a reduced Compton wavelength $\bar{\lambda}_{c}$ that is equal to the length light travels in one second, so we have for convenience replaced it with c in the right-hand part (so it is easier to remember and to see "connections").

Both tables also mention the mass-gap. We will not go in much discussion about that here, but a deeper discussion around the mass-gap is given in [6]. The reduced Compton wavelength of the mass-gap is $\bar{\lambda}_{c}=$ 299792458 meter per second. The mass-gap in terms of frequency is always one, it is one collision, one collision will be observational time independent. However, the mass-gap as a relative ratio is the only mass that is always observational time dependent.

4 Relativistic Mass

The masses in Tables 1 and 2 are for rest-masses. Table 3 looks at relativistic masses. Einstein's relativistic mass formula $[7,8]$ for an elementary particle can be written as

We see that relativistic mass has to do with contraction of the reduced Compton wavelength, that is the average void distance between the indivisible particles are contracted as measured with Einstein-Poincaré synchronized clocks. The indivisible particle itself cannot contract. Further, atomism gives us an exact limit on the maximum velocity any elementary particle can take; this is given by

$$
\begin{equation*}
v_{\max }=c \sqrt{1-\frac{v^{2}}{c^{2}}} \tag{17}
\end{equation*}
$$

This means that no elementary particle can attain a relativistic mass higher than the Planck mass particle. Further, the shortest reduced Compton wavelength after maximum length contraction is the Planck length. We also find that Lorentz symmetry is broken at the Planck scale, as proven by Haug in his recent Heisenberg paper. Special relativity theory is actually not consistent with a minimum length equal to the Planck length. The SR theory needs to be modified in the way predicted by atomism in order to become consistent with Heisenberg, when combined with key concepts from Max Planck.

Table 3 shows relativistic mass formulas for elementary particles, the Planck mass particle is not affected by velocity because its maximum velocity is zero. It is using all its time in collision mode.

	Time-speed per meter	Time-speed Per second	Frequency	Frequency ratio $\mathbf{k g}$
Mass-gap per second	$\frac{l_{p}}{\lambda_{c}} \frac{1}{c}=" \frac{l_{p}}{c^{2}} "$	$\frac{l_{p}}{c}$	1	$\frac{\hbar}{\lambda_{c}} \frac{1}{c}=" \frac{\hbar}{c^{2}} "$
Other masses	$\frac{l_{p}}{\bar{\lambda} \sqrt{1-\frac{v^{2}}{c^{2}}} \frac{1}{c}}$	$\frac{l_{p}}{\bar{\lambda} \sqrt{1-\frac{v^{2}}{c^{2}}}}$	$\frac{c}{\bar{\lambda} \sqrt{1-\frac{v^{2}}{c^{2}}}}$	$\frac{\hbar}{\bar{\lambda} \sqrt{1-\frac{v^{2}}{c^{2}}} \frac{1}{c}}$
Planck mass	$\frac{l_{p}}{l_{p}} \frac{1}{c}=\frac{1}{c}$	$\frac{c}{l_{p}} \frac{l_{p}}{c}=1$	$\frac{c}{l_{p}}$	$\frac{\hbar}{l_{p}} \frac{1}{c}$

Table 3: The table shows formulas for relativistic mass.

5 The Simplicity of $E=m c^{2}$ When Looking at Mass as Timespeed

The Planck mass particle is the purest mass and has a time-speed of $\hat{m}=\frac{1}{c}$. It is interesting to see that the famous Einstein formula $E=m c^{2}$ then simplifies to

$$
\begin{align*}
\hat{E} & =\hat{m} c^{2} \\
c & =\frac{1}{c} c^{2} \tag{18}
\end{align*}
$$

and naturally we have

$$
\begin{align*}
\hat{m} & =\frac{E}{c^{2}} \\
\hat{m} & =\frac{c}{c^{2}}=\frac{1}{c} \tag{19}
\end{align*}
$$

In other words, c^{2} in the $E=m c^{2}$ formula is at a deeper level nothing other than a conversion factor to go from time-speed (indivisibles moving back and forth in a "stable" pattern counter-striking, or colliding) to speed. Naturally, for continuous time masses that are not in the purest form, the equations are slightly more complicated

$$
\begin{align*}
\hat{E} & =\hat{m} c^{2} \\
\frac{l_{p}}{\bar{\lambda}} c & =\frac{l_{p}}{\bar{\lambda}} \frac{1}{c} c^{2} \tag{20}
\end{align*}
$$

This explains why the Planck mass particle is the only mass that is the same as observed across all reference frames. It is only the reduced Compton wavelength that can contract for a moving mass. However, it can never be shorter than the Planck length, because this is the diameter of the Planck length.

6 Reduced Compton Time

A very useful concept to understand and develop theories for subatomic particles involves the time interval that the speed of light uses to travel a distance equal to the reduced Compton wavelength of the particle we are interested in. We assume the speed of light as measured with Einstein-Poincareé synchronized clocks. For example, the reduced Compton time of an electron will then be

$$
\begin{equation*}
\bar{t}_{e}=\frac{\bar{\lambda}_{e}}{c} \approx 1.28809 \times 10^{-21} \text { seconds } \tag{21}
\end{equation*}
$$

When observing subatomic particles at time intervals close to the reduced Compton time, then "strange" quantum effects will appear, but they will be fully understandable, even at a logical level, from atomism. We will look at this in the next section.

7 Elementary Particles Become Time Dependent at Observational Time Windows Close to their Reduced Compton Time

Again, an electron has the following number of internal collisions per second

$$
\begin{equation*}
\frac{c}{\bar{\lambda}_{e}} \approx 7.7634 \times 10^{20} \text { collisions per second } \tag{22}
\end{equation*}
$$

and we have defined one kg as approximately 8.52247×10^{50} collisions per second. The mass of the electron in kg is simply its internal collision frequency divided by the kg frequency. This gives us

$$
\begin{equation*}
\frac{7.7634 \times 10^{20}}{8.52247 \times 10^{50}} \approx 9.10938 \times 10^{-31} \mathrm{~kg} \tag{23}
\end{equation*}
$$

For most time intervals, the mass of an elementary particle, such as an electron, is observational time independent. For example, if we observed it for half a second we would get

$$
\begin{equation*}
\frac{1}{2} \frac{c}{\bar{\lambda}_{e}} \approx 3.8817 \times 10^{20} \text { collisions per second } \tag{24}
\end{equation*}
$$

And one kg has the following number of internal collisions per half second $\frac{8.52247 \times 10^{50}}{2}$, so the ratio of collisions in the electron decided by the collisions in the mass we have defined as one kg is still the same. Again, under atomism the kg definition is a collision frequency relative to a once upon amount of matter that we called a kg. That the collisions and therefore the building blocks of an elementary particle comes in quantum first becomes "visible" when we work with (observe) a particle at time intervals close to the reduced Compton time. Assume we are observing an electron over a time interval of only 1.5 its reduced Compton time, that is a time interval of

$$
t=1.5 \bar{t}_{e}=1.5 \frac{\bar{\lambda}}{c}
$$

The mass for elementary particles under atomism is directly linked to the number of counter strike between indivisible particles making up the elementary particle and these collisions only happen every reduced Planck time. This means that in this case we not will have 1.5 collisions, but only one collision. The number of collisions in the one kg over this time interval is

$$
\begin{equation*}
n=8.52247 \times 10^{50} \times 1.5 \frac{\bar{\lambda}}{c} \approx 1.64665 \times 10^{30} \tag{25}
\end{equation*}
$$

The mass of the electron is the collision ratio frequency in that time interval and it now is

$$
\begin{equation*}
m_{e}=\frac{1}{1.64665 \times 10^{30}} \approx 6.0729 \times 10^{-31} \mathrm{~kg} \tag{26}
\end{equation*}
$$

This we see is considerably lower than the known electron mass. This mass is actually approximately 33% lower than the known mass of the electron. Again, this is because we are working with such short time intervals that quantum effects are starting to play a role. If we measure it exactly over one reduced Compton time interval, then the mass of the electron would be its "known" mass. The mass simply gets unstable when observing the mass at close to the reduced Compton time interval.

Figure 1 shows the electron's deterministic mass as a function of the observational time window. We are using time steps of 0.1 reduced Compton time, that is $0.1 \frac{\bar{\lambda}_{e}}{c}$. As we can see the mass quite rapidly gets very stable around the "known" electron mass.

The fact that the mass is time dependent at very short time intervals has serious implications. It means that if we are operating on short observational time intervals and there is an uncertainty in what exactly time window due to measurement errors, for example, then we will get very interesting probability distributions in the mass.

What would the expected mass be if we included z Compton intervals (which also gives collisions per observational time window in particle one is observing, where z is an integer) + a random time interval between $\frac{l_{p}}{c}$ and $\frac{\bar{\lambda}}{c}-\frac{l_{p}}{c}$. So, here we are basically working with a known time interval of $z \times \frac{\bar{\lambda}}{c}+$ a random time interval between $\frac{l_{p}}{c}$ and $\frac{\bar{\lambda}}{c}-\frac{l_{p}}{c}$ (uniform distributed). The expected mass is then

Figure 1: This figure illustrates the observation that the mass of an electron becomes time dependent at time intervals close to the reduced Compton time of the electron. The blue points are time points we have calculated for. The time intervals used are 0.1 reduced Compton time intervals.

$$
\begin{equation*}
E[m]=\frac{1}{n} \int_{a}^{b} f(x) d x=\frac{1}{n} \int_{a}^{b} \frac{z}{\left(z \frac{\bar{\lambda}}{c}+\frac{x l_{p}}{c}\right) \frac{c^{2}}{\hbar}} d x=\frac{1}{n} \frac{\hbar z\left(\ln \left(b l_{p}+\bar{\lambda} z\right)-\ln \left(a l_{p}+\bar{\lambda} z\right)\right)}{c l_{p}} \tag{27}
\end{equation*}
$$

Table 4 shows the observational time window dependent mass of an electron and a proton. Here we have chosen the time interval so that the mass is underestimated to the maximum extent. So basically the approach described above. Still, even then the expected mass is quickly converging to its "known" mass, as the observational time window increases.

Number of Compton times	Observational time window electron	Expected electron mass kg	Observational time window proton	Expected proton mass kg
1	$2.57618 \mathrm{E}-21$	$6.31414 \mathrm{E}-31$	$1.40303 \mathrm{E}-24$	$1.15937 \mathrm{E}-27$
2	$3.86427 \mathrm{E}-21$	$7.38707 \mathrm{E}-31$	$2.10455 \mathrm{E}-24$	$1.35638 \mathrm{E}-27$
3	$5.15235 \mathrm{E}-21$	$7.86182 \mathrm{E}-31$	$2.80606 \mathrm{E}-24$	$1.44355 \mathrm{E}-27$
4	$6.44044 \mathrm{E}-21$	$8.13080 \mathrm{E}-31$	$3.50758 \mathrm{E}-24$	$1.49294 \mathrm{E}-27$
5	$7.72853 \mathrm{E}-21$	$8.30418 \mathrm{E}-31$	$4.20909 \mathrm{E}-24$	$1.52478 \mathrm{E}-27$
10	$1.4169 \mathrm{E}-20$	$8.68217 \mathrm{E}-31$	$7.71667 \mathrm{E}-24$	$1.59418 \mathrm{E}-27$
100	$1.30097 \mathrm{E}-19$	$9.06414 \mathrm{E}-31$	$7.0853 \mathrm{E}-23$	$1.66431 \mathrm{E}-27$
1000	$1.28938 \mathrm{E}-18$	$9.10483 \mathrm{E}-31$	$7.02217 \mathrm{E}-22$	$1.67179 \mathrm{E}-27$
100000	$1.2881 \mathrm{E}-16$	$9.10934 \mathrm{E}-31$	$7.01522 \mathrm{E}-20$	$1.67261 \mathrm{E}-27$
1000000	$1.28809 \mathrm{E}-15$	$9.10938 \mathrm{E}-31$	$7.01516 \mathrm{E}-19$	$1.67262 \mathrm{E}-27$

Table 4: The table shows the observational time window dependent expected mass of an electron and a proton. This can be looked at as a probability-weighted mass, assuming, for simplicity's sake, that we have a uniformlydistributed random time interval between $\frac{T_{p}}{c}$ and $\frac{\bar{\lambda}}{c}-\frac{l_{p}}{c}$, in addition to a known part of the observational time window of $z \frac{\bar{\lambda}}{c}$. Here we have chosen the random time interval above the certain time interval so that the mass is underestimated to the "maximum extent".

8 Gravity When Mass is Time-Speed

Haug has suggested that Newton's gravitational constant ${ }^{1}$ is a composite constant of the form; see [11, 12, 13]

$$
\begin{equation*}
G=\frac{l_{p}^{2} c^{3}}{\hbar} \approx 6.67384 \times 10^{-11} \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2} \tag{28}
\end{equation*}
$$

McCulloch 2014 [14] has derived a similar formula for big G based on Heisenberg's uncertainty principle; see also [15]. Haug [11] has derived this formula from dimensional analysis as well as from Heisenberg's uncertainty principle, using his newly-introduced maximum velocity formula for matter [16].

We can surprisingly do all of our Newton gravitational calculations based on the perspective of mass as time-speed and a new gravitational constant. The Haug gravitational constant is based on time-speed (rather than kg) and is given by

$$
\begin{equation*}
G_{H}=l_{p} c^{3} \approx 4.35469 \times 10^{-10} \mathrm{~m}^{4} \cdot \mathrm{~s}^{-3} \tag{29}
\end{equation*}
$$

The gravity force when operating with mass as time-speed per meter is given by

$$
\begin{equation*}
F=G_{H} \frac{\hat{m} \hat{m}}{r^{2}} \tag{30}
\end{equation*}
$$

This we can decompose

$$
\begin{align*}
& F=\bar{G}_{H} \frac{\hat{m} \hat{m}}{r^{2}} \\
& F=\bar{G}_{H} \frac{n_{1} \hat{m}_{p} n_{2} \hat{m}_{p}}{r^{2}} \\
& F=l_{p} c^{3} \frac{\frac{1}{c} \frac{1}{c}}{r^{2}}=\frac{c l_{p}}{r^{2}} \tag{31}
\end{align*}
$$

where n_{1} and n_{2} simply are the number of Planck masses in the two masses. The orbital velocity for a Planck mass is given by

$$
\begin{equation*}
v_{o}=\sqrt{\frac{G_{H} \hat{m}_{p}}{r}}=\sqrt{\frac{l_{p} c^{3} \frac{1}{c}}{r}}=c \sqrt{\frac{l_{p}}{r}} \tag{32}
\end{equation*}
$$

The orbital velocity for any mass larger than a Planck mass is given by

$$
\begin{equation*}
v_{o}=\sqrt{\frac{G_{H} \hat{m}}{r}}=\sqrt{\frac{G_{H} N \hat{m}_{p}}{r}}=\sqrt{N \frac{l_{p} c^{3} \frac{1}{c}}{r}}=c \sqrt{N \frac{l_{p}}{r}} \tag{33}
\end{equation*}
$$

[^1]These are all the same formulas as given by standard Newtonian gravity, when decomposed into a deeper level. This is not so strange, as kg is simply a frequency ratio, and mass can also be expressed in other forms.

We will return to the subject of gravity later on. We will claim there are a few common misunderstandings around the interpretation of Newtonian gravity that push scientists to think big G is essential, when in fact, the Planck length is most likely the key to understanding gravity from a deeper perspective.

Table 5 shows the decomposed gravitational formulas, that is the gravitational formulas from a deeper perspective, both when we start with Newton's gravitational constant and mass as kg, and when we start with Haug's gravitational constant and mass as time-speed. We see that all of the formulas are exactly the same for things related to gravity that we actually can observe. And we see that only for the gravity force itself is there a difference in the formulas, and the gravity force cannot be observed directly. However, both are correct from a theoretical point of view: one is linked to kg and the other to time-speed, And to go from time-speed to kg we can simply multiply by $\frac{\hbar}{l_{p}}$.

What we can observe:	From mass as kg	From mass as time-speed:
Orbital velocity	$v_{o}=c \sqrt{n \frac{l_{p}}{r}}$	$v_{o}=c \sqrt{n \frac{l_{p}}{r}}$
Gravitational acceleration field	$g=n \frac{l_{p}}{r^{2}} c^{2}$	$g=n \frac{l_{p}}{r^{2}} c^{2}$
Gravitational red-shift	$\lim _{r \rightarrow+\infty} z(r)=n 2 \frac{l_{p}}{r}$.	$\lim _{r \rightarrow+\infty} z(r)=n 2 \frac{l_{p}}{r}$.
Gravitational deflection	$\delta=n 4 \frac{l_{p}}{r}$	$\delta=n 4 \frac{l_{p}}{r}$.
Gravitational time dilation	$t_{0}=t_{f} \sqrt{1-n \frac{2 l_{p}}{r}}$	$t_{0}=t_{f} \sqrt{1-n \frac{2 l_{p}}{r}}$
What we cannot observe:	From mass as kg	From mass as time-speed:
Gravitational force	$F=n_{1} n_{2} \frac{\hbar c}{r^{2}}$	$F=n_{1} n_{2} \frac{l_{p} c}{r^{2}}$

Table 5: The table of a series of measurements that actually can be observed/measured in relation to gravity, and also the gravity force that we cannot observe and measure.

9 Fundamental Electricity as Time-speed

The well-known fundamental electrical units such as the Planck charge, and Planck voltage can be rewritten in the time-speed form. This can be done simply by multiplying the traditional expressions of these units with $\sqrt{\frac{l_{p}}{\hbar}}$. For example, the Planck charge is given by

$$
\begin{equation*}
q_{p}=\sqrt{\frac{\hbar}{c}} \sqrt{10^{7}} \tag{34}
\end{equation*}
$$

in the time-speed form this is

$$
\begin{equation*}
q_{p}=\sqrt{\frac{l_{p}}{c}} \sqrt{10^{7}} \tag{35}
\end{equation*}
$$

That is to say, the charge is the square root of the Planck time multiplied by $\sqrt{10^{7}}$. This leads to an invariant Planck charge across any reference frame. This because under atomism when we are all the way down to the Planck length, then there can be no length contraction. The light particles only have a charge at collision; this charge is half of the Planck charge

$$
\begin{equation*}
q_{i}=\frac{1}{2} \sqrt{\frac{l_{p}}{c}} \sqrt{10^{7}} \tag{36}
\end{equation*}
$$

The electron charge is based on time-speed

$$
\begin{equation*}
e=q_{p} \sqrt{\alpha}=\sqrt{\frac{l_{p}}{c} \alpha} \sqrt{10^{7}} \tag{37}
\end{equation*}
$$

Also, the electron charge must be invariant and the same as observed from any reference frame, if the fine structure constant is not affected by velocity.

When it comes to electron voltage, we have

$$
\begin{equation*}
V_{e}=\frac{c \alpha}{\bar{\lambda}_{e}} \sqrt{c \hbar \alpha} \sqrt{10^{-7}} \tag{38}
\end{equation*}
$$

Converted to time-speed form this gives

$$
\begin{equation*}
V_{e}=\frac{c \alpha}{\bar{\lambda}_{e}} \sqrt{c l_{p} \alpha} \sqrt{10^{-7}} \tag{39}
\end{equation*}
$$

In other words, the electron voltage is affected by velocity, as the reduced Compton wavelength of the electron will contract at high velocity. And we know that the electrical energy is given by

$$
\begin{equation*}
E=V_{e} e=\frac{c \alpha}{\bar{\lambda}_{e}} \sqrt{c l_{p} \alpha} \sqrt{10^{-7}} \sqrt{\frac{l_{p}}{c} \alpha} \sqrt{10^{7}}=\frac{l_{p}}{\bar{\lambda}_{e}} \alpha^{2} c=\frac{l_{p}}{\bar{\lambda}_{e}} \alpha^{2} c \tag{40}
\end{equation*}
$$

Since the velocity is very low (αc), we actually have to work with "kinetic" electrical energy here, and actually we should have a $\frac{1}{2}$ in front of this equation. However, our point is simply that we can just as well operate with time-speed system rather than the traditional units.

10 The Planck Units

All of the Planck units can be written in their normal form or their time-speed form. From Table 4 we see the difference is only in Planck units, where the standard form has the Planck constant. There is no Planck constant in the time-speed form. The standard form using the gravitational constant is the most confusing one, with such things as c^{7}, c^{8}, and even c^{9}. It is very hard to get any intuition out from the speed of light powered to anything above 2. The fact that modern physics has not understood that big G is very likely a composite constant leads to a lot of confusing formulas that are much easier to understand once one understands that the gravitational constant is a composite constant.

11 Summary of Key Numbers and Conversion Factors

Here we will summarize some key numbers and conversion factors

- To go from time-speed (continuous seconds per meter) to kg , multiply by $\frac{\hbar}{l_{p}} \approx 6.525$. This is also the momentum of a Planck mass particle.
- To go from kg to time-speed (continuous seconds per meter) to kg , divide by $\frac{\hbar}{l_{p}} \approx 6.525$.
- To go from time-speed (continuous seconds per second) to kg , multiply by $\frac{\hbar}{l_{p}} \frac{1}{c} \approx 2.17651 \times 10^{-8}$. This conversion factor is also the mass of a Planck mass in kg. And naturally we also have the understanding that the Planck mass is one continuous second per second.
- One kg is $\frac{1}{6.525012} \approx 0.15$ continuous seconds per meter, and $45,945,119.23$ continuous seconds per second. The number $45,945,119.23$ is also the number of Planck masses in one kg.
- Any mass that is more than one continuous second per second must contain more than one elementary particle.
- Approximately 6.52 kg is 1 continuous seconds per meter, and 299,792,458 continuous seconds per second. $299,792,458$ is also the number of Planck masses in 6.52 kg .
- When it comes to mass as time-speed, we know only the Planck mass without knowing the Planck length. For mass in terms of kg, we only need to know the Planck length to know the Planck mass; we do not need to know the Planck length for other masses.
- The standard mass is easier work with and measure; the time-speed mass seems to give deeper insight, but it is much more difficult to observe and requires, for example, that we have already found the Planck length from gravitational experiments.
- The mass of elementary particles in form of kg is actually observational time dependent, but the observational time-dependence rapidly gets so small that it hardly is observable as soon as the observational time window is considerably larger than the reduced Compton time of the particle we want to study. Under atomism this would mean we need to use probabilistic models at the quantum scale, and it also explains why this quantum randomness rapidly gets negligible as we approach the macroscopic world. .

12 Conclusion

We have shown how we can describe mass as both time-speed (collision time) and as kg , and how to go from kg to time-speed or from time-speed to kg . We have also shown that we can do gravity calculations just as well from the perspective that mass is time-speed (time spent on collisions). We then need to use a different gravity constant. This supports the view that Newton's gravitational constant is "arbitrary" in the sense that it is a composite constant needed to turn a certain perspective on mass into the correct and deeper formulas for gravity. Both the time-speed way of looking at gravity and the normal way lead to exactly the same formulas at a deeper level.

Units:	"Normal" form:	Deeper form:	Time-speed form:
Gravitational constant	$G \approx 6.67408 \times 10^{-11}$	$G=\frac{l_{\frac{1}{2} c^{3}}^{\hbar}}{\hbar}$	$G_{H}=l_{p} c^{3}$
Max velocity Planck mass particle	0	0	0
Planck length	$l_{p}=\sqrt{\frac{\hbar G}{c^{3}}}$	$l_{p}=l_{p}$	$l_{p}=l_{p}$
Planck time	$t_{p}=\sqrt{\frac{\hbar G}{c^{5}}}$	$t_{p}=\frac{l_{p}}{c}$	$t_{p}=\frac{l_{p}}{c}$
Planck mass	$m_{p}=\sqrt{\frac{\hbar c}{G}}$	$m_{p}=\frac{\hbar}{l_{p}} \frac{1}{c}$	$m_{p}=\frac{1}{c}$
Planck energy	$E_{p}=\sqrt{\frac{\hbar c^{5}}{G}}$	$E_{p}=\frac{\hbar}{l_{p}} c$	$E_{p}=\frac{l_{p}}{l_{p}} c$
Relationship mass and energy	$E_{p}=m_{p} c^{2}$	$\frac{h}{l_{p}} c=\frac{h}{l_{p}} \frac{1}{c} c^{2}$	$c=\frac{1}{c} c^{2}$
Reduced Compton wavelength	$\bar{\lambda}_{p}=\frac{\hbar}{m_{p} c}$	$\bar{\lambda}_{p}=l_{p}$	$\bar{\lambda}_{p}=l_{p}$
Planck area	$l_{p}^{2}=\frac{\hbar G}{c^{3}}$	$l_{p}^{2}=l_{p}^{2}$	$l_{p}^{2}=l_{p}^{2}$
Planck volume	$l_{p}^{3}=\sqrt{\frac{\hbar^{3} G^{3}}{c^{9}}}$	$l_{p}^{3}=l_{p}^{3}$	$l_{p}^{3}=l_{p}^{3}$
Planck force	$F_{p}=\frac{c^{4}}{G}$	$F_{p}=\frac{\hbar}{l_{p}} \frac{c}{l_{p}}$	$F_{p}=\frac{c}{l_{p}}$
Planck power	$P_{p}=\frac{c^{5}}{G}$	$P_{p}=\frac{\hbar}{L_{p}} \frac{c^{2}}{L_{p}}$	$\mathrm{P}_{p}=\frac{c^{2}}{L_{p}}$
Planck mass density	$\rho_{p}=\frac{c^{5}}{\hbar G^{2}}$	$\rho_{p}=\frac{\hbar}{l_{p}} \frac{1}{c l_{p}^{3}}$	$\rho_{p}=\frac{1}{c l_{p}^{3}}$
Planck energy density	$\rho_{p}^{E}=\frac{c^{7}}{\hbar G^{2}}$	$\rho_{p}^{E}=\frac{\hbar}{l_{p} \frac{c}{l_{p}^{\prime}}}$	$\rho_{p}^{E}=\frac{c}{l_{p}^{3}}$
Planck intensity	$I_{p}=\frac{c^{8}}{\hbar G^{2}}$	$I_{p}=\frac{\hbar}{l_{p} \frac{c^{2}}{l_{p}^{3}}}$	$I_{p}=\frac{c^{2}}{l_{p}^{3}}$
Planck frequency	$\omega_{p}=\sqrt{\frac{c^{5}}{\hbar G}}$	$\omega_{p}=\frac{c}{l_{p}}$	$\omega_{p}=\frac{c}{l_{p}}$
Planck pressure	$p_{p}=\frac{c^{7}}{\hbar G^{2}}$	$p_{p}=\frac{\hbar}{l_{p}} \frac{c}{l_{p}^{3}}$	$p_{p}=\frac{c}{l_{p}^{3}}$
Planck charge	$q_{p}=\sqrt{4 \pi \epsilon_{0} \hbar c}=\frac{e}{\sqrt{\alpha}}$	$q_{p}=\sqrt{\frac{\hbar}{c}} \sqrt{10^{7}}$	$q_{p}=\sqrt{\frac{l_{p}}{c}} \sqrt{10^{7}}$
Planck current	$I_{p}=\sqrt{\frac{4 \pi \epsilon_{0} c^{6}}{G}}$	$I_{p}=\frac{c}{l_{p}} \sqrt{\frac{\hbar}{c}} \sqrt{10^{7}}$	$I_{p}=\frac{c}{l_{p}} \sqrt{\frac{l_{p}}{c}} \sqrt{10^{7}}$
Planck voltage	$V_{p}=\sqrt{\frac{c^{4}}{4 \pi \epsilon_{0} G}}$	$V_{p}=\frac{c}{l_{p}} \sqrt{c \hbar} \sqrt{10^{-7}}$	$V_{p}=\frac{c}{l_{p}} \sqrt{c l_{p}} \sqrt{10^{-7}}$
Planck impedance	$Z_{p}=\frac{1}{4 \pi \epsilon_{0} c}$	$Z_{p}=\frac{V_{p}}{I_{p}}=c \times 10^{-7}$	$Z_{p}=\frac{V_{p}}{I_{p}}=c \times 10^{-7}$
Electric energy	$E_{p}=q_{p} V_{p}=\sqrt{\frac{\hbar c^{5}}{G}}$	$E_{p}=q_{p} V_{p}=\frac{\hbar}{l_{p}} c$	$\mathrm{E}_{p}=q_{p} V_{p}=c$
Planck acceleration	$a_{p}=\frac{F_{p}}{m_{p}}$	$a_{p}=\frac{F_{p}}{m_{p}}=\frac{c^{2}}{l_{p}}$	$a_{p}=\frac{F_{p}}{m_{p}}=\frac{c^{2}}{l_{p}}$
Planck gravitational acceleration field	$g_{p}=\frac{G m_{p}}{l_{p}^{2}}$	$g_{p}=\frac{G_{p} m_{p}}{l_{p}^{2}}=\frac{c^{2}}{l_{p}}$	$g_{p}=\frac{G_{H} m_{p}}{l_{p}^{2}}=\frac{c^{2}}{l_{p}}$

Table 6: The table shows the standard Planck units and the units rewritten in a simpler and more intuitive form.

References

[1] E. G. Haug. Unified Revolution: New Fundamental Physics. Oslo, E.G.H. Publishing, 2014.
[2] E. G. Haug. The Planck mass particle finally discovered! The true God particle! Good bye to the point particle hypothesis! http://vixra.org/abs/1607.0496, 2016.
[3] E. Schrödinger. Über die kräftefreie bewegung in der relativistischen quantenmechanik. Sitzungsberichte der Preuischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse, 1930.
[4] M. Planck. Naturlische Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften, p . 479., 1899.
[5] M. Planck. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation "The Theory of Radiation" (1959) Dover, 1906.
[6] E. G. Haug. The mass gap, kg, the Planck constant, and the gravity gap. http://vixra.org, 2017.
[7] A. Einstein. Zur elektrodynamik bewegter körper. Annalen der Physik, (17), 1905.
[8] A. Einstein. Relativity: The Special and the General Theory. Translation by Robert Lawson (1931), Crown Publishers, 1916.
[9] I. Newton. Opticks: Or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. London, 1704.
[10] H. Cavendish. Experiments to determine the density of the Earth. Philosophical Transactions of the Royal Society of London, (part II), 88, 1798.
[11] E. G. Haug. The gravitational constant and the Planck units. A simplification of the quantum realm. Physics Essays Vol 29, No 4, 2016.
[12] E. G. Haug. Planck quantization of Newton and Einstein gravitation. International Journal of Astronomy and Astrophysics, 6(2), 2016.
[13] E. G. Haug. Newton and Einstein's gravity in a new perspective for Planck masses and smaller sized objects. International Journal of Astronomy and Astrophysics, 2018.
[14] M. E. McCulloch. Gravity from the uncertainty principle. Astrophysics and Space Science, 349(2), 2014.
[15] E. G. Haug. A modified Newtonian quantum gravity theory derived from Heisenberg's uncertainty principle that predicts the same bending of light as GR. 1803.0079, 2018.
[16] E. G. Haug. A suggested boundary for Heisenberg's uncertainty principle. http://vixra.org/abs/1701.0497, 2017.

[^0]: *e-mail espenhaug@mac.com.

[^1]: ${ }^{1}$ See [9] and [10].

