Hawking Radiation: A Violation of the Zeroth Law of Thermodynamics

Spring 2018 Meeting of the APS New England Section March 16-17, 2018 Suffolk University, Boston, MA

> Pierre-Marie Robitaille Department of Radiology The Ohio State University Columbus, Ohio 43210

Zeroth Law of Thermodynamics

$$A \leftrightarrow B$$
 and $B \leftrightarrow C$
Then...
 $A \leftrightarrow C$

But the law also implies that temperature is an intensive property.

The temperature of an object cannot depend on extensive properties which in combination do not yield an intensive property.

Intensive versus Extensive Properties

Intensive Properties Extensive Properties

Temperature Mass

Pressure Energy

Density Enthalpy

Concentration Entropy

Specific Volume Volume

Color Heat Capacity

Some properties are neither intensive nor extensive (e.g. radius of a sphere, area of a sphere)

Intensive versus Extensive Properties

The concept of intensive and extensive properties is so important that Peter Landsberg wanted to establish it as

The 4th Law of thermodynamics

P.T. Landsberg, Thermodynamics with Quantum Statistical Illustrations, Interscience Publishers, New York, 1961, p. 142.

Equations: Intensive versus Extensive Properties

"If one side of an equation is extensive (or intensive), then so must be the other side"

S.G. Canagaratna

Intensive and Extensive Properties: Underused Concepts, J. Chem. Educ., 1992, v. 69, no. 12, 957-963.

Ideal Gas Law (P in terms of intensive properties)

PV = nRT
$$\rightarrow P = \frac{nRT}{V}$$
, since: $n = \frac{M}{M}$ then, $\rightarrow P = \frac{MRT}{MV}$

since:
$$\rho_o = \frac{M}{V}$$
 and: $R_s = \frac{R}{M} \rightarrow P = \rho_o R_s T$

P = pressure (intensive)

T = temperature (intensive)

M = mass (extensive)

V = volume (extensive)

 ρ_0 = density (intensive) = mass/volume

n = number of moles (extensive) = mass/molar mass = M/M

R = universal gas constant (constant)

 R_s = specific gas constant (constant) = universal gas constant/molar mass

T = temperature (intensive)

M = molar mass (constant)

Entropy of a Black Hole

$$S_{BH} = \frac{k_B c^3}{4\hbar G} A$$

Entropy (S_{BH}) is extensive, but area (A) is neither extensive nor intensive. It is volume which is an extensive property!

As a result, this expression violates elementary thermodynamic principles and is not valid.

Hawking Temperature

$$T_H = \frac{\hbar c^3}{8\pi G M k_B}$$

Temperature (T) is intensive, but mass (M) is extensive! As a result, this expression violates elementary thermodynamic principles and is not valid.

The photons emitted by a black hole are said to manifest a blackbody spectrum. This is not possible. It takes a physical lattice to produce such a spectrum, not simply thermal equilibrium with an enclosure.

P.M. Robitaille, IEEE Trans. Plasma Sci. 2003, 31{6}, 1263-1267.