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Abstract

In this short note we present a possible connection between the proton radius and the proton mass
using the fine structure constant. The Hagedorn temperature is related to the energy levels assumed to
be required to free the quarks from the proton, where hadronic matter is unstable. We also speculate that
there could be a connection between the Hagedorn temperature and the Planck temperature through the
fine structure constant. Whether there is something to this, or it is purely a coincidence, we will leave to
others and future research to explore. However, we think these possible relationships are worth further
investigation.
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1 The Proton Radius, the Proton Mass, and the Fine Struc-

ture Constant

The proton radius is given by NIST CODATA as 0.8751 ⇥ 10�15 meters, with a standard uncertainty
of 0.0061 ⇥ 10�15. There has been considerable discussion about the proton radius in the recent years;
see [1, 2, 3, 4]. The proton mass is given by CODATA as 1.672621898 ⇥ 10�27. Arnold Sommerfeld
[5] introduced the fine structure constant in relation to spectral lines. The fine structure constant,
↵ ⇡ 0.0072973525664 (2014 CODATA recommended values), plays an important role in modern physics.
There is no consensus on exactly why the fine structure constant has the “magical” value it has, but there
are a number of interesting, speculative ideas about what it could represent; see [6, 7, 8, 9], for example.

Here we speculate that the proton radius could be connected to the proton mass, mP , through the
fine structure constant by the following formula

rp =
h̄

2mP c
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2↵� ↵2
⇡ 0.872015⇥ 10�15 m (1)

This is well inside the uncertainty in the proton radius given by CODATA. However, it does not
necessarily mean there is anything to this relationship. Many readers will recognize that h̄

mP c is the
reduced Compton wavelength formula, so we could alternatively have written the formula simply as

rp =
�̄P

2
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⇡ 0.872015⇥ 10�15 m (2)

where �̄P is the reduced Compton wavelength of the proton. Naturally, there is uncertainty here, just
as there is some uncertainty in the proton mass and even, to some degree, in the fine structure constant.

Another interesting point is that if we had a hypothetical particle with a reduced Compton wavelength
equal to half the proton radius given by the formula above, then if this particle travelled at a velocity
equal to v = c� ↵c = c(1� ↵), it would have a relativistic mass exactly equal to the proton mass.

It is well-known that any elementary mass can be described as

m =
h̄

�̄

1
c

(3)
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Assume now we have �̄ = 1
2rp, then we get a relativistic mass of
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= mP ⇡ 1.6726⇥ 10�27 kg (4)

where mP is the proton mass. That would be rather “fun” ? a particle traveling with speed c(1� ↵)
and relativistic mass equal to the proton surrounded by a particle (electron) traveling with speed c↵.

If the mathematical relationship above holds (is more than a coincidence), then we can also find the
fine structure constant from the proton radius and the reduced Compton wavelength of the proton
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This is a standard quadratic equation with the following solution
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and only the negative solution seems to make sense, so this would mean
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(7)

Again, this solution is based on the idea that there may be a fundamental relationship here; granted
this is a speculative suggestion on a possible relationship with the fine structure constant. We leave it up
to future inquiry to see whether this will lead to anything useful or not.

2 The Fine-Structure Constant and the Hagedorn Temper-

ature

The Hagedorn temperature [10] is a theoretical temperature where quarks can be extracted (evaporated)
from a proton. It is essentially the temperature where hadronic matter is unstable. The Hagedorn
temperature is extremely high; according to traditional grand-unified string models, it is said to be about
1030 kelvin, see [11]. This is about two orders of magnitude smaller than the Planck temperature, which

is
mpc

2

kb
⇡ 1.42⇥ 1032 kelvin. If the Hagedorn temperature should be

mpc
2↵

kb
⇡ 1.03391⇥ 1030 kelvin and

we divide this temperature by the Planck temperature [12, 13], we would get the fine structure constant.
Actually, there is considerable uncertainty, even regarding the size of the Planck mass. However, we can
indirectly measure the Planck mass from a Cavendish experiment without any knowledge of the Newton
gravitational constant; see [14]. Further, the uncertainty in the Planck mass is half the uncertainty of the
Newton gravitational constant.

It is important to note that the Hagedorn temperature has never been measured and if its true
temperature is di↵erent than the speculation here, then there is no such connection.

3 Conclusion

In this paper we have suggested a possible interesting relationship between the proton mass and the proton
radius “through” the fine structure constant. We have also suggested a possible connection between the
Hagedorn temperature, the Planck temperature, and the fine structure constant. We do not know if there
are truly such connections or not, and more observational and theoretical work is needed.

We will end this note with a quote from Feynman about the fine structure constant:

It has been a mystery ever since it was discovered more than fifty years ago, and all good
theoretical physicists put this number up on their wall and worry about it. – Richard Feynman
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