
Does Heisenberg’s Uncertainty Collapse at the Planck Scale?

Heisenberg’s Uncertainty Principle Becomes the Certainty Principle

Espen Gaarder Haug
⇤

Norwegian University of Life Sciences

March 2, 2018

Abstract

In this paper we show that Heisenberg’s uncertainty principle, combined with key principles from Max Planck
and Einstein, indicates that uncertainty collapses at the Planck scale. In essence, the uncertainty principle
becomes the certainty principle at the Planck scale. This can be used to find the rest-mass formula for elementary
particles consistent with what is already known. If this interpretation is correct, it means that Einstein’s intuition
that“God Does Not Throw Dice with the Universe” could also be correct. We interpret this to mean that Einstein
did not believe the world was ruled by strange uncertainty phenomena at the deeper level, and that level is the
Planck scale where all uncertainty seems to collapse. The bad news is that this new-found certainty can only
can last for one Planck second!
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1 The Three Giants

In 1899, Max Planck introduced what he called natural units, namely the Planck length, the Planck mass, the
Planck second, and the Planck energy [1, 2]. He derived these fundamental units from Newton’s gravitational
constant [3], the speed of light, and the Planck constant. In 1905, Albert Einstein introduced special relativity
theory [4]. In 1927, Heisenberg introduced the Heisenberg uncertainty principle. The Heisenberg uncertainty
principle is one of the cornerstones in quantum mechanics. The Planck constant is also a key here. However,
the Planck length, the Planck mass, the Planck energy, and the Planck time has never been really understood
or directly linked to a consistent quantum theory.

Albert Einstein is, of course, also one of the founders of quantum theory, in particular with his insight on the
photoelectric e↵ect. However, he was very skeptical on much of what followed in quantum physics, especially in
relation to strange uncertainty phenomena. It was necessarily the case that he did not believe in such models,
but he felt that the theories did not capture the full picture of reality. Einstein is famous for his statement, see
[5]

God Does Not Throw Dice with the Universe

From the derivations and logical reasoning that we work with here, it looks like Einstein was right on this
point, even though many have maintained that he has been wrong on this point. We will use concepts from
special relativity theory, Max Planck, and Heisenberg, and we find that the unification of these three Giants of
Physics seems to lead to a breakdown of uncertainty at the Planck scale. Further, this can be used to derive
well known formulas for the rest-mass of particles.

2 Does Uncertainty Collapse at the Planck Scale?

Heisenberg’s uncertainty principle is given by

�p�x = ~
(1)
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The momentum at low velocities is given by p ⇡ mv and the relativistic momentum is p = mvr
1� v2

c2

. The

Planck momentum, according to modern physics, is known to be

pp = mpc (2)

It is very important to pay attention to the fact that there is no v in this formula. The velocity v can take
a series of values below the speed of light, while the speed of light itself is constant and the same from any
reference frame1.

Lloyd Motz, while working at the Rutherford Laboratory in 1962, [6, 7, 8] suggested that there was probably
a very fundamental particle with a mass equal to the Planck mass; today it is known as the Planck mass particle.
We will claim that only the Planck mass particle can have a momentum o↵ p = mc. No particle with rest-mass
can move at the speed of light, as it would require an infinite amount of energy to reach this velocity. Thus,
we will not claim that the Planck particle can move at the speed of light, rather, as we will see, the contrary.
We claim the Planck mass particle is not exempt from the relativistic rules; it also must follow the relativistic
momentum formula of Einstein, which gives

pp =
mpcq
1� v2

c2

= mpc (3)

However, this can only happen if v = 0. In a series of articles, Haug has shown that the Planck mass
particle is unique in this respect: the Planck mass particle must be at absolutely rest, even as observed across
any reference frame. Based on a long series of di↵erent arguments, Haug [9, 10, 11, 12, 13] has shown that the
maximum velocity any particle with rest-mass can attain is

vmax = c

r
1�

l2p
�̄2

(4)

where �̄ is the reduced Compton wavelength of the particle and lp is the Planck length. Only for the Planck
mass particle does �̄ = lp, and only for the Planck mass particle do we have maximum velocity of zero. All other
known particles have maximum velocities extremely close to that of the speed of light, but these far exceed what
can be achieved at the Large Hadron Collider today, making empirical work di�cult. This maximum velocity
and view that the Planck mass particle must stand absolutely still mean that the Lorentz symmetry must be
broken at the Planck scale, something that is predicted by several quantum gravity theories. All other particles
can show a wide range of momentum, because they can have significant variations in their velocity and therefore,
they also have uncertainty in their momentum.

As long as we assume that the Planck particle has a known momentum of mpc, then we find that

�pp�x  ~
mpc�x  ~

mpc  ~
�x

mp  ~
�x

1
c

(5)

We know that the mass of any elementary particle can be written in the form

m =
~
�̄

1
c

(6)

and since the reduced Compton wavelength of the Planck mass particle is �̄ = lp then we must have

mp =
~
lp

1
c

(7)

Inputting formula 7 into formula 5 and solving with respect to �x we get

~
lp

1
c

 ~
�x

1
c

�x  lp (8)

1As measured with Einstein Poincaré synchronized clocks.
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However, many (physicists are of the opinion that the Planck length is the minimum distance we can measure,
and this would probably mean that we cannot have an inequality in this special case, but only an equality. So,
we think the correct interpretation is that

�x = lp (9)

This means �x not can go below lp. The maximum momentum (the Planck momentum) is the only certain
momentum, which gives a certain lower limit on the position uncertainty for a Planck particle equal to the Planck
length. This means that at the Planck scale Heisenberg’s uncertainty principle breaks down and becomes the
certainty principle

�p�x  ~
mpclp = ~ (10)

That is to say, at the Planck scale, we claim all uncertainty will likely disappear, but this world is certain
only for one Planck second. The Planck momentum is linked to the speed of light and no mass can move at the
speed of light. However, a Planck particle can and must dissolve into pure energy within one Planck second.

Another hint here is the Planck acceleration that is given by ap = c2

lp
⇡ 5.56092 ⇥ 1051 m/s2. The Planck

acceleration is assumed to be the maximum possible acceleration by some physicists, see [14, 15], for example.
Even after one Planck second, the Planck acceleration will bring an object at rest up to the speed of light. No
particle that also has mass after undergoing acceleration can therefore undergo Planck acceleration. The solution
is simply that only the Planck mass particle can undergo (and is even is the cause of) Planck acceleration. It
is an internal acceleration, which simply means the Planck mass particle dissolves back into energy after one
Planck second.

Still, for all non-Planck particles we have

�p�x = ~
�

mvq
1� v2

c2

�x = ~ (11)

If we now assume we know the rest-mass of the particle in question, an electron, for example, then the
uncertainty in momentum must come from the uncertainty in the velocity. This means we have

m�vq
1� (�v)2

c2

 ~
�x

(12)

Now if we set �x to what we know is the minimum possible uncertainty in it, namely the Planck length,
and we know the rest-mass of the particle, then it is even more clear that what is causing the uncertainty in the
momentum is the uncertainty in the velocity:

m�vq
1� (�v)2

c2

lp � ~

~
�̄

1
c�v

q
1� v2

c2

lp � ~

1
c�v

q
1� (�v)2

c2

� �̄
lp

�vq
1� (�v)2

c2

� �̄
lp
c (13)

Solved with respect to �v this gives
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v2

1� (�v)2

c2

� �̄2

l2p
c2

(�v)2  �̄2

l2p
c2

✓
1� (�v)2

c2

◆

(�v)2
✓
1 +

�̄2

l2p

◆
 �̄2

l2p
c2

(�v)2 
�̄2

l2p
c2

⇣
1 + �̄2

l2p

⌘

�v  cq
1 +

l2p
�̄2

(14)

This is basically the same derivation as given by Haug previously. What is new in this paper is that we are
showing that the Heisenberg’s uncertainty principle likely leads to a breakdown of uncertainty at the Planck
scale.

3 Kinetic Energy Uncertainty in the Heisenberg Principle

Again, Heisenberg’s uncertainty principle is given by

�p�x = ~
(15)

To turn this into kinetic energy, we have to multiply by c2

v and subtract the rest- mass of the particle mc2.
This gives

mv c2

vq
1� v2

c2

�mc2  ~c2
vmax

�mc2

mc2q
1� v2

c2

�mc2 =
~c2

�x�v
�mc2 (16)

However, we will assume the maximum velocity for any given particle is the only certain velocity, as it is

given by the formula vmax = c
q

1� l2p
�̄2 . Further, at this certain velocity we will claim the position uncertainty

is reduced to the Planck length, and we obtain

mv c2

vq
1� v2

c2

�mc2  ~c2
vmax

�mc2

mc2q
1� (�v)2

c2

�mc2  ~c2

lp

q
1� l2p

�̄2

�mc2 (17)

Since �̄ >> lp for any observed particle so far, we can approximate this very well as

mc2q
1� (�v)2

c2

�mc2 . ~c
lp
⇣
1� 1

2

l2p
�̄2

⌘ �mc2

mc2q
1� (�v)2

c2

�mc2 . ~c
lp

�mc2

mc2q
1� (�v)2

c2

�mc2 . ~c
lp

� ~
�̄

1
c
c2

mc2q
1� (�v)2

c2

�mc2 . ~c
✓

1
lp

� 1

�̄

◆
(18)
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This is the same kinetic energy limit given by Haug in his previous work [16]. The approximation formula
above does not hold for the Planck mass particle where we have

mpc
2

q
1� (�0)2

c2

�mpc
2 =

~c2

lp

r
1� l2p

l2p

�mpc
2

0 = 0

(19)

That is to say, the Planck mass does not have normal kinetic energy; it is all rest-mass energy that will burst
into pure energy within one Planck second.

4 Conclusion

In this paper, we have shown that Heisenberg’s uncertainty principle likely collapses to a certainty principle at
the Planck scale. This indicates that Einstein was right when he claimed “God Does Not Throw Dice.” The
Planck mass particle is unique and is the only particle that has a known momentum equal to p = mc. There is
no room for uncertainty in the velocity of a Planck mass particle simply because it is at absolute rest, even as
observed across di↵erent reference frames.
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