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Abstract. Newton claimed instantaneous G-influence; Einstein insisted no influence 

propagated faster than c . Quantum Mechanics (QM) the so-called basement of reality, posits a 

Quantum Gravity, for which no a priori science exists. We propose a paradigm shift with 

duality between a semi-quantum Standard Model (SM) limit and Large-Scale Additional 

Dimensionality (LSXD) in a modified M-Theoretic Unified Field (UF) brane arena as the 

regime of integration described by an Ontological-Phase Topological Field Theory (OPTFT) 

requiring fundamental changes in the concept of dimensionality and matter. OPTFT is 

developed to formally describe 3rd regime Unified Field Mechanics (UFM) (classical-

Quantum-UFM) to relate Newton-Einstein duality by added degrees of freedom in a semi-

quantum limit enabling topological Dirac-Majorana doublet fusion supervening the uncertainty 

principle.  

1. Introduction – Imminent 3
rd

 Regime Paradigm Shift 

An Ontological-Phase Topological Field Theory (OPTFT) requires fundamental changes in the 

concept of dimensionality and matter. From suggestions by Rowlands, two processes emerge to create 
XDs (Additional Dimensionality) [1]: 1) duality, with Ds fundamentally different, and 2) 

anticommutativity, with Ds fundamentally the same [2]. Yang-Mills (YM) Kaluza-Klein (KK) 

correspondence drives Physics beyond the SM. Horizontal and vertical subspaces in the tangent 

bundle of ,  (     )M M M G   defined by YM connections are orthogonal with respect to a KK 

metric suggesting orthogonal extension to XD beyond the 4D limit of the SM. CERN LHC research 

seeks KK XD beyond the SM. Current thinking posits XD as -scale since they are unobserved; 

however, this is not the only interpretation. A LSXD alternative hidden by subtractive interferometry 
is proposed [3-5]. Albeit, our OPTFT iteration of M-Theory is based on radical extensions of the 

original hadronic string theory because of inherent key elements: virtual tachyon/tardyon interactions 

and a variable concept of string tension, 0ST T    [3,6]. A and B-type topological string theories, 

and a related Topological M-Theory with mirror symmetry, while interesting, since they allow 
sufficient XD by Calabi-Yau mirror symmetry, essential for developing UFM; a distinction between 

these theories causes our model to diverge, as compactification must be continuous. A key parameter 

is topological charge in brane dynamics which by definition makes correspondence to a de-Broglie-
Bohm super-quantum potential synonymous with an ontological Force of Coherence, an inherent 

aspect of UF dynamics [3-5]. Thus, UFM predicts no phenomenal graviton (perceived artifact of 

incompleteness of Gauge Theory, i.e. Gauge Theory is approximate suggesting new physics).  

The difference between 4D quantum field phenomenology and LSXD topological field ontology is the 
energyless exchange process. Information (Shannon related) is transferred ontologically by the 



dynamics of topological switching in M-Theoretic branes carrying topological charge [3-5]. 

Completing Geometrodynamics inherently includes Newton/Einstein duality [5]; evidenced by 

interpreting quasar luminosity as G-shock waves [3] countering Big Bang interpretations of large 
redshift, Z based on Doppler recession. Instead, redshift results from periodic photon mass-anisotropy 

by coupling to a covariant polarized Dirac vacuum [3]. A further conundrum exists by defining a 

Manifold of Uncertainty (MOU) of finite dimensional radius, allowing a wave-particle-like duality 
with a quantal-like virtual graviton in the semi-quantum limit – an intermediary between field 

phenomenology and topological ontology. This has increasing importance for the new field of 

Relativistic Information Processing (RIP) which introduces G-effects in parallel transport of brane 

topological switching [3-5]. From the broad context above our central theme is the introduction of a 
topological formalism for a new set of UF transformations beyond the Galilean, Lorentz-Poincairé. An 

empirical protocol falsifying the model is developed [3-5]; which if successful has far reaching 

consequences for experimentally validating XD, M-Theory and leads to obsolescence of usual TeV
PeV supercollider particle sprays by providing a new form of table-top low-energy UFM XD brane 

collision (LSXD topological fusion) cross section alternatives for viewing putative SUSY partners in a 
trans-D slice rather than standard TeV/PeV cross section collision physics [7].  

OPTFT, is a paradigm shift beyond limits of the Standard Model (SM). Required tenets include: 

 Redefinition of Matter: The current 0D fermionic singularity becomes cyclic M-Theoretic mirror-

symmetric LSXD dual quaternion/octonion dynamic brane topology. 

 Complex (LCU) Least Cosmological Unit Tessellating Space/Spacetime: LCU simplistic similitude 
of Unit Cell building Crystal Structure. 

 Semi-Quantum Limit: Uncertainty a Manifold of Finite Radius: Where Duality of SM & LSXD – 

Newton - Einstein Enters. 

 Described by New Topological Transformation: Beyond the Galilean, Lorentz-Poincairé named 

Noetic Transform because ultimately it must include physics of the Observer…  

2. Quasar Luminosity as Gravitational Shock Waves – Newton Einstein G Duality 
Conflicts within the SM call into question the fundamental interpretation of the Doppler component of 

the putative Hubble Expansion Law and the nature of events in associated with conventional 

coordinates of the line element as attached to the physical basis of the observer. Also of paramount 
importance is that Einstein’s Classical Geometrodynamics is not a complete theory of gravity, as 

stated by Einstein himself. We postulate nonlinear effects associated with the propagation of light in 

an intense G-field produce shock waves creating light-booms along boundary conditions at 
cosmological distances approaching the limit of observation that if correct would explain anomalous 

Quasi-Stellar Object (QSO) luminosity. These G-shock waves are considered observationally manifest 

in the spectrum of QSOs and Supernova as a continuous front of light booms produced by 

superluminal boosts associated with continuous coordinate transformations relative to a distant 
observer, suggesting that QSOs are a form of Seifert spiral galaxy with Active Galactic Nuclei (AGN) 

in the vicinity of the putative observational limit of the Hubble radius, RH , creating an issue of 

fundamental basis of Geometrodynamics. Newton's formulation of the G-force law requires each 

particle to respond instantaneously to every other massive particle regardless of the distance between 
them which he proved; but the proof is only valid in Euclidian space. Today this would be described 

by the Poisson equation,  
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according to which, when the mass distribution of a system changes, its G-field instantaneously 

adjusts. Therefore, theory requires the speed of G  to be infinite (instantaneous). Einstein’s 

Geometrodynamics, 
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   a classical extension of Newtonian-G is thus incomplete. 



Physical theory incorporates an upper limit on the propagation speed of an interaction, maintaining 

that instantaneous action-at-a-distance is impossible. However, quantum entanglement between 

separated quanta enables instantaneous EPR correlations which led to the puzzle as to whether 
causality or locality is abandoned in transit to 3rd regime natural science. 

2.1. Note on Cosmological Principle and G-Duality 

In summarizing the Cosmological Principle (universe homogeneous and isotropic) [8] events are 

idealized spacetime instants defined by arbitrary time and position coordinates t, x, y, z,  written 

collectively as ix  with i , 0  to 3 . The standard line element is 
2 i j i j

ij ij

ij

ds g dx dx g dx dx  , where 

metric tensor ij jig (x) g (x)  is symmetric [8]. In local Minkowski form all first derivatives of ijg

vanish at the event taking the form 2 2 2 2 2 .ds dt dx dy dz     The Cosmological Principle generally 

suggests that clocks of all observers are synchronized throughout all space because of inherent 

homogeneity and isotropy. Because of this synchronization of clocks for the same world time t , for 

commoving observers the line element becomes, 2 2 2 2 ,ds dt g dx dx dt dl 

     where 2dl  

represents spatial separation of events at the same world time, t . This spatial component of event 2dl

can be represented as an Einstein 3-sphere (compatible with dual 6D Calabi-Yau 3-tori) 
2 2 2 2 2dl dx dy dz dw    which is represented by the set of points ( x, y, z, w ) at a fixed distance R  

from origin: 2 2 2 2 2R x y z w     where 2 2 2w R r   and 2 2 2 2r x y z   , so finally we may 

write the line element of the Einstein 3-sphere as 2 2 2 2 2 2 2 2/dl dx dy dz r dr R r      [8]. By 

imbedding an Einstein 3-sphere in a flat HD space, specifically as a subspace of a new complex 12D 

superspace [3,4,9], new theoretical interpretations of standard cosmological principles are feasible. 

This is the line element most compatible with the oscillatory spacetime boundary parameters required 
by our model of nonlinear dual G-shock waves in QSO luminosity [3].  

According to MTW [10] junction conditions may act as generators of G-shocks; the dynamics of 

spacetime geometry for a 3-surface,   which includes intrinsic Riemann scalar curvature invariants, 

R , also includes an extrinsic curvature tensor, ijK . When imbedded in an enveloping 4-geometry 

hypersurface it can change (shrinkage and deformation) in vector, n  parallel transported as junction 

conditions applicable to the G-field (spacetime curvature) and the stress-energy generating it. A 

discontinuity in ijK  across a null surface without stress-energy producing it is a geometric 

manifestation of a G-shock-wave generated by a different embedding in spacetime above   than 
below  [3,10]. 

Dray and ’t Hooft [11] found conditions for introducing G-shock waves in a class of vacuum solutions 

to Einstein’s equations by coordinate shift. Their model generalizes G-shock waves for a massless 
particle moving in flat Minkowski space formulated as two Schwarzschild black holes of equal masses 

glued together at the horizon. For a spherical shell of unequal masses moving along 0 0u u  ; their 

solution [12] represents two Schwarzschild black holes glued together at 0u u . By infinitely boosting 

the Dray-’t Hooft solutions various forms of G-shock waves have been found [13-14]. Sfetsos [15] 

extends these results to the case with matter fields and a non-vanishing cosmological constant. Using 
the d-D spacetime metric:   

      2 2 , , i j

ijds A u v dudv g u v h x dx dx  , with  , 1, 2,..., 2i j d   (1) 

 

he uses a string based dilatonic black hole G-solution [16] from the perspective of a conformal 

background field theory of coset   22, /SL R R R  to achieve a differential shift factor 
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where 2 2 2x y    and for a black hole singularity case with 1  , (2) is a modified Bessel equation 

[15]. Spitkovsky [17] simulates a relativistic Fermi emission shock process that could provide an 
alternative to, or component process for our G-shock work. His simulations on relativistic collisionless 

shocks propagating in initially unmagnetized electron-positron pair plasmas showed natural 

production of accelerated particles as part of shock evolution. He studied the mechanism that 
populates the suprathermal tail for particles gaining the most energy. The simulation showed the main 

acceleration occurs near the shock, where for each reflection these particles gain energy, ~E E  as is 

expected in relativistic shocks [18].  

Newton’s G  required instantaneous action at a distance or the conservation of angular momentum 

would be violated; but for Einstein’s GR an instantaneous influence would violate causality and SR 

and so must be mediated by a field. This is the dual nature of gravity that we have put as the basis for 
our model. We tried to show that it is possible with further study to relate shock phenomena to G-

waves especially for narrow axis massive cosmological objects such as AGN QSOs that readily lend 

themselves to light-boom effects that could therefore be used to explain QSO luminosity as further 
evidence of the insurmountable shortcomings of Big Bang cosmology. Our model works best 

contrasting both modes of the intrinsic dual nature of G because nonlinear jumps in flow occur with 

discontinuity. From the 2nd Law of Thermo-dynamics entropy is only increases when particles cross a 
shock. The duality of the propagation of the G-influence is evident in Birkhoff's theorem [3,9] where a 

spherically symmetric G-field is produced by a massive object such as a QSO at the origin; if there 

were another concentration of mass-energy elsewhere, this would disturb spherical symmetry. This 

effect could occur if interference occurs between the usual modes of the G-influence by shock 
parameters. 

3. The Phasor (Phase Vector) Complex Probability Amplitude 

Ontological-Phase Topological Field Theory (OPTFT) introduces fundamental 3rd regime postulates: 
1) A semi-quantum mirror symmetric Calabi-Yau finite radius manifold of uncertainty, 2) with a 4D 

Minkowski-Riemann subspace, and 3) cyclical duality of phenomenological (quantal) field mediation 

and an ontological charge (energyless) topological switching unified field. As initial simplistic 
modeling of Ontological-Phase we adapt the phasor or phase vector concept as a precursor to 

ontological topological phase. In general, a phasor is a complex number for a sinusoidal (   rotation) 

function with amplitude A , angular frequency   and initial phase  , with all time invariant. The 

complex constant is the phasor [4]. Euler’s formula can represent sinusoids as the sum of two 

complex-valued functions:  cosA t        / 2 ,
i t i t

A e e
     

   or as the real part of function:

 cosA t      Re
i t

A e
 

   Re .i i tAe e   The function, 
 i t

A e
 

  is the analytic 

representation of  cos .A t    Multiplication of the phasor, i i tAe e   by a complex constant, iBe  , 

produces another phasor changing the amplitude and phase of the underlying sinusoid: 

  Re i i i tAe Be e      
   Re

i i tABe e
  

    cos .AB t     If function,
 i t

A e
 

  is 

depicted in a complex plane, the vector formed by imaginary and real parts rotates around the origin. 

A  is magnitude, i  is the imaginary unit, 2 1i   ; one cycle is completed every 
2


 seconds, and   is 

the angle formed with a real axis at 
2

t n



 , for integer values of n  [4].  



      
 

Figure 1. a) Phasor diagram of three waves in perfect destructive interference. b) Left-Right phase 
argument, preparation for phase transition channels in Dirac-Majorana duality modes. 

 

This type of addition (Figure 1a) occurs when sinusoids interfere constructively or destructively. Three 
identical sinusoids with a specific phase difference may perfectly cancel. To illustrate, we place three 

equal length vectors matching up head to tail to form an equilateral triangle with a 120  ( 2 3π /  

radians) angle between each phasor of 1 3/  wavelength, 3λ / , so the phase difference between each 

wave is 120 , 
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. In the three waves example, the phase 

difference between 1st and last waves is 240 , In the many waves limit, phasors must form a circle for 

destructive interference, so that the 1st phasor is nearly parallel with the last. Thus, for many sources, 

destructive interference happens when the 1st and last wave differ by 360 , a full wavelength, λ  [4]. 

For any complex number in polar form, such as ,ire 
 the phase factor is the complex exponential 

factor, .ie   As such, phase factor relates more generally to term phasor, which may have any 

magnitude (i.e., need not be part of circle group). A phase factor is a unit complex number of absolute 

value 1 commonly used in quantum mechanics (QM). The variable   is referred to as the phase. 

Multiplying the equation for a plane wave 
 ei k r t

A
 

 by a phase factor shifts the phase of the wave by

 : 
   

.
i k r t i k r tie Ae Ae

       
  In QM, a phase factor is a complex coefficient ie   that multiplies a ket 

  or bra  , not, in itself, having any physical meaning in standard QM, since introducing a phase 

factor does not change the expectation values of a Hermitian operator. That is, the values of A   

and
i ie Ae  

 are the same [4].  

3.1. Berry Phase – Precursor to Ontological Phase 
However, differences in phase factors between two interacting quantum states can be measurable 

under certain conditions such as in Berry phase, which has important consequences [4]. The argument 

for a complex number z x iy  , denoted arg z , is defined as: 

 Geometrically, in the complex plane, as the angle   from the positive real axis to the vector 

representing z . The numeric value given by the angle in radians is positive if measured 

counterclockwise (Figure 1b). 

 Algebraically, the argument is defined as any real quantity,   such that  cos sin iz r i re      

for some positive real r  (Euler's formula). The quantity r  is the modulus of z , as z : 

2 2 .r x y   

Use of the terms amplitude for the modulus and phase for the argument are often used equivalently; by 
both definitions, the argument of any (non-zero) complex number has many possible values: firstly, as 

a geometrical angle, whole circle rotations do not change the point, so angles differing by an integer 

multiple of 2  radians are the same. Similarly, from the periodicity of sin  and cos , the 2nd definition 

also has this property. An N-particle system can be represented in non-relativistic QM by a wave 

function,  1 2, ,... nx x x , where each ix  is a point in 3D space. A classical phase-space contains a 



real-valued function in 6N Ds (each particle contributes 3-spatial coordinates and 3-momenta. 

Quantum phase-space involves a complex-valued function on a 3N dimensional space. Position and 

momenta are represented by non-commuting operators, and   lives in the maths structure of a Hilbert 

space. Aside from these differences, the analogy holds. In physics, this addition occurs with 

constructively or destructively interfering sinusoids. The static vector concept provides useful insight 

into questions like: What phase difference is required for three identical sinusoids to perfectly cancel 
(again Figure 1a)? Waves are characterized by amplitude and phase, and both may vary as a function 

of those parameters. According to Berry [19], if parameter of the Hamiltonian of quantum system 

undergoes adiabatic changes, cyclically returning to original values, the wave function can acquire 

geometrical and dynamical phase. This additional Berry phase is 0 when the trajectory in parameter 

space is near a point of degenerate states. Berry assumed the Hamiltonian is Hermitian (linear) in 
deviations of parameters from a point. He considered such points to be monopole-like when 

calculating geometrical phase. Thus, such points generate a field coinciding in monopole-like form, 

and the flux of Berry’s field through a contour gives the geometrical phase of the system. Berry phase 

occurs in Aharonov–Bohm effects, where the adiabatic parameter is the magnetic field enclosed by 
two cyclical interference paths forming a loop and conical intersections (adiabatic parameters are 

molecular coordinates) of two potential energy surfaces, a set of geometrical points where the two 

potential energy surfaces are degenerate (intersect) and the non-adiabatic couplings between these two 
states are non-vanishing. Generally, geometric phase occurs whenever at least two wave parameters in 

the vicinity of a singularity/hole in the topology; two are required because either the set of nonsingular 

states will not be simply connected (shrink closed curve to point), or there will be nonzero holonomy. 
A Berry phase difference is acquired over the course of a cycle, when a system is subjected to 

cyclic adiabatic processes resulting from the geometrical properties of the parameter space of 

the Hamiltonian [4,19]. In addition to QM it can occur whenever there are at least two parameters 

describing a wave in the vicinity of a singularity or topological hole.  
In a quantum system at the nth eigenstate, if adiabatic (adapts to gradually changing external 

conditions; but for rapidly varying conditions there is insufficient time, so the spatial probability 

density remains unchanged) evolution of the Hamiltonian evolves the system such that it remains in 
the nth eigenstate, while also obtaining a phase factor. The phase obtained has a contribution from the 

state's time evolution and another from the variation of the eigenstate with the changing Hamiltonian. 

The 2nd term is Berry phase which for non-cyclical variations of the Hamiltonian can be made to 

vanish by a different choice of the phase associated with the eigenstates of the Hamiltonian at each 
point in the evolution. But if variation is cyclical, Berry phase cannot be cancelled, as it is invariant 

and becomes an observable property of the system. From the Schrödinger equation, the Berry phase   

is:    , ,R

C

C i n t n t dR   , where R  parameterizes the cyclic adiabatic process. It follows a 

closed path C  in the appropriate parameter space. Geometric phase along the closed path C  can also 

be calculated by integrating the Berry curvature over surface enclosed by C  [4]. The Foucault 

pendulum is a simple example of geometric phase. The pendulum precess when it is taken around a 

general path C . For transport along the equator, the pendulum does not precess. But if C  is made up 

of geodesic segments, precession arises from the angles where the segments of the geodesics meet; the 

total precession is equal to the net deficit angle, which equals the solid angle enclosed by C  modulo

2 .  We can approximate any loop by a sequence of geodesic segments, from which the most general 

result is that the net precession is equal to the enclosed solid angle. Since there are no inertial forces on 

the pendulum precess, precession, relative to the direction of motion along the path, is entirely due to 

the turning of the path. Thus, the orientation of the pendulum undergoes parallel transport [4]. 

Topological quantum field theories (TQFT) were created to avoid infinities in quantum field theory. In 
topological field theory, the concern is topological invariants, objects computed from a topological 

space (smooth manifold) without any metric. Topological invariance is invariance under the 

diffeomorphism group of the manifold. TQFT flourished through the work of Witten and Atiyah [4]. 



To experimentally move from SM Hilbert space to UFM ontological-phase space we must define 

topological switching [3-5]. We begin looking at the ambiguous Necker cube [4] where the central 

vertices switch ontologically (energyless) by topological charge.  

4. Tight Bound States Below the Lowest Bohr Orbit 

Recently, Tight Bound States (TBS) due to em-interactions at small distances below the lowest Bohr 

orbit have been postulated for the Hydrogen atom [20-21]. Summarizing this seminal work: in the 
usual atomic physics spin-orbit and spin-spin coupling perturbations give rise to only small corrections 

in classic Bohr energy levels. However, with distances in the 31 / r  and 41 / r  range these interaction 

terms, until now overlooked, can be much higher than the Coulomb term at distances   than the 

Bohr radius - predicting new HD physics [20]. In a further development, Corben noticed motion of a 
point charge in a magnetic dipole field at rest is highly relativistic with orbits of nuclear dimensions. 

Investigation by [20-21] for extending the Pauli equation to a two-body system defined by the 

Hamiltonian,      
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1 1 1 2 2 2

1 2 0 1 2

1 1 1

2 2 4 | |
dd

e e
H P e A r P e A r V

m m r r
     


 with, 1m  mass, 1P  

momentum, 1e  charge, 1r  position of the particles ( 1,2i  ), A  is electromagnetic vector potential and 

ddV , the dipole-dipole interaction term:  
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In a center-of-mass frame with normal magnetic moment, 
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  Hamiltonian, H  above is: 
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The possibility of TBS physics as derived from Hamiltonian (3) is shown in simplified form when 

limited to spherically symmetric terms by the radial Schrödinger equation [20]:

 
2

2 2

2
0

d X m
E V r X

dr
       and contains a form for the effective potential in the inverse power law: 

 
4 3 2

A B C D
V r

rr r r
    . At large distances this potential is an attractive Coulomb tail with a 

repulsive core at small distances due to the 
4

A

r
 term [20]. For proper values of potential V  its 

coefficients could have another potential well in addition to the one at distances of the order of the 

Bohr radius (location of new physics). Additional theoretical details on the seminal development of 
TBS by Vigier can be found in [4-5,21]. Idealization of SM elementary particles as 0D points/charge 

in coordinate context with no known composite subparticles, arose because size is considered 

irrelevant. Paraphrasing Rowlands: fundamental physics reduces to explaining the structures and 
interactions of fermions. Fermions appear as singularities not extended objects, with no obvious way 

of creating such structures within 3D observation space. But, the Dirac equation suggests fermions 

require a double, rather than single, vector space, confirmed by the double rotation of spin ½ objects, 

and associated zitterbewegung and Berry phase shift. The 2nd ‘space’ reveals that it is an ‘antispace’, 
with the same information as real space but in less accessible form. The two spaces cancel forming a 

norm 0 (nilpotent) object with the exact mathematical structure required for a fermionic singularity 

[5]. He further notes that fermions as singularities exist in a multiply-connected space requiring double 
rotations to return to starting position. Fermions also undergo zitterbewegung continually switching 



between real space and complex vacuum space. The double circuit in real space is required because a 

fermion only exists in this space for half its existence. It is not coincidental that fermion algebra 

(gamma matrices) requires a commutative combination of two vector spaces for full representation; 
thus, obviously constructing a singularity requires a dual space [5,22]. The nilpotent space-antispace 

model extends understanding of a singularity in terms of the SM, but quaternionic algebra is not a 

penultimate description of nature; Rowlands’ model, avant garde to the SM is not sufficiently radical 
to satisfy the needs of UFM [4-7]; but inspires a basis for correspondence to LSXD UFM OPTFT. 

4.1. TBS Access Requires Violation of the Quantum Uncertainty Principle 

Demonstrating new TBS spectral lines requires experimentally surmounting the quantum uncertainty 

principle. A new Noetic Transform will tell us whether one or two additional doublings of a Roland's 
type space anti-space model are required for up to five additional spectral lines which complete the 

radius of the MOU. Yang-Mills Kaluza-Klein equivalence provides an empirical path extending 

standard model particle physics. Einstein realized (1905) that Maxwell’s equations obey a special 
relativity principle – Physical law is the same for all observers in uniform relative motion, 

   0 1 2 3, , , , , ,x x x x x t x y z   . Then, his General Relativity required two indices: ( )g x  with line 

element 2 ( )ds g x dx dx 

 . In 1919, Kaluza made his attempt to combine electromagnetism and 

general relativity by postulating a 5th dimension with the additional HD coordinate, 

 0 1 2 3 4, , , ,Mx x x x x x   , , , ,t x y z  , with line element: 2ˆ ˆ ( ) M N

MNds g x dx dx  where he then made 

a 4D+1D split. Klein assumed the 5th dimension had circular topology so that the coordinate,   is 

periodic: 0 2   . The KK 5th dimension was assumed to be curled up at the Planck scale because 

it was unobserved – As mentioned above this is not the only interpretation for hidden XD! 

 
 

Figure 2. a) Bottom, uncertainty principle arises by a 3-space knot shadow of XD topological M-brane 

degrees of freedom. b) SM line element, locus of semi-classical Riemann Bloch 2-spheres, 1 2,X X , as 

basement of reality; Top, 1st space-antispace mirror symmetric UFM step of quaternionic vertices 

cycling from 5D QM chaos to topological order as faces of 3-cube.  

 
Figure 2 shows how a localized knot shadow hides XD behind the uncertainty principle. In Figure 2b 

we see the beginning of separation of the standard 3-space line element into an extended KK 

cyclicality from order to chaos at the semi-quantum limit. The structure has an inherent beat frequency 
revealed by rf-modulation of the Dirac polarized vacuum. 

 

 



    
 

Figure 3. a) Oppositely charged sub-elements rotating at v c  around center 0  behaving as dipole 

bumps and holes on the surface of a covariant polarized Dirac vacuum, allowing rf-modulation. b) 

Topological Invariance must be included in any phase labeling therein. 
 

 
 

Figure 4. a) Fundamental diagram changing lepton number transitions by two units, generalized for 

Majorana modes (MJM). b) Dual MJM cyclic modes for fusion of a-b Berry phase cycles (center) in 

graphene. c) Reduction schemes for L&R-handed trefoil knots. 

 
The Fano snowflake configuration (Figure 6) involutes to form a 2D hexagon (graphene) or vertices of 

a Euclidean ambiguous Necker 3-cube used to explore possible topological moves for fusion of 

ontological-phase transitions. In the context of graphene, Berry phase is the phase an eigenstate 

acquires after p  is forced to evolve a full circle at constant energy around a Dirac vortex point. When 

parallel transport creates a deficit angle in brane raising and lowering dynamics, in addition to 

Reidemeister moves, rotations, reflections or any other topological moves, other types of phase 
transition with lattice charge in anyon braid fusion channels apply. Half of the leptons are neutrinos, 

but unknown if they are Dirac or Majorana; finding neutrinoless double  -decay would demonstrate 

existence of the Majorana nature of neutrinos. Neutrinoless double  -decay occurs when two neutrons 

in a nucleus decay simultaneously, a fundamental diagram changing lepton number by two units 

(Figure 4a). We begin to explore a plethora of crossover links and moves cataloging various 

transformations applicable to anyon fusion channels studied to supervene the inaccessibility of 

topological braiding, ,

c

a b

c

a b N C  , where &a b c  [23-24]. We wish to illustrate fusion-duality 

as a Principle, by taking the more simplistic case of de Broglie fusion, coordinates 1 1 1, ,x y z  and

2 2 2, ,x y z  become 1 2 / 2,X x x Y    1 2 1 2/ 2, / 2y y Z z z   . Then for identical particles of mass, 

m without distinguishing coordinates, the Schrödinger equation (center of mass) is 
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Eq. (4) corresponds to the present, Eq. (5a) the advanced wave and (5b) the retarded wave [3]. 
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Extending Rauscher’s concept for a complex 8-space differential line element 2dS dZ dZ 

  , 



where indices run 1  to 4 ,   is the complex 8-space metric, Z   the complex 8-space variable and 

where 
Re ImZ X iX     and Z   is the complex conjugate, to 12D continuous-state UFM multiverse 

space-time; we write just the dimensions for simplicity for space constraints 

Re Re Re Re Im Im Im Im, , , , , , ,x y z t x y z t    , where   signifies Wheeler-Feynman/Cramer type future-

past/retarded-advanced dimensions. This framework allows the application of hierarchical harmonic 

oscillator parameters for surmounting uncertainty [3,9]. 

         
 

Figure 5. a) Anyon topologically protected fusion channels, b) Basic pants cobordism, c) Golem, 

composition of cobordisms designed for ontological-phase fusion transformations. 

 

             
 

Figure 6. a) Antennas (snowflakes) on a Fano plane represent b) vertices on the circumference of a 

hexagon/cube where c) center rotates unconnected so position 1 or 2 can create the front/rear vertices 
of an ambiguous Necker cube. b) Antennas 1-6 combine to form the outer vertices of a cube/hexagon 

depending on what dimensional phase the state is in. 

 
An important feature of TQFTs is they do not presume fixed topology for space/spacetime; in dealing 

with an n-D TQFT, one is free to choose any  1n  -D manifold to represent space at a given time. 

Given two such manifolds, S  and S  , one is free to choose any nD-manifold M to represent the 

spacetime between S  and S  . Mathematicians call M  a cobordism from S  to S   (Figure 5b,c). We 

write :M S S , because M can be the process of time from moment S  to moment .S   For example, 

Figure 5b depicts a 2D manifold M  going from a 1D manifold S  (pair of circles) to a 1D manifold 

S  (single circle). Crudely, M  represents two separate spaces colliding to form a single one. 

Seemingly outré, but physicists are willing to speculate about processes in which the topology of 

space changes with time [25]. Various operations can be performed on cobordisms; we describe two:  

1) Compose two cobordisms :M S S  and :M S S   , obtaining cobordism :M M S S  , 

Figure 5c. The idea is that the passage of time corresponding to M  followed by the time 

corresponding to M   equals the time corresponding to M M . This is analogous to the idea that 

waiting t seconds followed by waiting t  seconds is the same as waiting t t  seconds. The difference 

in TQFT is we cannot measure time in seconds, because no background metric exists to let us count 

the passage of time. We track topological changes. Just as ordinary addition is associative, so is the 

composition of cobordisms:  '' ' ''( ' )M M M M M M . But, cobordism composition is not 

commutative - the famous noncommutativity of observables in QT [25].  



2) Any ( 1)n  D manifold S  representing space, there is a cobordism 1 :S S S  called the identity 

cobordism, representing passage of time without topological change. For example, if S  is a circle, the 

identity cobordism 1S  is a cylinder. In general, the identity cobordism 1S  has the property that for any 

cobordism :M S S  we have 1S M M , while for any cobordism :M S S  we have 1SM M  

[25]. These properties say that an identity cobordism is analogous to waiting 0  seconds: if you wait 0  

seconds and then wait t more seconds, or wait t  seconds and then wait 0  more seconds, this is the 

same as waiting t  seconds. These operations just formalize of the notion of the passage of time in a 

context where the topology of spacetime is arbitrary and there is no background metric.  

Atiyah's axioms relate this notion to QT as follows:  

 A TQFT must assign a Hilbert space ( )Z S  to each ( 1)n  D manifold S . Vectors in this Hilbert 

space represent possible states of the universe given that space is the manifold S .  

 The TQFT must assign a linear operator ( ) : ( ) ( )Z M Z S Z S   to each n D cobordism :M S S . 

This operator describes state change given that the portion of space-time between S  and S   is the 

manifold M : If space is initially manifold S  and the state of the universe is  , with time passage 

corresponding to M , the state of the universe is ( )Z M   [25].  

TQFTs must satisfy a list of properties. Two are: 1) A TQFT preserves composition: given cobordisms 

:M S S  and :M S S   , we must have ( )Z M M  ( ) ( ),Z M Z M  where the right-hand side 

denotes the composite of the operators ( )Z M  and ( )Z M  . 2) It must preserve identities; given any 

manifold S  representing space, we must have ( )(1 ) 1S Z SZ  , where the right-hand side denotes the 

identity operator on the Hilbert space ( )Z S  [25]. These axioms are not unreasonable if one ponders 

them a bit. The first says that the passage of time corresponding to the cobordism M  followed by the 

passage of time corresponding to M   has the same effect on a state as a combined passage of time 

corresponding to M M . The second says that a passage of time in which no topology change occurs 

has no effect at all on the state of the universe. This seems paradoxical at first, since it seems we 
regularly observe things happening even in the absence of topology change. However, this paradox is 

easily resolved: a TQFT describes a world quite unlike ours, one without local degrees of freedom. In 

such a world, nothing local happens, so the state of the universe can only change when the topology of 
space itself changes. 

Loosely speaking, they all say that a TQFT maps structures in differential topology (study of 

manifolds) to corresponding structures in quantum theory. Atiyah took advantage of power between 
differential topology and quantum theory [25]. This analogy between differential topology and QT is 

the clue we should pursue for a deeper understanding of quantum gravity. At first glance, GR and QT 

look very different mathematically: one deals with space and spacetime, the other with Hilbert spaces 

and operators, not easy to combine; but TQFT suggests they are not so different. Quantum topology is 
technical, but it is obvious that differential topology and QT must merge to understand a background-

free QFT. Physics ignoring GR, treats space as a background for displaying world states. Similarly, 

spacetime is treated as a background for the process of change; these idealizations must be overcome 
in a background-free theory. In fact, concepts of space and state are two aspects of a unified whole; 

likewise, the concepts of spacetime and process [25]. In an alternative derivation of string tension, ST  

we met this challenge finding a unique background independent M-Theory [3], that after another 

decade led to OPTFT as the putative 3rd regime integrating unquantized GR and UFM [4]. 
A photon, 2-component, 2D traveling plane wave projecting at right angles to the direction of 

propagation has a particulate radius not able to pass a slit .  We propose that behind the inherent 

backcloth of cyclic bumps and holes in the polarized Dirac vacuum (Figure 2a) [4], the uncertainty 

principle is hiding the XD topology of the MOU, which is not singular as in the SM because cyclic 

boost-compactification occurs continuously from asymptotic virtual (shadow of uncertainty, Figure 

2), to the Larmor radius of the hydrogen atom, making correspondence to dynamical Type-II M-



theoretic Calabi-Yau florets (multiply-connected Kahler manifold) undergoing translation, rotation, 

reflection as part of the process. Spectral lines characterize atoms by, /E c    or wave 

number, 1 / /E c   by discrete wavelengths confirmed by monochromatic x-ray bombardment. 

Excited states, E2 decay to lower states, 1E  by emission of photon energy, 1 2E E  frequency, v, 

wavelength,   and wave number, 2 1 /E E c c      . By conditions hinted at in Figure 2 

we propose new hyperspherical spectral lines below the lowest (ground state) Bohr orbit. Kowalski’s 

interpretation from laser experiments [26] shows that emission and absorption between Bohr states 

takes place within a time interval equal to one period of the emitted-absorbed photon wave, the 
corresponding transition time is the time needed for the orbiting electron to travel one full orbit around 

the nucleus. Note that the same Lorentz conditions denoted in our tachyon measurement experiment 

apply directly to the TBS experiment with slight phase control alterations in the Cramer-like standing-

wave oscillation of the HD Calabi-Yau mirror symmetries [6]. Standard Hypervolume values for 

increasing n -dimensionality and radius, r of a unit sphere or n -ball equal to 1 can be used to initially 

predict two TBS spectral lines hidden within the 6D Calabi-Yau dual 3-torus, the putative wavelengths 

can be calculated from the general hyperspherical n -volume equation, 
2

1

2
, 4 9346,  units for 4D, 

and 
2

8

15
, 5 2638,  units for 5D. If Randall-Sundrum are correct, the 6D cavity will be degenerate, 

and the signal escape to infinity. We postulate a Manifold of Uncertainty (MOU) with finite XD-
radius corresponding to string theories T-Duality [3-5]. For preliminarily predictions we could 

calculate hyperspherical volume or surface area of 2D-5D MOU. The general n -volume equation is 

 2 2
( , ) / 1nn nV n r r   , where 

,n rV  is volume per number of dimensions, n  of radius r  and   a 

factorial constant. We relate these n -volume equations to volumetric properties of the MOU for 

calculating an HD C-QED volume hierarchy for predicting new Tight-Bound State (TBS) spectral 

lines in hydrogen [4,21]. If LSXD exist, degeneracy would occur at the limit of r  discovered in the 
same manner the outermost energy level of an atom is detected when an outer electron acquires 

sufficient energy to escape to infinity.  

5. Experimental Design – Rf-Resonance Parameters on the Dirac Polarized Vacuum 

Modulated harmonic Sagnac Effect rf-pulses oscillate electrons to couple with nucleons. Additional 
spin-spin pulse modulation couples to a putative de Broglie-Bohm-Cramer Kaluza-Klein cyclical beat-

frequency, an inherent aspect of UFM semi-quantum limit space-time. With Dubois incursive 

oscillator parameters added, a QED cavity opens into XD/LSXD topology. These conditions in 
conjunction with a Bessel function discover additional TBS spectral lines.  

             
 

Figure 7. a) Generalized schema for a TBS expriment. b) Simplistic illustrative functions for operting 

a TBS incursive harmonic oscillator. c) Rf-pulsed Sagnac Effect interference cycles. 

 

From a common general example of a Bessel function, with  an arbitrary complex number: 



 
2

2 2 2

2
0

d y dy
x x x y

dxdx
    , we solve the Helmholtz equation in spherical coordinates by variable 

separation such that the radial equation takes the form  
2

2 2

2
2 ( 1) 0

d y dy
x x x n n y

dxdx
       . 

The spherical Bessel functions, ,n nj y  are the two linearly independent solutions that relate to the 

ordinary Bessel functions, ,n nJ Y  as: 

  1 1 1

2 2 2

1
( ) ( ),   ( ) ( ) 1 ( ).

2 2 2

n

n n nn n
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     (6) 

When written as Rayleigh’s formulas  
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the first spherical Bessel functions are   
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and 
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Figure 8. Bessel Function example necessary to synchronize coupling with the Dubois incursive 

oscillator in order access additional TBS beyond the first 4D QED cavity to 5 and 6D MOU cavities. 
We think we know how, but surmounting uncertainty will not be trivial. 

 

We show the 1st three Bessel function solutions of the 1st and 2nd kind to illustrate our incursive 
oscillator process to locate the first TBS spectral line in hydrogen, expected to be relatively easy to 

find in comparison with finding the 2nd and 3rd. The additional lines will be more challenging as there 

may be some unexpected complexity in the Bessel harmonic oscillator that must be overcome to 
completely surmount uncertainty. Restrictions related to this refinement have not revealed themselves 

to us as yet. They will require additional adjustment to the spin-spin coupling parameters of the 

algebra describing the HD hyperspherical volume. Parallel transport of the gravitational curvature 

deficit angle will kick in for the XD mirror symmetric brane topology, with noeon topological charge 
corrections (not quantized gravity) [3-5,7]. 

Completing the Noetic Transform (beyond Lorentz-Poincaré), clarifies the choice of linear 

combinations of Bessel solutions (6), which depends on their asymptotic behavior at  ,  



 ( ) cos
2 2 4

nJ x x n
x
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2 2 4
nY x x n
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, (10) 

thus 

 ( ) exp .
2 2 4

nH x i x n
x

     
     

  
 [28] (11) 

With the proper harmonic oscillator Bessel function solutions, the next step in the experimental design 

is to apply the Dubois incursive oscillator parameters as the final step in designing the synchrony of 
Sagnac effect rf-pulses. The incursive algorithms are numerically stable and the numerical simulation 

of the oscillator will show the conservation of the energy. Let us consider the harmonic pendulum as 

an illustrative example, with m  the oscillating mass and k the spring constant, represented by the 

ordinary differential equations: 

  2( ) / ( ),   ( ) / ( )dv t / dt.dx t dt v t dv t dt x t    (12) 

where x(t)  is the position and v(t)  the velocity as functions of the time t , and where the pulsation   

is related to k and m by 2 /k m   [28]. The solution is given by  

 ( ) (0)cos( ) (0) / sin( ),   ( ) (0)sin( ) (0)cos( )x t x t v t v t x t v t                      (13a,b) 

with the initial conditions 0x( )  and 0v( ) . In the phase space, given by ( x(t), v(t) ), the solutions are 

given by closed curves (orbital stability). The period of oscillations is given by 2 / .T   The energy 

( )e t  of the harmonic oscillator is constant and is given by 

 
2 2 2 2

0( ) ( ) / 2 ( ) / 2 (0) / 2 (0) / 2 (0) .e t kx t mv t kx mv e e       (14) 

The simulation of differential equations is impossible. This is only the discrete transformation which is 

computable with a recursive function. In differential equations, there is only the current time. In 

discrete systems, there is the current time t and the interval of time .t h   The discrete time is defined 

as: 0kt = t + kh  with 0 1 2k = , , ,… where 0t  is the initial value of the time and k  is the counter of the 

number for the interval of time h  [29]. The discrete variables are defined as k kx = x(t )  and 

k ky = y(t ) . The discrete equations used in the harmonic oscillator case for computing the position and 

the velocity at consecutive moments have the general form 

 1k k kx Ax Bv   ,  2

1 ,k k kv Cv D x    (15a,b) 

where , ,A B C  and D  are coefficients with values specific to the numerical integration methods 

applied. In eliminating kν  of Eq. (15a) in Eq. (15b), a second order discrete equation in kx  is given by 
2

2 1( ) ( ) 0.k k kx A C x AC BD x       The stability analysis for this discrete system can be 

performed by using the Z-transform, 2 2( ) ( ) 0z A C z AC BD      which presents two poles: 

 2 2

1,2 (( ) ( ) 4( )) / 2z A C i A C AC BD        (16) 

that are complex when  

 2 2( ) 4( ).A C AC BD    [29] (17a) 

The position of the poles relative to the unit circle defines the system stability: A system is stable if the 

poles lie inside the unit circle, is unstable if the poles lie outside the unit circle and shows an orbital 
stability if the poles lie on the unit circle. The condition for stability is:  

 
2 2 2(( ) ( ) 4( )) / 4 1A C A C AC BD       (17b) 

or 2 1AC BD  and the orbital stability must satisfy the strict equality 

 
2 1,AC BD   (17c) 

 

so, for the harmonic oscillator, the conditions for obtaining an orbital stability are given by relations 
(17a) and (17c), rewritten as  



 
2 2( ) 4 and 1A C AC BD     (18a,b) 

in using the equality from the relation (17c), in the relation (18a) [29]. 
Considering 1st the well-known Euler and Runge-Kutta integration methods, e.g. Scheid [30]; and then 

incursive methods will be analysed. In terms of incursive discrete algorithms, Dubois defines a 

generalized forward-backward discrete derivative, 1D(w)= wDf +( - w)Db , where w  is a weight 

taking the values between 0  and 1 , and where the discrete forward and backward derivatives on a 

function f are defined by  1( ) / /f k kD f f t f f h

      and  1( ) / /b k kD f f t f f h

     . 

Then, a generalized incursive discrete harmonic oscillator is: 

 
2

1 1 1 1(1 ) (2 1) ,  (1 2 ) ( 1) .k k k k k k k kw x w x wx hv wv w v w v h x               (19a,b) 

When 0w= , (0) bD D , this gives the first incursive equations: 

 2

1 1,   .k k k k k kx x hv v v h x       (20a,b) 

When 1w = , 1 fD( )= D , this gives the second incursive equations: 

 2

1 1,   .k k k k k kx x hv v v h x       (21a,b) 

When 
1

2
w= , 

[ ]1

2 2

f bD + D
D =
 
 
 

, this gives the averaged (hyperincursive) equations:  

 
2

1 1 1 12 ,   2 .k k k k k kx x hv v v h x         (22a,b) 

These Eqs. (22a,b) integrate the two incursive equations. This deals with a deduction of this forward-
backwards discrete derivative, with the deduction of this time-symmetric discretization of the 

harmonic oscillator [30]. 

Next, simulation of the incursive and hyperincursive algorithms of the classical harmonic oscillator: 

First, for the simulation of the classical harmonic oscillator, the dimensionless variables ,X V  and H , 

will be used [30], for the variables, x,v  and  : ( ) / 2 ,kh X k k x   
2

k

m
V k ν  τ ωt  with 

k
ω

m
  and t     .h H   So, the two incursive dimensionless harmonic oscillators are given 

by 

 1 1 1 1 1 1( 1) ( ) ( ),    ( 1) ( ) ( 1)X k X k HV k V k V k HX k        (23a,b) 

 2 2 2 2 2 2( 1) ( ) ( ),    X ( 1) ( ) ( 1)V k V k HX k k X k HV k        (24a,b) 

and the hyperincursive dimensionless harmonic oscillator is given by 

 ( 1) ( 1) 2 ( ),    ( 1) ( 1) 2 ( ).X k X k HV k V k V k HX k         (25a,b) 

So, this confirms that the incursive and hyperincursive algorithms are totally numerically stable with 

the conservation of energy [31]. When the parameters for the experiment are coordinated and the rf-
pulse sent into the MOU HD QED TBS hydrogen cavity, a positive result will retrieve a spectroscopic 

signal like the one represented in Figure 9. A negative result would send back 0 amplitude (no spectral 

line) [4,21]. 

5.1. Experimental UFM OPTFT Protocols 
Tight-Bound States (TBS): New spectral lines in hydrogen below lowest Bohr orbit. Until now 

spectral lines are measured in 3-Space. UFM predicts 2 to 5 new TBS Spectral Lines depending on the 

hyperspherical duality of the Manifold of Uncertainty (MOU) in 4D, 5D & possibly 6D. 



                 
 

Figure 9. a) Illustrating First 4D TBS spectral line in hydrogen emerging (Emitted) from the 4D 

spherical potential well in the Manifold of Uncertainty for 1    (adapted from [29]). 

b) Standard Hypervolume values for increasing n -dimensionality and radius, r  of a unit sphere or n-

ball equal to 1. The 4D and 5D volumes can predict new TBS spectral lines. 

 

The 1st Bohr orbit in hydrogen is at .5Å & the 2nd at 2Å. We predict two new spectral lines between 

.5Å & 2Å; with a 3rd line likely to be degenerate, with the test signal escaping to infinity, or so-called 
LSXD Bulk. Experimental success is the gateway to 3rd regime natural science would demonstrate M-

Theory and cause CERN type accelerators to become obsolete. Note: The protocol is low energy and 

tabletop by completely bypassing uncertainty [4,21]. 
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