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Abstract 

In this paper, we propose the use of deep learning techniques for causal inference and estimating                
individual as well as average treatment effects. The contribution of this paper is twofold: 
1.For generalized neighbor matching to estimate individual and average treatment effects, we analyze the              
use of autoencoders for dimensionality reduction while maintaining the local neighborhood structure            
among the data points in the embedding space. This deep learning based technique is shown to perform                 
better than simple k nearest neighbor matching for estimating treatment effects, especially when the data               
points have several features/covariates but reside in a low dimensional manifold in high dimensional              
space. We also observe better performance than manifold learning methods for neighbor matching. 
2. Propensity score matching is one specific and popular way to perform matching in order to estimate                 
average and individual treatment effects. We propose the use of deep neural networks (DNNs) for               
propensity score matching, and present a network called PropensityNet for this. This is a generalization of                
the logistic regression technique traditionally used to estimate propensity scores and we show empirically              
that DNNs perform better than logistic regression at propensity score matching. 
Code for both methods will be made available shortly on Github at: https://github.com/vikas84bf 
 
1.The problem of causal inference 
 
We consider a setup where there are n units or data points, indexed by i = (1, . . . , n). We                       
postulate the existence of a pair of potential outcomes for each unit, (following            Y (0), Y (1))( i  i   
the potential outcome or Rubin Causal Model [4]), with the unit-level causal effect defined as the                
difference in potential outcomes, . Let be the binary indicator     Y (1) − Y (0)T i =  i i    ∈ {0, 1}W i       
for the treatment, with indicating that unit i received the control treatment, and     0W i =            

indicating that unit i received the active treatment. The realized outcome for unit i is 1W i =                  
the potential outcome corresponding to the treatment received:        

(obs)  Y (W ) Y (0) if  W  0, Y (1) if  W  1.Y i =  i i =  i i =   i i =   
Let be a N-component vector of features, covariates or pretreatment variables, known not to  X i               

be affected by the treatment. Our data consist of the triple , for i = (1, . . . ,           Y (obs)  , W  , X )( i  i  i          
n), which are regarded as an i.i.d sample drawn from a large population. We assume that                
observations are exchangeable, and that there is no interference (the stable unit treatment value              
assumption, or sutva).  
Since we cannot observe the counterfactual for any particular unit, one way to estimate the         xi        
treatment effect for each unit will be by using values from its neighbors which received the                



opposite treatment, and by taking the difference between the two outcomes. This individual             
treatment effect ITE can be written as: 
TE I =  

 Y (1) − Y (0), if  W , and − Y (0) − Y (1)), if  WT (estimated)i =  i neighbor  i = 1  ( i neighbor  i = 0  
 
There are different techniques to determine the ‘neighbors’ in the above construct, and we will               
look at two such methods: 1. Generalized neighbor matching as well as 2. propensity score based                
matching, and introduce deep learning based models to do both types of matching. 
 
 
2. Neighbor matching to estimate individual and average treatment effects 
 
As discussed above, the missing counterfactual data problem can be addressed (under certain             
assumptions [2]) by matching each unit which did not receive treatment (W=0) with its ‘nearest’               
unit from the group that received treatment (W=1) for the binary treatment case. There are               
various techniques which have been used for matching, propensity score based matching[3] as             
well as generalized neighbor matching [1] (using clustering, spectral clustering and manifold            
learning methods). 
 
2.1 Propensity score matching 
One of the most popular techniques for matching is by using propensity scores [2][3], as briefly                
described below. 
In the statistical analysis of observational data, propensity score matching (PSM) is a statistical              
matching technique that attempts to estimate the effect of a treatment, policy, or other              
intervention by accounting for the covariates that predict receiving the treatment. PSM attempts             
to reduce the bias due to confounding variables that could be found in an estimate of the                 
treatment effect obtained from simply comparing outcomes among units that received the            
treatment versus those that did not. The technique implements the Rubin causal model for              
observational studies. The possibility of bias arises because the apparent difference in outcome             
between these two groups of units may depend on characteristics that affected whether or not a                
unit received a given treatment instead of due to the effect of the treatment per se. In randomized                  
experiments, the randomization enables unbiased estimation of treatment effects; for each           
covariate, randomization implies that treatment-groups will be balanced on average, by the law             
of large numbers. Unfortunately, for observational studies, the assignment of treatments to            
research subjects is typically not random. Matching attempts to mimic randomization by creating             
a sample of units that received the treatment that is comparable on all observed covariates to a                 
sample of units that did not receive the treatment, and these two matched groups can be used to                  
estimate the average or individual treatment effect (by taking a difference between the outcomes              



of the two matched groups or units.) 
PSM is for cases of causal inference and simple selection bias in non-experimental settings in               
which: (i) few units in the non-treatment comparison group are comparable to the treatment              
units; and (ii) selecting a subset of comparison units similar to the treatment unit is difficult                
because units must be compared across a high-dimensional set of pretreatment characteristics. 
PSM employs a predicted probability of group membership e.g., treatment vs. control            
group—based on observed predictors, usually obtained from logistic regression to create a            
counterfactual group. 
 
Traditional procedure for Propensity score matching is as follows: 
 
1. Run logistic regression: 
 
Dependent variable: Y = 1, if participate; Y = 0, otherwise. 
Choose appropriate confounders (variables hypothesized to be associated with both treatment           
and outcome) 
Obtain propensity score: predicted probability (p) or log[p/(1 − p)]. 
 
2. Check that propensity score is balanced across treatment and comparison groups, and check              
that covariates are balanced across treatment and comparison groups within strata of the             
propensity score. 
 
3. Match each participant to one or more nonparticipants on propensity score: Traditionally,             
nearest neighbor matching is used. 
 
 
 
2.2 Generalized neighbor matching: 
It has been shown that with increasing dimensions, propensity score based nearest neighbor             
matching has increasing bias [2]. To overcome this problem, various alternatives have been             
proposed in the literature to propensity score matching, such as using random projections [1] and               
spectral clustering and local linear embeddings [6]. These techniques work well when the data              
points span a lower dimensional manifold in higher dimensional space. 
 
Our contributions: 
 
1.In this paper, we use deep learning based autoencoders for generalized neighbor matching, for              
estimation of treatment effect for each data point.  



We compare the error in estimated treatment using our method with k nearest neighbors, as well                
as manifold learning techniques, for simulated datasets, and verify that autoencoder based            
dimensionality reduction and neighbor matching gives lesser error and a better low dimensional             
representation compared to k nearest neighbors as well as manifold learning methods. 

 
2. In the case of using the propensity score based method for matching, we also propose the use                  
of deep neural networks (DNNs) for step 1 above in lieu of traditional logistic regression, for                
propensity score estimation, and we present results for simulated datasets to verify the superior              
performance of the proposed DNN, PropensityNet for this task. 
 
 
 
3.Autoencoders for generalized neighbor matching 
 
An autoencoder is an artificial neural network used for unsupervised learning of efficient codings              
of the input data [7]. The aim of an autoencoder is to learn a representation (encoding) for a set                   
of data, typically for the purpose of dimensionality reduction.  
 
3.1 Deep learning based clustering: Autoencoders 
 
Architecturally, the simplest form of an autoencoder is a feedforward, non-recurrent neural            
network very similar to the multilayer perceptron (MLP) – having an input layer, an output layer                
and one or more hidden layers connecting them – but with the output layer having the same                 
number of nodes as the input layer, and with the purpose of reconstructing its own inputs                
(instead of predicting the target value). Therefore, autoencoders are unsupervised learning           
models. 
 
An autoencoder always consists of two parts, the encoder and the decoder, which can be defined                
as transitions, such that:ϕ, ψ)  (   
 

, encoder> F  ϕ : X −   
, decoderF  > X   ψ :  −   

 : , in the L-2 norm senseϕ, ψ)  (  rgmin  || X  ψ  )X  ||  a  (ψ,ϕ) − ( * ϕ  
The nonlinear functional mappings for the encoder and decoder are learnt to minimize the               

reconstruction error above. The learnt mapping, if it maps the input to a lower dimensional               
encoding, becomes a form of non-linear dimensionality reduction technique. 



 
The training algorithm for an autoencoder can be summarized as 
For each input x, 
Do a feed-forward pass to compute activations at all hidden layers, then at the output layer to                 
obtain an output x’ 
Measure the deviation of  x’ from the input x (typically using squared error), 
Backpropagate the error through the net and perform weight updates. 
Repeat the above steps for several epochs until the error reaches below a certain threshold or                
converges. 
 
3.2 Autoencoders for neighbor matching 
 
We build an autoencoder with the following structure. If the input data as N dimensions, the first                 
and last layers of the autoencoder have N neurons, Our aim is to reduce the dimensions, to M, so                   
the middle layers of the autoencoder has M neurons, as shown in the figure below (left). 
In the case of our simulated dataset, we have N=3, M=2, and number of data points =1500. This                  
means that the encoder weights will be 2x1500 and the decoder weights will be 1500x2, since                
the hidden dimension M=2. The training process will try and learn the weights in an iterative                
fashion, using mean squared error loss function gradient backpropagation. 

 
Figure: Left: The autoencoder network, Right: the training mean squared error at each epoch. 
 



In the M dimensional space, individual treatment effect (ITE) is calculated as the difference in               
the outcomes of the present unit (if treated) and its untreated neighbor(s) in that space, using                
Euclidean distance in M dim. space to identify neighbors. 
 
ITE: (Y_unit_treated - Y_neighbor__M_dim_untreated).  
The above expression for ITE is similar for manifold learning techniques, the main difference              
being the way we get the mapping to the reduced M dimensional space using manifold learning                
versus autoencoder techniques. 
 
3.3 Experiments and results for generalized neighbor matching 
 
We simulate a dataset as follows. 1500 points are generated, in 3 dimensions. A swiss roll                
function is applied so that the points lie along a 2D manifold in 2D space, as shown in the figure                    
below. 
The generating function f(x) for the Swiss roll is: 

500; t /2 [1 and(n)] ; h 1 and(n);  n = 1  = 3 * π *  + 2 * r  = 1 * r  
(x) [t (t), , (t)] oise  f =  * cos h t * sin + n  

The data is also split into 6 groups based on the distances from neighbors along manifolds, as                 
shown in the figure below. 
For each data point, we assign a binary treatment variable W=0 or 1, & also outcome Y values as                   
a simple linear combination of the x covariates, using 2 different functions based on W=0 or 1. 
Then, we project the dataset onto lower dimensions (M=2) using A. autoencoders and B.              
Manifold learning.  



 
Figure: Original Swiss roll dataset in 3 dimensions used for simulations. Colors show the 6               
classes the data was split into for the simulation. 
 

 
Figure: K-means clustering in the original space for the Swiss roll: it can be seen easily that the                  
algorithm does not learn the manifold nature of the data, and puts far off manifold points from                 
different classes into the same group (color): e.g. the sky blue points. Similarly, k nearest               
neighbors performs poorly because it does not learn the structure of the data manifold. 
 



When we project the data to 2D space, we visualize the projections. 
The figure below shows the dimensionality reduction using A. Principal component analysis            
(PCA), B. manifold learning (center) based on matrix factorization,  and C. Autoencoder. 
It is clear that both B. and C. do a good job at learning the structure of the data, unlike PCA, thus                      
a k nearest neighbors in reduced space using Euclidean distance (similar to a PCA              
decomposition) performs poorly, as it did in the original dimensions. 
Next, to compare B. manifold learning and C. autoencoders, We also compute the estimated              
treatment effect for each point (ITE), and the average absolute error of ITE for B. manifold                
learning and C. Autoencoder, over all the data points in the test set. 
Mean Absolute error (ITE,autoencoder: 3.7127,  
Mean absolute error (ITE, Manifold learning): 4.4540 
Thus, autoencoder error is 20.27% lesser than manifold learning estimate for the ITE. 
 
 

 
Figure: Clustering and dimensionality reduction using various methods (Same color implies           
same original assigned group in simulated data) 
Left:  PCA Center: Manifold learning Right: Autoencoders. 
The output from autoencoder also gives the least error in the estimated treatment effect across all                
units. 
 
4. Deep neural networks (DNNs) for propensity score matching 
In the above section, we showed how autoencoders for generalized neighbor matching. In this              
section, we show how deep neural networks for classification can be leveraged to do propensity               
score matching, specifically to replace logistic regression described in section 2.1 
 
 
 



4.1 Deep neural networks for classification 
  
A deep neural network (DNN) is an artificial neural network (ANN) with multiple hidden layers               
between the input and output layers. DNNs can model complex non-linear relationships and can              
be used for both classification and regression tasks [8]. DNN architectures generate            
compositional models where the object is expressed as a layered composition of primitives. The              
extra layers enable composition of features from lower layers, potentially modeling complex data             
with fewer units than a similarly performing shallow networks or models. DNNs are feedforward              
networks in which data flows from the input layer to the output layer without looping back. For                 
classification, the last layer of the network is a ‘softmax’ layer , which outputs the probability of                 
each class. The intermediate layers can be of any form, and the output of each layer is typically                  
passed through a non-linear function. 
We can learn the parameters of the classification DNN by using a labeled training dataset, which                
each data point or unit has a ground truth label. A cost function is specified (such as                 
misclassification error), and the error is back-propagated through the network, to update the             
weights along the gradient directions iteratively, until we achieve a low error. The learning              
typically happens in steps for batches of the data (stochastic gradient descent). 
The figure below shows an example of the general DNN. 

 
Figure: A general fully connected DNN, for classification. 

 
 
4.2 PropensityNet: Experiments and results for DNN based propensity score matching 
 
We build a DNN ‘PropensityNet’ to estimate the propensity score, with the inputs being the               
covariates X as well as the outcome Y across all units. The data is split into training and cross                   



validation folds and categorical cross entropy is used as an error metric (it gives a measure of                 
label misclassification).  
We use adadelta as the optimizer algorithm. This DNN PropensityNet is trying to solve a binary                
classification problem, since the treatment variable W is binary. The output i.e. the last layer               
(softmax) of the trained network gives us a probability between 0 and 1 for each new/test unit,                 
which is the propensity score. As such, this can be thought of as a generalization of the logistic                  
regression function. 
PropensityNet is a fully connected network similar to the above figure, where every neuron in a                
given layer is connected to every other neuron in the next layer. 
The structure of PropensityNet is given below. 

 
Figure: PropensityNet deep neural network model structure 
As can be seen above, PropensityNet has 5 dense (fully connected) layers. Each layers also has a                 
dropout of 30%, which is a way to avoid overfitting for DNNs. The output layer is a softmax                  
layer, and gives probability of being in one of the 2 classes (treatment W=1 or 0), which is the                   
propensity score. We have a total of 382 parameters to be trained in the network. The model was                  
built using Keras with Tensorflow backend in R. 
 
We build a simulated dataset as follows. 
1000 data points/ units were simulated, with 2 covariates dawn from a uniform distribution, the               
outcome Y was also randomly drawn from a uniform distribution, and all units assigned to               
treatment W=1. Thus, we know the ground truth nearest point/neighbor from W=1 for each point               



in W=0. The unit covariates and outcomes were jittered to get another 1000 units, which were                
assigned treatment W=0. A logistic regression/logit model was built using W~ X+Y, and the              
PropensityNet was also trained with W as output, and (X,Y) as inputs for each unit. For both                 
models, we then calculate the assignment error (How far is the test unit assigned on an average                 
from its ground truth neighbor, as well as number of mis-assignments based on estimated              
propensity score). PropensityNet gave a smaller number of mis-assignments (6% better) as well             
as a smaller mean absolute misassignment error (12% better, as a percent of ground truth true                
index of each unit), as well as better accuracy (8% better), compared to logistic regression               
model, as shown below. 
 
 

Model Mean absolute 
misclassification 
error(%) 

Number of 
mis-assignments 
(%) 

Accuracy(%) 

Logistic regression 26.6 38 62 

PropensityNet (DNN) 19.2 26 74 

Table: Various error metrics used to compare the proposed PropensityNet with traditional logit  
 
In the figure below, we plot the control and treatment units based on PropensityNet, to confirm                
its good performance visually. 
 

 
Figure: Plot of a subset of control points (pink), matched (using the PropensityNet output scores)               
with their neighbors which are treated (blue). It is clear visually that the points are matched well. 
Y-axis is one covariate and X-axis is propensity score. 



5. Discussion and conclusion 
Recently, there have been several efforts to leverage machine learning techniques for causal             
inference problems, including estimating heterogeneous treatment effects [5], propensity score          
modeling as well as neighbor matching [1] for individual treatment effects. Our aim is to               
contribute to this continuing effort, by adding deep learning techniques to the field of causal               
inference and econometrics in general. In this paper, we have shown how one can use               
autoencoders for dimensionality reduction and performing neighbor matching in feature space.           
We have also built a deep neural network classifier PropensityNet to do propensity score based               
matching to estimate individual and average treatment effects. The accuracy of both algorithms             
was verified on simulated datasets. Future work would be to run these algorithms on real world                
datasets, as well as further leveraging newer deep learning models for causal inference and              
econometrics. Code for both algorithms will be made available shortly on Github at this location:               
https://github.com/vikas84bf 
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