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We consider in this chapter the transformations of an oscillatory form of A  in a complex 12D 

Minkowski space. The form of the transformation of A  or ( , )A   depends on whether such a 
transformation is a superluminal Lorentz transformation (SLT) or a subluminal Lorentz transformation. 
 
 
1. Introduction 
 
In [1] we extended our examination of the properties of complex Minkowski spaces and the mixing of 
real and imaginary components of space and time under the influence of a superluminal boost in the x-
direction. We determined that there is a unique mixing of position and time vectors in complex 
Minkowski space which is not present in real 4D Minkowski space. We take real M4 4-space as a slice 

through the complex Minkowski space, 4 4M̂  . 
 In this chapter we examine in detail the transformations of the vector and scalar potential in complex 
Minkowski space under an x-direction superluminal boost. We find that we have a mixing of the 
temporal and spatial components in the laboratory frame but only mixing of temporal components in 
the moving frame. In the laboratory frame,   an oscillatory and damped solution, both expressed in 
terms of space and time, whereas in the moving frame, '  the damped term is expressed in terms of 
time components only. The oscillation in terms of the spatial coordinates vanishes in going from the   
to '  frame. It is also interesting to note that the vector potential normalization term Aox goes to ' , 

the scalar potential term under the superluminal boost (SLT). 
We also examine the relationship between the vector and scalar potential transformation under the 

SLT and compare this to the variation of E and B fields and their relationship to Ax and  . The 
transformation from v < c through c to v > c produces a mixing or spacetime rupture which greatly 
modifies any existing vacuum fields. We examine the presence of tachyonic signals in [2,3], and here 
we demonstrate that the monopole structure may be associated with a tachyonic signal. 

 
 

2. Complex Minkowski Spaces with Time Symmetry Considerations  
 

In previous work, Rauscher and Ramon introduced the structure and properties of complex 
Minkowski spaces [1,2] and examined the mixing of real and imaginary components of space 
and time under the influence of superluminal boosts in the x direction and determined that the 
mixing is unique. We label the complex coordinates as 
 

 Re Imz x ix                      (1) 
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where z is a complex quantity and xRe and xIm are real quantities, where “Re” and “Im” refer to the real 
and imaginary parts of the complex quantity z. The index  runs 0,1,2,3 where the index 0 represents 

the time component and 1,2,3 represent the spatial vector components. We denote these 4-component 
vectors as t, x, y, z. 
In complex Minkowski space these vectors are complex quantities and are given as 
 

 
Re Im Re Im

Im Im Re Im

,

,

t t it x x ix

y y iy z z iz

   

   

      (2) 

 
This set of vectors defines an 8D complex space [4]. A slice of this 8-space gives four real dimensions 
of M4 forming a subspace in which the line elements are given by the real part of the complex quantities 
[5]. 

For a 12D space we consider time as a 3D complex quantity, 
 

ˆ ˆ ˆx y zt t x t y t z          (3) 

where we have the components 
 

Re Im

Re Im

Re Im

x x x

y y y

z z z

t t it

t t it

t t it

 

 

 

       (4) 

 
As before the subscripts Re and Im refer to the real and imaginary parts of the complex quantities. 

Demers [6] introduced a symmetry principle between multidimensional time components which 
specify only one modulus as having physical meaning, 

 

 
1
22 2 2

x y zt t t t             (5)  

 
The modulus of the time vector is chosen to correspond to the usual physical time. A detailed 
discussion of this choice of modulus and its implications for Lorentz invariance is in [1]. In our 
HD model we imply that all complex temporal components are physically significant [7]. This 
probably makes correspondence to Cramer’s Transactional Interpretation of quantum theory 
where he implies that all off diagonal components of a transaction are physically real [8-10].  
 
 
3. Complex Transformations of the Vector Potential  
 
We start with the vector potential A in the usual form 
 

     ˆ ˆ ˆx y zA A x A y A z             (6) 

 
where we choose Ax to vary as 
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 0 expx x xA A i t k x            (7) 

 
The sign in the exponent refers to the accelerated or retarded vector potentials, respectively, and kx is 
the wave number in the x-direction. The potential A0x is complex and is given by 
 

A0x = A0xRe + iA0xIm              (8) 
 
The plus sign in the exponential in Eq. (7) is associated with the advanced or accelerated vector potential 
and the minus sign with the retarded vector potential [11]. 
Upon substitution of the real and imaginary parts of A0x from Eq. (8) and for t and x from (2), 
we have 
 

                0 Re 0 Im Re Im Re Imexpx x x x x xA A iA t it ik x x            (9) 

 
where the wave vectors are given as kx = w/c = ky = kz and /xk k v  where v  is the phase velocity. 

The frequency,   and velocity, c are isotropic in all directions of the propagation of the potential. The 
phase velocity, v  is taken to be v c   for a superluminal boost also called a superluminal Lorentz 

transformation, (SLT). We examine this case and determine for SLT's if kx = ky = kz. That is, if the 
isotropy of the potential maintained. In the vacuum propagation of the vector potential, kx = ky = kz, it is 
maintained but not in a material medium for the case where kx   ky   kz, which is the case for uniaxial, 
biaxial or triaxial crystals, for example, in phase space for the vacuum for v c  . 

In a vacuum, kx = ky = kz, and in the moving frame traveling at v > c for a superluminal boost (for 
example in the frame of a rocket for v > c for deep space interstellar travel), the vector potential remains 
isotropic. This is not true for the observer in the laboratory frame, i.e. v < c, where the properties of the 
media are modified by the Lorentz transformation which affects the perceived properties of the object. 
For example, a photon appears as a photon in the "rocket" frame or superluminal frame, but it appears 
as a tachyon to an observer in the laboratory frame. Since the vector potential is defined by a phase 
velocity component and not by a group velocity parameter then we consider that the vector k is the same 
in dimensions of free space even under the SLT boost [2]. 

Then considering the form of the vector and scalar potentials under the action of a superluminal 
boost in the x direction and determine both a damping wave and an oscillatory wave for the advanced 
potential solutions only. This case will be expanded on further for the limit as the velocity approaches 
the velocity of light and where quantum mechanical considerations may demand that kx = ky = kz, for 
example. In the limit of a transformation where nonlinear stresses exist one can define as a "rupture" in 
the extreme case of the subluminal, through c, to superluminal transformation. 
Similar to equation (9) for the vector potential, we can define the complex scalar potential,   as 
 

      

 
   

 

0

0 Re 0 Im Re Im

Re Im

exp

exp

exp

x x x

x x x x

x

i t k x

i i t it

ik x x

  

  

    

  

    

            (10) 

 
For equation (10) we again have assumed isotropic conditions of the vacuum in which the propagation 
constant is symmetric in all directions, i.e.,  kx = ky = kz = / v   where v , is the phase velocity 
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propagation. 
 
 
4. Superluminal Vector and Scalar Potential Transformation Laws 
 
For simplicity we consider superluminal boost xv  along the positive x direction [13,14]. See Chap. 

2 on tachyonic signaling. See Fig. 1. The space and time vectors in the real 4D Minkowski space 
transform as follows [12] 
 
                 ,' tx   y’ = - iy, z’ = i z, t’ = x           (11) 
 
for real and imaginary parts separately, where x, y, z, t are real quantities in the laboratory   frame, 
and x',y',z',t’ are the real quantities in the moving '  frame. Now in the 12D ( 12M ) complex Minkowski 
space, the above transformation laws for a superluminal boost )( xv in the positive x direction 

become  
 

          

' ' ' '
Re Im ,Re ,Im Re Im Im Re

' ' ' '
Re Im Im Re ,Re ,Im Re Im

' ' ' '
,Re ,Im ,Im ,Re ,Re ,Im ,Im ,Re

, ,

; ,

,

x x

x x

y y y y z z z z

x ix t it y iy y iy

z iz z iz t it x ix

t it t it t it t it

     

     

     

 (12)  

 
The transformation laws given by (12) preserve the magnitude of the line element but not the sign as 
 

             xxxx  ''              (13) 
 
where index  and   run over 0,1,2,3 representing 0 as time vector and 1,2,3 as spatial vectors. 

Therefore we have the signature (-+++).  
Similar to the transformation laws for space and time vectors as given by (12) we can write the 

transformation laws for the vector and scalar potential. For a superluminal boost in positive x direction, 
the transformation laws for ( , )A  are: 

 

   )(,,, '''

2

2
'

xxzzyy
x

xx AvAAAA
c

v
AA 








   (14) 

 
where   is the scalar potential and   is the usual Lorentz term 

         1

2

'

2

2

1

1xv

c

 

 
 

 

.                     (15) 

 

We consider '
xA , etc., transforming as a gauge. In Eq. (14), the vector potential A is considered to be a 

4-vector real quantity, A or 
~

( , , , )x y z
i
cA A A A  , which preserves the length of the line element but 

not the sign, i.e. we have for the gauge transform  
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           ''
 AAAA            (16) 

 
Eq. (14) then simplifies to the following relationships for the velocities approaching infinity, xv . 

 

 
 
Figure 1. Schematic representation of a superluminal boost (Eq. 12) between an event P’, in the moving frame 
and the corresponding event P in the rest frame,  . Relative velocity of the moving frame, '  is infinite, v  
. For an observer in the rest frame looking at event, P’, he will see the x’ coordinate transform to the time 
component, t in the rest frame and vice-versa. 
 
 The transformation laws for scalar and vector potentials under the superluminal boost in the positive 
x direction for xv . From the rest frame,  , to the moving frame, ' , for unaccelerated vector 

and scalar potentials, we have   
                         

         '''' ,,, xzzyyx AAAAAA          (17) 

 
From the moving frame, S', to the rest frame, S, for the unaccelerated vector and scalar potentials we 
obtain 
 

                 xzzyyx AAAAAA  '''' ,,,         (18) 

 
Eq. (18) is valid for real or complex vector and scalar potentials. Real and imaginary parts are easily 
separable in a complex quantity and they will transform according to Eq. (18) under the influence of a 
superluminal boost in the positive x direction. If these are the retarded (or accelerated or advanced) 
vector and scalar potentials, the transformation laws under the superluminal boosts will be different 
from the ones given by Eq. (18). These transformation laws are given by the combination of Eq. (18) 
and the transformation laws of the complex space and time vectors as given by Eq. (12). 
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Figure 2. We represent the location of four points in the complex manifold. In Fig. 2a, point P1 is the origin, and 
P is a generalized point which is spatially and temporally separated from P1. In Fig. 2b, the Points P1 and P2 are 
separated in space but synchronous in time. This could be a representation of real-time nonlocal spatial 
separation..In Fig. 2c, points P1 and P3 are separated temporally and spatially contiguous. This represents an 
anticipatory temporal connection.   
 
 These conditions are illustrated in Fig. 2. In 2a we represent a generalized point P(xRe,tRe,tIm), 
displaced from the origin which is denoted as P1. This point can be projected on each dimension xRe, tRe 
and tIm as points P2, P3, and P4 respectively. In Fig. 2b, we denote the case where a real-time spatial 

separation exists between points, P1 and P2 on the xRe axis, so that xRe  0 , and there is no anticipation, 

so that tRe = 0, and access to imaginary time tIm, nonlocality can occur between the P1 to P4 interval, so 

that t Im  0 . Then, our metric gives us s2 0 , where nonlocality is the contiguity between P1 and 

P2 by its access to the path to P4. By using this complex path, the physical spatial separation between P1 
and P2 becomes equal to zero, allowing direct nonlocal connectedness of distant spatial locations, 
observed as a fundamental nonlocality of remote connectedness on the spacetime manifold.  
 Figure 2c represents the case where anticipation occurs between P1 and an apparent future 
anticipatory accessed event, P3 on the tRe axis. In this case, no physical spatial separation between 
observer and event is represented in the figure. Often such separation on the xRe exists. In the case where 
xRe = 0, then access to anticipatory information, along tRe can be achieved by access to the imaginary 
temporal component, tIm. Hence, remote, nonlocal events in 4-space or the usual Minkowski space, 
appear contiguous in the complex eight space and nonlocal temporal events in the 4-space appear as 
anticipatory in the complex 8-space metric. Both nonlocality and anticipatory systems occur in 
experimental tests of Bell’s Theorem and perhaps in all quantum measurement processes. 
 The propagation constant is considered to be isotropic in vacuum and defined as  vd x / , where

v , is the phase velocity and   is the radian frequency of the propagating signal. Usually in most cases 

the phase velocity of propagation in vacuum is a constant cv  , where c is the velocity of light in 

vacuum. For the purpose of this work, we will consider a tachyon traveling faster than light emitting an 
electromagnetic signal at frequency   which propagates at the velocity of light. This assumption will 
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simplify the subject matter of this work. We examine the faster than light electromagnetic signals 
emitted by a traveling tachyon which might lead into a Doppler effect at velocities faster than light.  
 Considering only the advanced potential solution from (11), Equation (11) can now be rewritten as 
two separate terms, so that in the   frame,  
 

               
0 ,Re 0 ,Im ,Re Re

,Im Im

( ){exp [ ]

exp [ ]}

x x x x

x

A A iA i t kx

t kx





  

  
      (19) 

 
where the first exponent represents the usual type of oscillatory terms and the second exponent 
represents a decaying component which is not present in the usual 4D spacetime model. Note also that 
we have used the isotropy of the vector, k in Eq. (19) as examined in the previous section.  
 Examine the complex exponential of Eq. (19) using the transformations of Eq. (11) as follows so 
that we have for the exponents 
 

            ' ' ' '
Re ,Re Im ,Imexp [ ] exp [ ]x xi x kt x kt                (20) 

 
We regroup terms in   and k so that we have 
 

             ' ' ' '
Re Im ,Re ,Imexp [ ( ) ( )]x xi x ix k t it            (21) 

 

Now using equations from for '
Im

'
Re' ixxx  we have 

 

               ' '
,Re ,Imexp [ ' ( )]z xi x k t it            (22) 

 
Note that the second part of the exponent for the k term does not reduce to t’ since there is a minus 

before '
Im,xit . For the boost, xv or v > c, we obtain for exp [ ]i t kx  from Eq. (11) under this 

transformation going to  
                                                     

' '
,Re ,Imexp [ '] exp [ ]x xi x k t it                  (23) 

 

 Let us look at the example of the transformation from '
xA  (in the moving frame, ' ) to its form in 

the restframe,   a mixing vector and scalar potential. In the SLT from the restframe,   to the moving 
'  frames; we have a change of length of the time component vector in Eq. (23). The vector potential 

term, xA0  transforms as  

 

            







 

2

2
'

c

v
AA x

xx             (24) 

 
which is the same as Eq. (15), so that for the superluminal boost xv  , implies that  
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x

x

xx
v

c

v

c

c

v

c

v










2

2

2

2

1

1

1

1       (25) 

 

where the 22 /1 xvc  term approaches unity as xv . Then we rewrite the transformed vector 

potential as   

      

1

,

1

1

2

2

2

2

'









c

v

c

v

A

c

v
A

x

x

x

x

x       (26) 

 
For  xv  and from Eqs. (25) and (26), 

 

             


 
cv

c

c

v

v

cA
A

x

x

x

x
x

1
0

2
'      (27) 

 

for units in which c = 1. Therefore '
xA  for a superluminal boost, xv  and the transformation 

of the scalar potential, in analogy to Eq. (15), we have  
 

         )(' xx Av                  (28) 

 
and for xv , we have xvc /  so that in the limit of the SLT,  

 

                xx
x

v
cAcA

v

c



 lim'           (29) 

 

for the units c = 1, then ' xA  . Compare this equation to Eq. (27) and also for yy AA ' and zz AA '  

we write  
 

             
0 ,Re 0 ,Im

' ' '
Re Im ,Re ,Im

[ ]exp [ ]

[ ]exp ' exp [ ]

x x x

x x x

A A iA i t kx

i i x k t it



  

   

    
   (30) 

 

where '
Im

'
Re' ixxx  and using the result of Eq. (27) and (29) for the non-exponent part and the 

exponential term which is given in Eq. (22), Eq. (30) gives us the vector and scalar form in the moving, 
'  frame. 

 If we consider only the accelerated potential, then we consider only the plus sign in Eq. (30). By use 
of the definition of complex quantities, Eq. (31) can be rewritten in a compact, simplified form:  
 

                )exp()'exp( ''
0 xxxx tikxiA   .             (31) 
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 Using Eq. (31) we can describe the x component of the complex vector potential in moving frame,
'  after a superluminal boost in the positive x direction. The same vector potential in the rest frame is 

defined. The transformation of the yA and zA components of the complex vector potential under a 

superluminal boost in the positive x direction can similarly be written as 
 

     )](exp[)](exp[

)](exp[)](exp[

'
Im

'
Re

'
Im,

'
Re,

'
0

'
Im

'
Re

'
Im,

'
Re,

'
0

izzkyittA

iyzkyittAA

zzz

yyyy








          (32) 

The scalar potential is defined by a complex quantity, so that  
 

           '
Im

'
Re'  i              (33) 

 
which we use for the non-exponential term of Eq. (32) which then becomes 
 
       Re 'Im'exp ' exp [ ]x x xA i x k t it               (34) 

 
We compare the vector potential forms of xA in Eq. (29) in the   or laboratory frame, and xA of Eq. 

(34) in the '  frame or moving frame. (See Table 1) 
 
 

TABLE 1 Comparison of The Exponential Part of the Vector 
Potential xA In The   and '  Frames of Reference 

 
 

 
 
 
 
 
 
 
In the oscillatory solution of the '  frame for ' , we find no dependence on the wave number factor 

k and hence we have apparent media independence, recalling ImRe' ixxx  , whereas in the   frame 

for oxA , we have dependence on   and k. 

 For the damped solution, we have  and k dependence in the   frame for oxA , which is a pure real 

exponential and hence not oscillatory. In the '  frame, '  sometimes has a damped solution dependent 
on k which has a real and imaginary component. The exponential factor can be written a 
 

            
' '
Re Im Re Imx xt it x ix              (35) 

 
Time dilation and vector length are modified in the complex 12D space. We find that a superluminal, 
unidimensional x-dimensional boost in complex Minkowski space not only modifies space and time (as 
well as mass) by the   factor, it also modifies ( , )A A 


 and we find a mixing of  and   for jAA A

 OSCILLATORY DAMPED 

  Frame 0 ,Re Reexp [ ]x xA i t kx   ,Im Imexp [ ]xt kx   

' Frame ]'[exp' xi    ' '
,Re ,Imexp [ ]x xk t it  
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where j runs 1 to 3 for space-like quantities and   transforms as a temporal quantity for subluminal 

transformations.  
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