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We consider the properties and implications of three n > 4 multidimensional geometries. These are
Descartes geometry [1], the properties and implications of which are enumerated in [2-6]. Both
macroscopic and microscopic implications of these geometries are presented. We also develop several
forms of complex Minkowski space in terms of a generalized metric containing terms derived from real
and imaginary coordinates. The metric of the space is real and therefore physical [7-17]. This geometry
is found to be one-to-one with Kaluza-Klein geometry [18-20] in which there has been much recent
interest in developing M-Theory, in particular in the apparent relationship between the gravitational and
electromagnetic fields often called Quantum Gravity. We have discussed the properties and
implications of complex geometries in a number of works. The basic structure of the geometries is based
on the construction of complexified dimensions, consisting of orthogonal real and imaginary parts. We
examine the implication of a complex 8-space geometry in which we introduce imaginary components
for each real spatial dimension, X = (x,y,z) and temporal dimension, ¢.

1. Some Predictions of Complex Geometries

The complexification of Minkowski space, M, yields an 8D geometry, M, c C,. The 8D space is

the least number of dimensions to accommodate nonlocality and anticipatory incursion in complex
symmetry. This 8-space is also Lorentz invariant. Additional dimensional spaces (XD) are also
considered, such as 12D spaces that also yield an approach to a unification of macro and micro processes
[7,11,18].

We have solved the Schrodinger equation and Dirac equation in this complex 8D Minkowski space
[16,17] and also formulated a field theoretical model that has implications for both MHD and BCS type
phenomena [19]. For additional symmetry considerations, we have also introduced a 12D space in
which we consider a 3-component time which is complexified [11,18]. Let us briefly list some of the
implications of n > 4 geometries.

Remote connectedness properties exist between physical events and processes in spacetime.

Anticipatory or precognitive-like processes are allowed in temporal processes.

Superluminal ‘signals’ appear to exist in 4-space.

Tachyonic ‘particles’ are predicted.

Coherent nondispersive phenomena exist, such as plasma oscillations of individual particle states

like ‘ball lightning’ or solar activity, possibly ‘sun spots’ [20,21].

e A mechanism for physical effects such as conductivity and dielectric properties of plasmas in 4-
space based on vacuum polarization properties in complex space [19,20].

e A model for unification of electromagnetic and gravitational phenomena [12,18] through the one-
to-one mapping of the spinor calculus and twister algebra of the complex space [22].

e A mechanism of formulating the so-called ‘collapse of the wave function’ in terms of the geometric
structure of space and interpretation of the ‘observer effect’ [23].

e Possible interpretation of nonlinear effects in multidimensional geometries as an interpretation of
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the mechanism of the collapse of the wave function to a particular state. One possible interpretation
of such a model is that ‘consciousness’ generates ‘geometric reality’ (or constraints on reality)
which relate to a particular ‘potentia’ (Heisenberg's term or de Broglie pilot wave) being actualized
as a specific event, which is a possible mechanism of the physical effects or a manifestation of
thought [14,22]. Such an interpretation is key to a model which may include psi phenomenon, since
it now demonstrates a mechanism in which intention (goal) can be physically actualized [14].

e Application may be made to antenna theory [21].

e Formulation of certain processes in biological tissue is examined [24-27].

We list some examples of remote connectedness:

Bell's theorem [28],

Young's double slit experiment,

Aharanov-Bohm experiment [29]

Supercoherence phenomena, such as plasma coherent states and superfluidity [19,20],
Remote perception [30].

Some examples of coherent ‘non-dispersive’ phenomena in which dispersion is overcome by
recoherence are:

e Soliton-like phenomena of plasma-phonon-electron interactions [20].
Solving the Dirac equation in complex 8-space and the Fermi-Dirac vacuum state model
o Complexifying F 4 10 8-space, Non-Hertzian and Hertzian waves [12].

e Ball lightning is a coherent electrostatic soliton-like phenomenon. These phenomena are modeled
after Prigogine [31] dissipative structures and catastrophe phenomena [32].
e Vortices in helium II represent soliton-like structures [22].
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Figure 1. Causality in HD space. Representing a lightcone schematic. 1a represents closed time-like loops in 4-
space where the vertical dimension is time, ¢ and the horizontal dimension is X = x,y,z. 1b represents a non multiply
connected world line in n > 4D where no CTL or multi-connected ‘nows’ exist. Figure 1c¢ represents the view of
Fig. 1b where the future time dimension comes out of the paper, X is in the plane of the paper and no multi-
connected world lines exist and only single valued ‘nows’ exist.

Certain spacetime relationships that involve Closed Time-like Loops (CTL) paradoxes can be
resolved utilizing formulations in terms of multidimensional geometries (Fig. 1). The issues involved
are presented and extensively discussed in [3]. In the so-called twin paradox, only future time travel is
possible in non-inertial frames because time dilation only occurs in the rapidly accelerating frame (Fig.
2).

For time machines of the relativistic Twin Paradox, time moves into the future. At each point along
a world line in spacetime there are a number of potential states in which one is actualized with
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preferential probability (or equal as in the Schrodinger cat paradox). Time machines that move into the
past from the future represent CTLs (Fig.3). Figure 4 represents various spacetime connections in a
subset of 3D spacetime of the X ict Minkowski 4D spacetime. Figure 5 represents various world line
connections on the Minkowski light cone including an unconnected past and future, a single valued
world line and a multivalued CTL world line. See Fig. 5.

’
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Figure. 2. The relative velocities of two frames of reference, X, taken as the rest frame and, X' as the moving
frame, having a relative velocity, v. The x,z plane is represented as the abscissa and ordinate respectively in 2-
space. Not represented is the y coordinate extending out of the plane in this representation of two relative 3-space
Euclidian coordinates (x,y,z) for £ and (x’,y’z’) for Z'.

In order to describe processes involving apparent future-to-past lightcone connections, one has
paradoxes involving CTL, multi-valued ‘nows’ and ‘accelerated times’ which involve the paradox of
moving more slowly than a rest frame! These paradoxes cannot be resolved in the usual Minkowski 4-
space metric. In n > 4D spaces we have the possibility of the resolution of these paradoxes and the
possibility of a more definitive formalism and description of some of the previously listed phenomena

(Fig. 3).

POSSIBLE VS. ACTUAL

Future vs. Past Free Will vs.

t f Determinsm A
X
Time Machine
(precognitive event)
t P (b) World Line
{a) Light Cone and Events

2 e (c) Historical View, Possible vs. Actual,

Minkowski 4-5§ History is Single-Valued

Figure 3. Possible versus actual. Several types of world lines are depicted. Figure 3a depicts a worldline with a
single-valued “now”, but Figs. 3b and 3c depict a multi-valued present. There is a dual world: constancy and
change, absolute versus relativistic and Mach’s Principle, and certainty versus uncertainty in terms of Einstein

and Bohr (Ax,Ap > 1).
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Figure 4. Our location is measured in space and time. In this figure we represent two dimensions of x,y,z as xi
and x, and of time, ¢ on the ordinate. Causal connections in real space are such that A can cause B by passage of

time; at one time, & and [ are correlated as effects at a distance. 77 represents instantaneous connections.

We have examined several forms of complex geometries. The complexification of Minkowski 4-

space, M ‘, gives rise to an 8D complex Minkowski space, M* < C* in which we take each of the
8D as an independent orthogonal dimension and that the real and imaginary components can be

considered as two independent 4-space lightcones, (Xy.,%.) and (X, ); 4-space is then a slice

through 8-space, rather than a subset or subspace formed by a projected geometry distorting the
projection, causing variation in the defined variable length and vector orientation whereas orthogonal
slices maintain uniformity (Fig. 4) [33,34].
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Figure 5. One can consider three classes of Minkowski diagrams with three types of causal connections of events
along world lines. In Fig. 5a no connection exists between past and future. In Fig. 5b only one connection between
past and future exists for a single valued now for the usual lightcone world line connection; and in Fig. 5¢c more
than one connection of past and future exists as CTL. For example, one path to the future and another from the
future hook into its point “B” past to point A.

We have also examined other forms of the complex geometric model [11,12]. For symmetry
considerations, we consider an extension of the temporal variable as the pseudoscalar

t= txfc+ty y+1.z. Then we complexify each of these three temporal dimensions as ¢, =1 ., +if

xIm?>

t,=t g, tit .. We have handled the complexification of spatial dimensions

y ylm> z

1, =15 +it

similarly in [7-18]. We now have a complex form of Minkowski space which is a 12D space with the
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12D listed respectively as: Xp., Vre> Zres Xims Vim? Zims> Lrres Evres Fores Extms Lot L
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Figure. 6. The figure provides a relatively simple representation of real and imaginary components for a xge, fre,
fim space. We extend this picture to a real and imaginary vertical time plane. fre, fim and a real and imaginary space
plane of xge, xim for a 5D complex plane. See Fig. 7.

In considering certain classes of transformations we examine the manner in which moving and rest
frames, (A4, ¢) form and transform. We consider the fact that both these geometries appear to demand

remote connectedness and superluminal signal propagation in the subset real 4-space, M, . In Fig. 6 we
represent various of events in real space and time. In Fig. 3a is represented the usual Minkowski

spacetime metric, which is like a 4D Pythagorean theorem for a right triangle where 4*> = a” +b*, the
sum of the square of the hypotenuse is equal to the sum of the other two sides.

2. Multidimensional Geometric Models and Macroscopic Remote Connectedness

It appears that a resolution of the problem of closed time-like loops (CTL) lies in developing a model
in terms of a space of higher dimensionality, HD. What appears to be a closed loop in 4D spacetime
may in fact not have an intersection in an HD space [8,11,18]. See Fig. 3. Normal macroscopic causality
demands that no point in the forward lightcone is connected to another point outside the forward
lightcone; that is, all signals are time-like [8,21]. Real events involve simultaneity which is defined by
signals that do not exceed the velocity of light, v < ¢ where v is the velocity of propagation and c is the
velocity of light. Causality conditions for superluminal signals in constructing a Lorentz invariant
quantum field theory are given in [7,8,12]. Tipler examines the problem of CTLs in general relativity
for a rapidly rotating gravitational field [35]. The relationship of causality and locality conditions is
discussed in [8].

e First, the case in which there 1is no connection of past and future
is represented, i.e., there is no causal connection.

e Second, the usual Minkowski diagram for a single valued present. In quantum mechanical terms,
the collapse of the wave function describing the system under consideration allows only one world
line.

e Third, the present or ‘now’ condition is not single valued. The event wave function no longer
collapses to a point, localized region of spacetime, and more than one world line can represent the
present.
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Figure 7. Spacetime of two intersecting complex planes in 8D described by the x components of space and time.
Here x = xge + ixmm and time, # is ¢ = t,re T itam. Event P in this complex plane will be represented as: P(x + itx).
This figure can be extended to 3D of space and time where P will be represented as: P(x + itx, y + ity, z + itz).

In fact, for point-like events, one could conceivably have an infinite number of world lines passing
through the present. Everett, Graham and Wheeler have examined the quantum mechanical implications
of a multi-valued universe theory [36]. More information about a future event may then be traced back
to the present via another world line and that actual time sequencing experienced is associated with the
first world line or possibly a third world line. See Fig. 3.

MULTIDIMENSIONAL GEOMETRIES
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Figure 8. Represents a 1D circumference and a chord across the circle in a 2D space. In a lower dimensional
space the velocity of propagation appears superluminal, v > ¢ and luminal in the hyperdimensional space, v < ¢

. In analogy the velocity of propagation for Bell’s Theorem in 4-space is v > ¢ or instantaneous, but in complex
8-space signaling can be luminal, v = c.

Of course, one of the major problems of a theory containing multivalue solutions is the difficulty in
defining a reasonable and useful causal relationship. The 4-space description gives us CTL which yield
7
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difficulties in describing prior and post event occurrences [27], Fig. 1. Intuitively, considering HD
geometric models appears to reconcile the problem of CTL. For example, a helical world line in a 3-
space would be single valued but would appear to contain multiple intersections if viewed at a 45 angle
to the vertical helical axis as represented in a 2D space. This representation would contain multiple
intersections even with a large pitch of the angle to the perpendicular to axis radius and hence act like

a CTL [29]. See Fig. 3.
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Figure 9. Complex time model of remote connectedness. We have the usual physical spatial separation of events
on the x axis in the xge, fre plane which appears separated by a zero separation by ‘moving” to the xim, fim plane.
The separation between event P; and P, appears contiguous or simultaneously nonlocally correlated from the
perspective of P3. In an n > 4 space or an 8D space, nonlocal events can be correlated in such a manner as to not
require standard signal propagation.

A number of HD geometries have been examined, in terms of reconciling complex anticipation and
precognition-like signaling and causality as well as their possible relationship to superluminal signals
[8,37-39]. In particular we have examined some 5 and 6D geometries where the additional dimensions,
XD are space-like and time-like. In [8], instead of hypothesizing a model which involves energy
transmission and associated problems of energy conservation, we chose to develop a model in which
remote information is accessed in 4-space as though it was not remote in a HD geometry.

fis ty o, NORMAL  ty
| 'Re 'Re  connEcTION | Re
P (x,0; t,0
P, | ( )
XRe
P
tx, lin PAST PAST CONNECTION

(a) tx,Im (b) X,Im

Figure 10. Four events in a complex plane. P is at the origin. Event P is marked by non-zero spatial and temporal
separation from the origin. P, and P, are separated in space but synchronous in time. Py and P3 are separated in
time, but there is no spatial separation. Event P4 is located on the imaginary time axis; (b) Remote and normal
connections of events P, and P, as viewed by an observer at P4 such that space-like separation, x(P2) — x(P1),
between the events P; and P, is zero; (c) Remote and normal connections for zero time-like separation between
the events P3 and P, as viewed by an observer at P4, such that, #(P3) — #(P;) = 0.
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Relativity theory formally describes the relationship of macroscopic events in spacetime and, in
particular, their causal connection is well specified. HD geometries appear to reconcile anticipation or
precognition and causality and define a formalism in which the spatial and temporal separation of events
in 4-space appear to be in juxtaposition in the HD geometry. This model can well accommodate
information and perhaps energy transmission conditions as we will discuss in more detail in this volume.
See Fig. 9 which represents a subset of the geometry we use in the present approach. There appears to
be a reasonable relationship between these complex spaces and real 4, 5 and 6D spaces. The generalized
causal relations in the complex space are consistent with the usual causality conditions, and exclude the
CTL paradox. Multidimensional models appear to reconcile Maxwell's equations with the structure of
general relativity in the weak gravitational field limit having some quantum mechanical features such
as quantum nonlocality.
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Figure 11. In the complex space multidimensional model, we introduce, in addition to the usual orthogonal 4-
space, four imaginary components, three spatial and one temporal. This is necessary in order to model remote
connectedness and to retain the causality and symmetry conditions in physics. We consider the eight orthogonal
dimensions to be constituents of two intersecting lightcones, one real (xge, fre) and the other (yim, fim) coordinates.

We introduce a complex 8D matrix in which the real components comprise the usual 4-space of
three real space components and a real-time component and four imaginary components composed of
three imaginary space components and one imaginary time component. See Fig. 10. Hansen and
Newman [33,34] and Rauscher [7-19] developed the properties of a complex Minkowski space and
explored the properties of this geometry in detail. The formalism involves defining a complex space

7" = X! +iX!" where the metric of the space is obtained for the line element ds” = g WwdZtdz v

where indices # and v run 1 to 4.
In defining conditions of causality for ds* = 0 for the metrical form we have the usual 4-space

Minkowski metric with signature (+++-)
2 _ 7 v
ds® =g, dx"dx (1a)
using units ¢ = 1 and dx, =dx, dx, =dy, dx; =dz and dx, = cdt where the indices £ and v run

9
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1 to 4; where also

(1b)

S O = O
S = O O
()

which is a sixteen-element matrix where the trace, tr = 2.

Energy
E>0
2|8
o =
=3
tardons tachyons
v<eCc vy=|¢ v>e
E=0 - -
velocity of light
E<0

Figure 2.12. Tachyon and tardon signals are represented in the plot of energy versus velocity, as
v — ¢, E — oo. Perhaps tunneling through the velocity barrier from v < ¢ to v > ¢ can occur so that £ # oo,

In complex 8D space, we have for our differential line element with coordinates labeled
dZ" = dX}, +idX}, (in which dZ is complex and dX,, and dX, are themselves real), with a

complex matrix where 77, is analogous to g, such that
ds’ =n,,dZ"dZ™" )

so that, for example, dZ“dZ"* = (dX /)" +(dX)* where 7 v 18 @ 64-clement matrix. We can write

in general for real and imaginary space and time components:
ds* = (abclie +dx;, ) + (a’yée +dy; )

2 2 2 2 2 (3)
+(dzg, +dzpy, ) = (dty, + iy, )

10
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Figure 13. Real time separation between event E and event S on the real X axis can be made to appear contiguous
by accessing the #, axis in 5D space as a subset of 8D space. The apparent velocity, vg. is denoted as vyt = virelre.
Access to fim through a velocity viretim along the #im axis run via this signal propagation can make virefre appear
instantaneous as Virefre goes to infinity. This figure corresponds to the remote connection points P; and P, via
access to P3 in Fig. 9 and also 9b.

Future tRe

X2Re

ES
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= — 1 M

S'/
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Figure 14. The separation of two events S and E along the real-time axis, fgs. The anticipatory time separation
does not violate CTL, if we have access to the imaginary space coordinates, Xim = Xim, Vim, Zim. The velocity of
propagation on Xim, fre Space is vire, Xim. Comparison with Fig. 9c¢ the event P; corresponds to S, and P3 to E, and
S’ to E at a velocity of vire, xim from S’ to P4. Then E is an anticipatory event from the S frame of reference. At
the vantage point of E at the future time can appear present and past events S can be anticipated when having
access to S’ is possible. The space comprises a 7D geometry.

In [7] we represent the three real spatial components, dx,., dyy,, dzz., as dX and the three

imaginary spatial components, dx, , dy,. ,dz,, as dX, and similarly for the real-time component

m
dt,. =dt and dt, =dr. We then introduce complex spacetime-like coordinates as a space-like part
X, = % and a time-like part #, =7 as imaginary parts of X and ¢ [8].

Now we have the invariant line elements as

11
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2 2 2 2
st =l el =[x =] “
again where we choose units where ¢* =c¢ =1 and

x'=X,, +iX,, ®)]
and
t'=ty, +it,, (6)

as our complex dimensional component [7,8]. We use

x? =[x = x4 X )
and
2=l =2 e (8)

Recalling that the square of a complex number is given as the modulus
x| =x"x"* = (Xp, +iX,, ) (X —iX 1) 9)

for X, and X, real. The fundamental key to this set of calculations is that the modulus of the product

of complex numbers is real. Therefore, we have the 8-space line element

2.2 2,2 2 2,2
8§ =Xp, —Clg, T X1, —CH,

} (10)

Im

2 2 2
_'xRe _tRe +xlm_t

Causality is defined by remaining on the right cone, in real spacetime, as

2 2 2.2 2 2
8§° = Xg, —Clge = Xge —lRe (11)

¢

using the condition ¢ = 1. Then generalized causality in complex spacetime is defined by

2 2

§T=xp, —ta, X1 — 1] (12)

e Im

in the xg.,%;., X, f;, generalized light cone 8D space. See Fig. 11.

Let us calculate the interval separation between two events or occurrences Zi and Z, with
real separation Ax,, =X,y —X;. and imaginary separation Ax, =X, —X,,. Then the

distance along the line element is As® = A(x}, +x., —t5, —1;,) and it must be true that the line
interval is a real separation. Then

2 2 2
As” = (xz,Re - 'xl,Re) + (x2,Im - xl,lm)

(13)
_(tZ,Re - tl,Re )2 - (tZ,Im - tl,Im )2

or

12
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2 2 2
As™ = (Xype = Xge )"+ (Xyp, — Xip)
(14)

2 2

_(fl.Re - rl.Re )~ - (rl.hn - rl.Im )d

Because of the relative signs of the real and imaginary space and time components and in order to

achieve the causality connectedness condition between the two events, or As®, we must "mix" space
and time. That is, we use the imaginary time component to effect a zero space separation. We identify
(X, ge»tre) With one spacetime event causally correlated with another spacetime event, (X, p.,Z, g, )

[8]. See Fig. 9. By introducing the imaginary time component, one can achieve a condition in which the
apparent separation in the real physical plane defined by Xz, tre is zero, given access to the imaginary
time, fim, Of the Xgre, fim plane yielding spatial nonlocality.

The lightcone metric representation may imply superluminal signal propagation between an event
A transmitter and even in the four-real subset space by the event B (receiver) or two simultaneously
remotely connected events. Separation will not appear superluminal in the 8-space representation. The
causality conditions, which do not contain closed time-like loops, are for the complex 8-space geometry,
where 4-space is a cut through the 8-space [8]. Newton examines causality conditions in 4-space with
superluminal signals [40] and the problem of closed time-like loops posed by Feinberg's classic
"Tachyon" paper [41,42]. These problems appear to be resolved by considering spaces of higher (> 4D)
dimensions and are consistent with subliminal and superluminal signals. See Fig. 12.

3. The Lorentz Condition in Complex 8-Space Geometry and Tachyonic Signaling

In order to examine as the consequences of the relativity hypothesis that time is the fourth dimension
of space, and that we have a particular form of transformation called the Lorentz transformation, we
must define velocity in the complex space. That is, the Lorentz transformation and its consequences,
the Lorentz contradiction and mass dilation, etc., are a consequence of time as the fourth dimension of
space and are observed in three spaces [43]. These attributes of 4-space in 3-space are expressed in

12
terms of velocity, as in the form y = (1 - ﬂz) for f=vy, /¢ where c is always taken as real.

If complex 8-space can be projected into 4-space, what are the con-sequences? We can also consider
a 4D slice through the complex 8D space. Each approach has its advantages and disadvantages. In
projective geometries information about the space is distorted or lost. What is the comparison of a subset
geometry formed from a projected geometry or a subspace formed as a slice through an XD geometry?
What does a generalized Lorentz transformation "look like"? We will define complex derivatives and
therefore we can define velocity in a complex plane [8].

Consider the generalized Lorentz transformation in the system of xr. and ti, for the real time remote

connectedness case in the x;,,f,, plane. We define our substitutions from 4-to 8-space before us,

' .
X = x'=xp, +ix, 15)

t—>t'=t,, +it,

and we represented the case for no imaginary component of x,, or x;, =0 where the x,_,#;. plane

comprises the ordinary 4-space plane.

13
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Let us recall that the usual Lorentz transformation conditions defined in four real space. Consider
two frames of reference, X, at restand X' moving at relative uniform velocity v. We call v the velocity
of the origin of £' moving relative to Z . A light signal along the x direction is transmitted by x = ct or
x -ct=0and also in X'as x' = ¢f' or x-ct' = 0, since the velocity of light in vacuo is constant in any
frame of reference in 4-space. See Fig. 2. For the usual 4D Lorentz transformation, we have as shown

in Eq. (6) and (8), x = xg,,f =y, and vy, =Xz, /g, .
There is a relationship between subliminal, time-like, and superluminal, space-like, interpretation of
the remote connectedness phenomena, such as the nonlocality test of Bell's theorem.

Y T

y
, (16)

t—(v/cz)x v
t'=———t=ylt—| —5x
V1=V /¢ c
for y=(1-£%)"* and S =v/c. Herex and ¢ stand for xe and fre and v is the real velocity.

We consider the x;.,f,,, plane and write the expression for the Lorentz conditions for this plane.

Since again £, like f,_ is orthogonal to x;, and tim is orthogonal to xim we can write

xX—ivty,

=y
L (17)

t— (v /c? )x v
t'=————=y |t—| 5x
V1=V /¢? ¢
where y, represents the definition of y in terms of the velocity v; also S, =V, /c where c¢is always
taken as real [7] where v can be real or imaginary.

In Eq. 17 for simplicity we let x',x,#' and ¢ denote x,,,Xg.,ls, and #,, and we denote script

v as v,,. For velocity, vis vy, =X, /t;, and v=v, =ix, /it where the i drops out so that

Im
v=v,, =X, /t, isareal value function. In all cases the velocity of light ¢ is c. We use this alternative

notation here for simplicity in the complex Lorentz transformation. The symmetry properties of the
topology of the complex 8-space gives us the properties that allow Lorentz conditions in 4D, 8D and
ultimately 12D space. The example we consider here is a subspace of the 8-space of

Xgeolpes X and #, . In some cases we let x;, =0 and just consider temporal remote connectedness
and anticipation; but likewise, we can formulate remote, nonlocal connectedness solutions for x;, #0
and f#,, =0 ort, #0. The anticipatory case for x;,, =0 is a 5D space as the space for

X, 70 and t,, =0 is a 7D space and for ¢, # Oas well as the other real and imaginary spacetime
dimensions, we have our complex 8D space. See Fig. 11.
15



Richard L Amoroso & Elizabeth A Rauscher - Complex Minkowski Spaces

It is important to define the complex derivative so that we can define velocity, vim. In the xrefim plane
then, we define a velocity of vim = dx/dit. In the Section 4 we detail the velocity expression for vim and

define the derivative of a complex function in detail [38]. For v, =dx/idt, =—idx/dt, =—ivy, for

Ve as areal quantity, we substitute into our x,_,#, plane Lorentz transformation conditions as

x|: xRe_VRetIm
Jl+vi, /¢
y'=y
, (18)
zZ =Z
t' — tRe_VRexRe

Im
2 2
JI+ve /¢

These conditions will be valid for any velocity, vec= - v.

Let us examine the way this form of the Lorentz transformation relates to the properties of mass
dilation. We will compare this case to the ordinary mass dilation formula and the tachyonic mass
formula of Feinberg [41] which nicely results from the complex 8-space. See Fig. 7. In the ordinary xg.
tre plane then, we have the usual Einstein mass relationship of

m,

1ll—vﬁe/c2

and we can compare this to the tachyonic mass relationship in the xim, fim plane

m= for vy, <c (19)

Mo imy  _m 20)
\/l—vﬁc/cz \/l—vﬁc/cz \/vlic/cz—l

for v, nowW vy, > ¢ and where m" or mm stands for m* = im and we define m as mg.,

m,
m=———
«/1+vz/c2

For m real (mg.), we examine two cases on vas v<c or v> ¢, so we let v be any value from —o00 < v <0,

2

where the velocity, v, is taken as real, or vg..

Consider the case of v as imaginary (or vin) and examine the consequences of this assumption. Also
we examine the consequences for both v and m imaginary and compare to the above cases. If we choose

o . . . 2 2
v imaginary or v* = jv (which we can term vin) the v /c® =—v’ /¢ andV1+v™>/c® becomes

N1=v?/c? or

m,

" Jl-vi /¢

We get the form of this normal Lorentz transformation if v is imaginary (v¥=v, )
16
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If both v and m are imaginary, as v* = iv and m* = im, then we have

= m; B im, B m, 23)
\/l+v*2/cz \/l—vz/c2 \/vz/cz—l

or the tachyonic condition.

If' we go "off" into xre ke tim planes, then we have to define a velocity "cutting across" these planes,
and it is much more complicated to define the complex derivative for the velocities. For subliminal
relative systems ¥ and X' we can use vector addition such as W = v, +iv,, for v, <c, vy, <X,

Vi, <C and W < c. In general, there will be four complex velocities. The relationship of these four
velocities is given by the Cauchy-Riemann relations in the next section. These two are equivalent. The

1 ~ A . . . .
actual magnitude of v may be expressed as v =[vW*]*v (where v is the unit vector velocity) which can

be formed using either of the Cauchy-Riemann equations. It is important that a detailed analysis not
predict any extraneous consequences of the theory. Any possibly new phenomenon that is hypothesized
should be formulated in such a manner as to be easily experimentally testable.

Feinberg suggests several experiments to test for the existence of tachyons [8,41,42]. He describes
the following experiment. Consider in the laboratory, atom A, at time, f is in an excited state at rest at
x1 and atom B is in its ground state at x,. At time # atom A descends to the ground state and emits a

tachyon in the direction of B. Let £ be this event at ¢, x;. Subsequently, at ¢, >, atom B absorbs the

tachyon and ascends to an excited state; this is event £, at 2, x2. Then at #; > ¢, atom B is excited and

A is in its ground state. For an observer traveling at an appropriate velocity, v < ¢ relative to the
laboratory frame, the events £ and E» appear to occur in the opposite order in time. Feinberg describes

the experiment by stating that at t'2 atom B spontaneously ascends from the ground state to an excited

state, emitting a tachyon which travels toward 4. Subsequently, at t{ , atom A4 absorbs the tachyon and

drops to the ground state.

It is clear from this that what is absorption for one observer is spontaneous emission for another. But
if quantum mechanics is to remain intact so that we are able to detect such particles, then there must be
an observable difference between them: The first depends on a controllable density of tachyons, the
second does not. In order to elucidate this point, we should repeat the above experiment many times
over. The possibility of reversing the temporal order of causality, sometimes termed ‘sending a signal
backwards in time’ must be addresses [8,41,42]. Is this cause-effect statistical in nature? In the case of
Bell’s Theorem, these correlations are extremely strong whether explained by v>c¢ or v=c signaling.

In [44], Bilaniuk, et al formulated the interpretation of the association of negative energy states with
tachyonic signaling. From the different frames of reference, thus to one observer absorption is observed
and to another emission is observed. These states do not violate special relativity. Acausal experiments
in particle physics, such as for the S-Matrix, have been suggested by a number of researchers [45].
Another approach is through the detection of Cerenkov radiation, which is emitted by charged particles
moving through a substance traveling at a velocity, v > ¢. For a tachyon traveling in free space with
velocity, v>c¢. Cerenkov radiation may occur in a vacuum cause the tachyon to lose energy and become
a tardon [4]. See Figs. 8 and 12.

4. Velocity of Propagation in Complex 8-Space

In this section we utilize the Cauchy-Riemann relations to formulate the hyperdimensional velocities of

propagation in the complex plane in various slices through the hyperdimensional complex 8-space. In

this model finite limit velocities, v > ¢ can be considered. In some Lorentz frames of reference,
17
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instantaneous signaling can be considered. In Fig. 13 is displayed the velocity connection between
remote nonlocal events, and in Fig. 14 is displayed temporal separated events or anticipatory and real-
time event relations.

It is important to define the complex derivative so that we can define the velocity, v =v,_ . In the xif

or Xgix,, plane then, we define a velocity of v =dx/d(it,,) We now examine in some detail the
velocity of this expression, here x = xr.. In defining the derivative of a complex function we have two
cases in terms of a choice in terms of the differential increment considered. Consider the orthogonal
coordinates x and if,_; then we have the generalized function, f(x,t, )= f(z) for z=x+it,, and
f(z) = u(x,t,,)+iv(x,t,) where u(x,t, ) and v(x,, ¢, ) are real functions of the rectangular

coordinates x and ¢, of a point in space, P(x,?,,). Choose a case such as the origin z, = x, +if,,,,

Im

and consider two cases , one for real increments # = Ax and imaginary increments /& = iAt, . For the

real increments 7 = At we form the derivative f'(z,) =df (z)/dz, which is evaluated at zo as

£'= lim {ﬂ(xo +Ax,t01m)—,u(x0,t01m) n
Ax—0 Ax
(24a)
l_v(xo +AX, 1 ) =V (%05 Lo )
Ax
or
f'(zo) =u, (xO,ZOIm)Jrivx (xo,tmm) for
ou ov (24b)
u =— and v, =—.
Toox Ox

Again x =Xy, X, =Xop. and v =v ..

Now for the purely imaginary increment, s =iAf,, we have

f'(z ) lim {ly(xo’t(”m+Atlm)_ﬂ(xo:t01m)+
0

Aty —0 | § At
" (25a)
v (xoa tOIm + Atlm ) . (xo > tOIm )
JAY

and f'(ZO) = _iuzlm (x07t01m)+vzlm (xOﬂtOlm) (25b)

for u, =u,,, and v, =v,, then

ou ov
=——andv, =—-ou. 25¢

tIm 8t tIm 81‘ ( )

Using the Cauchy-Riemann equations
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Ou  0Ov d ou _ 0Ov

— =" and —=-— (26)
Ox Ot oty Ox

and assuming all principle derivations are definable on the manifold and letting 4 = Ax +iA¢,, we can

use

e tim Gt =) _ ()

h—0 h dZ

(27a)
.,
and
ou (x0 2 totm )

u, (x0’t01m)+ivx(x0’t01m)_ o

.0V
+l§(xo,tmm) (27b)

with v_for x and #,, that is u,, =u with the derivative form of the charge of the real space

xRe?

increment with complex time, we can define a complex velocity as,

de 1 dx

f (ZO):M_;E (283)

we can have x(#, ) where xg.is a function of #i, and f{z) and using 4 =iAt,_, then

Im>

B ﬂ _dx
dh idt,,

f'(20)=x"(tw) (28b)

Then we can define a velocity where the differential increment is in terms of /4 = iAt, . Using the first
case as u(x,,t,,,) and obtaining dt,, /Ax (with i’s) we take the inverse. If u, which is vy in
the 7 — iAt,, case have both u; and vy, one can be zero.

In the next section, we present a brief discussion of n > 4D geometries. Like the complex
8D space, the 5D Kaluza-Klein geometries are subsets of the supersymmetry models. The
complex 8-space deals in extended dimensions, but like the TOE models, Kaluza-Klein models
also treat n > 4D as compactified on the scale of the Planck length, 10-3? cm [1-6].

In 4D space (Fig. 9) event point, P1 and P> are spatially separated on the real space axis as
Xore at point P and xire at point P> with separation Ax,, = x,z, — X,z.. From the event point P3

on the i, axis we move in complex space from event P; to event P3. From the origin, foim we
move to an imaginary temporal separation of #1im to foim of Az, =t,  —¢,.. The distance in

real space and imaginary time can be set so that measurement along the #im axis yields an
imaginary temporal separation Af, subtracts out, from the spacetime metric, the temporal

separation Ax,,. In this case occurrence of events P1 and P2 can occur simultaneous, that is,

the apparent velocity of propagation is instantaneous.

For the example of Bell’s Theorem, the two photons leave a source nearly simultaneously
at time, fore and their spin states are correlated at two real spatially separated locations, xire and
Xore separated by Axp, =x,p. —X.. This space-like separation, is forbidden by special

relativity; however, in the complex space, the points xire and x2re appear to be contiguous for
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the proper path ‘traveled’ to point at #1im along the imaginary axis. Because of the possibility
of proper spacetime adjustment or transformation which is possible in the complex plane,
separate spacetime locations can appear contiguous in the hyperdimensional 8-space. Hence
the upper limit of velocity propagation is instantaneous. See Table 1 and Figs. 13, and 14. By
adjusting our imaginary spatial and temporal advantage, vre and vim can be variously adjusted
and effect apparent causal conditions from the 8D space to the 4D space [14].

SOME MULTI-DIMENSIONAL GEOMETRIES AND THIER

Real 4 “‘space” INTERPRETATION Real “D” space
(time and space [relativity and
relativity, gravity) quantum mechanics]
ﬂ

5th spatial

6th temporal
complexity L =hand 2rn
spinors
twistors
N €6 ”
f(i) T ? _l ?f _8 . j?ilf ?M\ Kaluza-Klein geometries
{HHCTCOLHICCLCUIIENS ) .
(quantum medians) {electromagnetism and
gravitation]

(Maxwell)
(relativity invariance)

XX, 4,0, PP,
E,E’, FF’, C,C’,
etc

NOTE: X=X +iX’
T=t+it’

Complex “D” space

Figure 15. Representation of the usual 4-Space lightcone and four other multidimensional geometries. In the upper
right is a representation of the 10D real Descartes geometry. Below and to the left of the usual 4D space is the
complexified 8D space. To the lower right is the 5D and 6D Kaluza-Klein geometry and in the lower left is the
complexified 10D Descartes space as a 20D complex Descartes space. Note that X represents x,y,z and P represents
Py, Py, P, in the upper right. The relationships of all these geometries are represented in this figure.
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Table 1
Multidimensional Models: Macrocosm and Consciousness

e Einstein-Minkowski 4D space expressed as three spatial and one temporal dimension. This is
the usual observed 3-space modeled on the Minkowski lightcone diagram [7,8].

e 4-space can be expanded to a multidimensional quantum gravity space of 11D; spacetime,
momentum, mass-energy, force, velocity, acceleration, power, pressure, and rotation which
comprise Descartes 10D space [4,5].

e Complex 8D space is generated by complexifying the usual 4-space using \/—_1 , and has
nonlocality and remote interconnectedness that can relate a twistor algebra to the spinor
calculus of Kaluza-Klein 5D geometry and complexified Maxwell’s equations and non-
Hertzian phenomena.

e Kaluza-Klein geometry relates the Einstein-Minkowski 4-space of relativity to electromagnetic
phenomena and complex 8-space.

e The Einstein-Minkowski 4-space, Kaluza-Klein 5-space, Rauscher 8-space, M-Theory 11-
space and Amoroso 12-space relate topological geometries of modern particle physics to
quantum theory and general and special relativity.

e These multidimensional models allow a domain to exist in the physical world for the action of
local and nonlocal aspects of the reality of the observer.

5. Kaluza-Klein Geometries: A Possible Unification of Electromagnetic and Gravitational
Phenomena

We will present a brief discussion of other multidimensional models and examine the manner in which
they may relate to the complex 8D model which was presented in previous sections and in references
[1-8]. In the last several decades there has been a great deal of interest in some specific types of SD and
6D geometries. This revived interest is based on the work of two colleagues of Einstein, who received
encouragement from him in the 1930's, Kaluza and Klein, who introduced a 5D covariant geometry
which appears to have properties which suggest a method of unifying the electromagnetic, gauge-
invariant field theories (Maxwell's equations) and the gravitational field [21,22] (gravitational
potential). This particular multidimensional model appears to be useful to examine further because it
not only demonstrates the relationship between electromagnetic phenomena and gravitational
relativistic phenomena, but it appears to be consistent with the main body of physics [8,18]. The spinor
calculus is an excellent framework for accounting for the coupling of the electromagnetic field to the
gravitational field in a natural way rather than the usual phenomenological manner [8,37-39]. This
approach is automatically accomplished by requiring periodicity of 5D spinor fields. The theory of
spinors is used in unifying electromagnetic and gravitational phenomena based on the homomorphism
between the group of Lorentz transformations in relativity and the group of unimodular linear
transformations in Maxwell's theory [12]. It should be noted that this homomorphism is valid only in
the weak Wey1 field approximation

for the gravitational field [46,47].

In addition to the general coordinate transformations of the four coordinates, x*, the preferred
coordinate system permutation group is
x'5=x5+f(x1,x2,x3,x4) 29)

Using this condition and the 5D cylindrical metric or ds” = (y, dx'dx") yields the form
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ds® = (dx’ +y ,5dx")’ + g, dx" dx" (30)

where the second term is the usual 4-space metric. Greek indices £,V run 1 to 4 and Latin indices i, k
run 1 to 5.
The quantity 7, in the above equation transforms like a gauge, ds

}//45:7/;15_7' (31)

where the function f'is introduced as an arbitrary function. Returning to our 5D metric form in its five-
compact form and 4D and 5D form gives

yyv = g;zv +7y5}//,¢5‘ (32)

Starting from the metric form in a five "cylindrical" space ds” = y, dx'dx" where indices i,k run 1 to

5, we introduce the condition of cylindricity that can be described in a coordinate system in which the
7, are independent of x°, that is

OV
—= =0. 33
P (33)

Also, Kaluza-Klein assumed y.; =1 or the positive sign, 7., >0 for the condition of the fifth
dimension for a 5D space, to ensure that the fifth dimension is metrically space-like [8]. We can also
construct a 6D space for y,, =—1 and y,; <0. Geometrically one can interpret x° as an angle variable
so that all values of x° differ by an integral multiple of 27 corresponding to the same point of the 5D

space, if the values of the x“ are the same. For this specific case, each point of the 5D spaces passes
exactly one geodesic curve which returns to the same point. In this case, there always exists a
perpendicular coordinate system in which . =1 and,

87/5;1
o’

=0. 34)
Other properties follow in which g, and y, are analogousand y,, =g, and

Vss =1+ 7W7/457v5 also, y*° = g7 (35)

The gauge-like form alone is analogous to the gauge group, which suggests the identification of y

with the electromagnetic potential ¢, . We can write an expression for an antisymmetric tensor

67/15 _ 67;45
ox*  ox”

=1 (36)

22



Richard L Amoroso & Elizabeth A Rauscher - Complex Minkowski Spaces

which is an invariant with respect to the gauge transformation.
Using the independence of y, of xs or 0y, /x” =0, the geodesics of the metric in five space can
be interpreted by the expression
dx’ dx”

Yy E o 37
ds Vus ds 37

where C is a constant and s is a distance parameter. If we consider a generalized 5D curvature tensor,
and using the form for ji we can express it in terms of fﬂv , the electromagnetic field strength

v

167G
c4 "

/167ZG
Vs = 4 ¢# (38b)

The integration constant above can be identified as proportional to the ratio e/m of charge to mass of a
particle traveling geodesics in the Kaluza-Klein space [37-39]; ¢ is the velocity of light and G is the

fo = (38a)

and then we can write

universal gravitational constant. The force term, F = C* /G is found in Einstein’s field equations in
the stress energy tensor term and is identified as having cosmological significance by Rauscher [1].

Under specific conditions of the conformal mappings in the complex Minkowski space, one can
represent twistors in terms of spinors. The spinor(s) will be said to "represent” the twistor. The twistor
is described as a complex two-plane in the’complex Minkowski space. References on twister theory and
the spinor calculus are cited in [8,48]. Twistors and spinors can easily be related by the general Lorentz
conditions in such a manner as to retain the condition that all signals are luminal in the complex space.
The conformal invariance of tensor fields (which can be Hermitian) can be defined in terms of twistors
and these fields can be identified with particles. See Chap. 11.

We can represent twistors in terms of a pair of spinors, z* and 7 . which are said to represent the

twistor, Z“ . Conditions for this representation are

e The null infinity condition for a zero-spin field, 770 =0,
e Conformal invariance, and
e Independence of the origin.

Twistors and spinors are related by the general Lorentz conditions in such a manner as to retain the fact
that all signals are luminal in the real 4-space, which does not preclude superluminal signals in an XD
space [18].

The twistor is described as a 2-plane in complex Minkowski space, Ms. Twistors define the
conformal invariance of the tensor field which can be identified with spin or spinless particles. For
particles with spin s we have Z”Z, = 2s. The twistor is derived from the imaginary part of the spinor
field. The Kerr theorem comes out naturally. It is through the representation of spinors as twistors in
complex Minkowski space that we can relate the complex 8-space model to the Kaluza-Klein
geometries. In the 5D Kaluza-Klein geometries, the extra dimension, XD was considered to be a spatial
rotational dimension in terms of 7.

The Hanson-Newman [33,34] and Rauscher [7-18] complex Minkowski space has introduced with
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it as an angular momentum, or helix or spiral dimension, called a twistor which is expressed in terms
of spinors. We suggest that the problem of closed time-like loops may be resolved in terms of an
additional dimension or dimensions which may, in one model, be represented by a helical world line in
5D and 6D space in such a manner that the world line does not collapse on itself and become multi-
valued at a single spacetime point [39,44]. Note the twistor relates to the complex Schwarzschild metric
yielding the Kerr (rotational) metric [32,45]. The Schwarzschild solution is seen as a "real slice" of a
complex Minkowski space [32]. The complex Weyl tensor is viewed as a single complex field on the
complex Minkowski space.

Some directions for further exploration of the relationship of our 8D model and the main body of
physics may be made through the work of Hansen and Newman [33,34] and Kaluza and Klein [37-39].
Use of the Weyl weak field approximation may be used to examine the complex 8-space and
electromagnetic phenomena [40] such as complex electric and magnetic fields which we explore further
in the next section. Figure 12 presents a schematic of the relationship of some multidimensional
geometries.

Basic to the Kaluza-Klein geometry is the series of papers published by Weyl [46,47] in which he
forms a generalization of Riemannian geometry claiming to interpret all physical events in terms of
gravitation and electromagnetism in terms of a "world metric" (note that this statement is much stronger
than the Kaluza-Klein unification scheme, since it excludes strong and weak interactions). See Fig. 15.
On Fig. 16 we present a comparison of some of the multi-dimensional » > 4D geometries and
complexification theories and their interconnectedness to each other.

The gauge transformation of the Weyl space is formulated in terms of a quantity, ¢ﬂ, rather than
g,, Where ¢, is the four-vector potential. rather than strict gauge-invariance of g, dx“dx" =0

(usually where ¢ﬂ =0). In Weyl's theory uses complex wave mechanics for electrically charged matter

for the wave function, i . Then for a gauge transformation we have

, ihc of
=0, ——= (39)
& Ox
where ' =we” ™ and where he considers the invariance conditions on the imaginary exponent in

instead of the real exponentin g, . Weyl modified certain inconsistencies that occurred with relativity

[46]. The Weyl theory most likely set up the considerations for the Kaluza-Klein model in their attempt
to unify gravity and electromagnetism by relating g, and ¢“.

P.A.M. Dirac [49] generalized the complex scalar field to a complex two-component field (£) in

order to express the Schrodinger wave equation in a relativistic invariant form The complex two
component field is called a spinor because it relates to the spin degrees of freedom that were needed
because of the Zeeman spectral splitting in atoms. The question arises; does the spinor field result from
the conditions in quantum physics or relativity theory? Using the irreducible representation of the
underlying groups in relativity theory, Einstein and Mayer discovered that the real 4D representation in
relativity reduces to the direct product of two 2D complex representations. The complex two component
functions that are the basis of these representations are the spinor variables that Dirac discovered earlier
to describe the electron and anti-electron or positron. Therefore, the spinor variable is the most
fundamental expression of the theory of relativistic invariance. In this form then, relativity theory can
be quantized as formulated by Dirac.

The hypergeometric Schrédinger equation is second order in space and first order in time. The Klein-
Gordon equation is second order in both space and time; whereas the Dirac equation is first order in
space and time, which is like a square root of the Klein-Gordon equation that has two solutions. That
is, the Dirac equation has both a positive and a negative solution. For other multidimensional

24



Richard L Amoroso & Elizabeth A Rauscher - Complex Minkowski Spaces

perspectives see Fig. 13.

Since the spinor invariant is complex, it corresponds to two invariance conditions; one real and the
other the imaginary part of the two components of the spinor. We have seen that by introducing a
complex Minkowski space we may be able to achieve a reasonable interpretation of some of the
apparent paradoxes in quantum physics, relativity theory and electromagnetism. Non-locality and
superluminal signal propagation are precisely formulated. We will examine the implications of complex
geometries for electromagnetic phenomena, Bell's theorem, and other remote connectedness
phenomena in Chap. 4. Also in Chap. 11 we address the relationship of SR and 6D geometries with
spinors, twistors and quaternions.

6. Additional Thoughts on Current Physical Theory

The formalism of the complex 8D space and the 5D Kaluza-Klein space are incorporated into the current
grand unification theories (GUT), supersymmetry models, with gravity, and string theory (M-Theory
where matter is considered to be made of vibrating strings and branes instead of paint like particles),
that describes the unifications of the four force fields in particle physics and current models of the
universe. The four fundamental forces are the strong nuclear force mediated by quarks, electromagnetic
force, weak nuclear decay force and the gravitational force of General Relativity.

The Kaluza Klein model relates the electromagnetic and gravitational fields in which the photon
(spin 1) mediates the electromagnetic field and the graviton (spin 2) mediates the gravitational field.

This is why tensor analysis works. The electroweak force of the GUT model is mediated by W™, Z°

which are massive bosons for the electromagnetic and weak interactions. The mediators of the strong
force are quarks and gluons. It becomes possible to relate the GUT theories (which only related the
strong, electromagnetic and weak forces) to gravity via the use of the Kaluza-Klein geometry. These
theories attempt to reduce “everything" to quarks and leptons mediated by the exchange of gauge
bosons. This is currently termed the standard model.
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