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The principles of modern physics can be stated in terms of Poincairé invaqriance, or the 
homogeneity of spacetime analyzability or causality and unitarity or the conservation 
of probability. Essentially all theories of physics must obey these principles.  
 
 
1. Introduction 
 
Major progress in physics was made with the realization of such principles of energy 
and mass conservation, cause – effect relations and the isotropy and homogeneity of 
spacetime. The concept of Lorentz invariance in which where and when i.e. in which 
coordinate system an experiment is conducted does not alter the laws of physics that 
the system obeys.  In this chapter, we examine the major principles of physics and the 
manner in which they apply to the structure of the complexification of Minkowski 4-
space. [1] Three major universal principles are used to determine the structure and 
nature of physical laws. These are Poincairé invariance and its corollary Lorentz 
invariance (which expresses the spacetime independence of scientific laws) [2-4] 
analyticity (which is a general statement of causality), and unitarity (which can be 
related to the conservation of physical qualities).  These principles can apply to 
macroscopic as well as microscopic phenomena.  Poincairé invariance has implications 
for both macroscopic and microscopic phenomena and unitarity is a condition on the 
wave function description in quantum physics.  The quantum description of elementary 
particle physics has led to a detailed formation of the analyticity principle in the 
complex momentum plane. [5-9] 

In table 1 we list (top row) the major principles of physics, (second row) a brief 
statement of physical phenomena related to these principles, and (third row) the aspect 
of the theoretical model that applies to a particular category of remote, nonlocal 
phenomena. We illustrate the three principles of physics with brief explanations and 
with specific physical models such as Bell’s theorem, complex coordinate model and 
the physics of vacuum state polarization.  We also present a diagrammatic map of the 
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relationships between the major principles of physics and nonlocality, anticipatory and 
complex multideimensional geometries.  These geometries are fundamental to physics 
and to describing spacetime attributes on the manifold, (Fig. 1). 

We suggest relationships of these principles to nonlocal, anticipatory systems [9-11].  
We give details as to the manner in which we can utilize these physical theories to 
accommodate nonlocality at the macro as well as micro levels.  In particular we 
consider a multidimensional geometrical model which appears to reconcile nonlocality 
and anticipation and causality in a self consistent theoretical framework.  Complex 
physical variables which can be tested for their consistency with the main body of 
physics and also may demonstrate a fundamental relationship between relativity and 
quantum and electromagnetic phenomena.  We also demonstrate that nonlocal and 
anticipatory phenomena is not denied by, but is compatible with Poincairé invariance, 
and the other major principles of the foundation of physics. 
 

Table 1.  The Principles of Physics and Their Suggested Relationship 
 to Remote Connectedness Phenomenon 

 
  
 
 
 
 
 
 
 
 
 
 
 Poincairé invariance is the statement of the independence of physical laws and 
generalized coordinate transformations.  The Poincairé invariance of the energy 
Hamiltonian implies the conservation of energy.  Bell’s inequality nonlocal interactions 
do not violate Poincairé or Lorentz invariance.  In remote effects at a distance are 
allowed where not only information is distantly correlated but apparent energy or 
physical effects are transmitted, this could effect the Hamiltonian, which would no 
longer be Poincairé invariant.  Local energy state changes from distant correlated 
informational events may act through the vertual Fermi-Dirac vacuum polarization and 
may conserve energy or unitarity and Poincaré invariance and analyticity.  The analytic 
S-matrix can be seen as a matrix valued generalization of the Schrödinger probability 
amplitude, Ψ*Ψ = |Ψ|2, which is complexified but yields real measurable values.  The 
zero-energy analytic S-matrix can be formulated in terms of the Feynman formalism to 
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BRIEF 
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the category of operators.  The physically motivated hypothesis is that S has an 
expression S =  S0, such that S0 is a universal unitary S-matrix and   is the square 

root of the state dependent density matrix.  The S-matrix can be identified as a “square 
root” of the positive energy density matrix 1

2 0xS S  where 0S  is a unitary matrix 

and x  is the density matrix for postive energy part as the zero-energy state.  Then 

andSS S S  
   which gives the density matrix for the negative part of zero 

energy state. It is obvious that the S-matrix can be interpreted as a matrix valued 
generalization of the Schrödinger amplitude.  The indicies of the S-matrix correspond 
to configuration space spinors addressed in Chap. 11.  The S-matrix is strongly 
associated to unitarity and the conservation of angular momentum energy and relevant 
quantum numbers such as charge, spin, etc. [9]. 
 

 
 
Figure 1. “Map” of Physics and the relationship to existing physical theory that 
accommodates the fundamental principles of nonlocal events in spacetime. 
 
 As applied to S-matrix theory Poincairé theorem tells us that if a parameter of a 
differential equation such as   or k appears only in functions which are holomorphic 
in some domain of the parameter, and if in some other domain, a solution of the equation 
is defined by a boundry condition which is independent of the parameter then this 
solution is holomorphic as a function of the parameter in the intersection of the two 
domains.  Such parameters can be   and k.  In S-matrix theory, Argand plots in 
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complex   space where poles correspond to resonances or particles where   is an 
angular momentum parameter. Also plots can be constructed in a complex energy space 
associated with the parameter, k, as k = 1  , the wave number and 

2, ,p p m mc E mc      so that k m E   for c = 1.  These parameters are 

the independent variable of the differential equation which are hypergeometric and in 
non-relativistic form reduce to a time independent Schrodinger like wave equation. 
 The ,k variables are analogous to phase space variable (p,q) in momentum – 
distance.  Other sets of complementary variables (E, t) and also others such as ( ,p E ) 
and (x,t).  See [12] on the generalization of the Heisenberg relations.  Not the the 
variable ( ,p E ) act independent variables in the Lippman-Schwinger equation, which 
has an anlology to the Schrodinger equation. The independent variable (x,t) are those 
of the Schrodinger equation and most equations of physics. 
 An anticipatory system has the information, known and defined in the presence, to 
make an inference and discussion about the next action or inaction to be taken and hence, 
to make a change in the present to change the next or future states based on the 
predictions and fore knowledge about the relevant potential future states.  Anticipation 
or “precognition” or to cognite a future even before the now on the light cone axis 
cannot be explained by superliminal signalling in 4-spacetime alone [10,11]. 
 Tachyons or a superluminal signal alone will not explain anticipation precognition 
[13]. Feinberg states that tachyonic signals even at near the velocity of light will net 
one only a few naoseconds/foot into the future on the light cone.  If we choose a null 
light cone signal of v~c and for ~3 x 1010cm/sec, then 1/c ~ 1/3 x 10-10 sec/cm and a 
nanosec = 10-9 sec so that 1/c nanosec x 1/30 cm for 2.54 cm = 1 inch, then 2.54 cm x 
1211/ft = 30.48 cm/ft or 30.48 cm = 1 ft ~ 30 cm therefore 1/c = 1 nanosec/inch.  In our 
consideration of anticipatory responses require the consideration of significant temperal 
advantages perhaps even hours.  In the Gisin [14] test of Bell’s theorem over Km of 
distance [15-22].  One nanosec / inch  3 nanosec/cm and 10 Km  ~ 106 cm, then the 
Gisin experimental results require a factor of over 109 times over the 1 nanosec/inch 
(for signalling tranbsmission of the velocity of light)!  If the time delay between the 
initial anticipation time at to and the verified result of anticipation or participation was 
t1 then, for tachyonic signalling in n = 4 space would yield a requirement for a spatial 
separation of the events at t0 and t1 of 109 miles or greater (or about 1014 cm). 
 In order to accommodate precognition, anticipation or the results of Bell’s theorem, 
one is required to address the issue and resolve the paradox by using on n > 4D space.  
As we stated before, the use of complex 8-space has the symmetry properties to satisfy 
the major principles of physics.  The geometric approach to accommodate nonlocality 
is very consistent with Wheeler’s statements that our understanding of physics will 
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“come from the geometry, and not from the fields.” [23] 
 Hypothesis about the manner such anticipatyory systems can  exist are: 
 
 An advanced wave, such as the Tachyon proposed by Feinberg [13] 
 Heisenbergs quantum wave potentia model [24] 
 Electromagnetic advanced and retarded waves [25] 
 Cramer’s advanced and retorad standing wave transortural analysis. [26] 
 

In remote connected events, such as in Bell’s theorem, the remote collapse of a wave 
function at one spacetime location 1 (x1,t1) determines the measured state collapse of 

the other spacetime, location 2  (x2,t2).  In temperal separations of anticipatiory 

systems between an initial event at t1 as 1 1( , )nx t determines the state collapse of the 

wave function at t2 for 2 2( , )nx t . Note that for 1  and 2 , nx can have either both 

wave functions at xn = x1 or for both wave functions 1 at xn = x1 and 2 at xn = x2 

where  x = x2 – x1 can be an arbitrary spatial seperation. Also, temporal separation or 
anticipatory nonlocality occures, which we reconcile in Chap. 2 and the following 
chapter [26]. 
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