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In this chapter we demonstrate that complex electric and magnetic fields are consistent with a geometry 
consisting of complex spacetime. We thus demonstrate that complex spacetime coordinates are not 
inconsistent with electromagnetic phenomena and may point to a direction for its unification with 
gravitational phenomena, in the weak Weyl field limit. The particular case we examine in detail is for 
an electron in a field where we derive Coulomb's equation. We examine this unification using the Weyl 
geometry in the linear approximation of the gravitational field. 
 
Should we not then use the equations of motion in high-energy as well as low energy physics? I say we should. A 
theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data. – 
Albert Einstein 
 
 
1. Complex Electromagnetic Fields  
 
The linear approximation of Weyl geometry [1-4] for the gravitational field is consistent with the 
conditions of the 5D Kaluza-Klein geometry [5,6]. We present the formalism for the complexification 
of the electric and magnetic fields in this approach. We obtain additional symmetry conditions on the 
classical form of Maxwell's equations; and we obtain a non-zero divergence condition for the magnetic 
field which may be identifiable with a magnetic monopole term. 
 The relationship of the geodesic world lines and the electromagnetic field lines involve the definition 
of the field line structure. The field lines represent equipotential surfaces or they are lines connecting 
equipotential surfaces on a field map. For the gravitational tensor potential,  this map is the geodesic 

path on the light cone, i.e., the path that a photon will take according to the least action principle. We 
can similarly define an electromagnetic vector potential in analogy to  which we denote,  We 

use the formalism of Weyl to describe the manner in which we can derive Maxwell's equations, and in 
particular, Coulomb's law from the properties of  We then expand this formalism to include 

electromagnetic field components with real and imaginary parts and discuss the implications of this 
formalism. We also relate this formalism into our complex spacetime multidimensional geometry and 
then demonstrate that a complex "space" can be represented as a multidimensional real space with 
complex rotation represented by a generalized Lorentz transformation,  It is likely that the 
transformation  includes all the affine connections. See Fig. 1. 
 Inomata [7] and Rauscher [8-13] introduce a simple but elegant concept - complex components to 
the electric and magnetic field vectors. He starts from Maxwell's equations in their usual form for an 
electromagnetic media for electric charge,  and electric current, . Then we write Maxwell's 

equations in their usual form [14] which build on the extensive work of Faraday and others [15]: 
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To introduce symmetry to Maxwell's equations one can introduce an imaginary "magnetic" charge,  

or and imaginary "magnetic" current,  or , where again  and  and  are 

real quantities. Upon substitution into Maxwell's equations, we have 
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In this form we see that there are no real terms for the magnetic charge or current in terms such as 

 and iJm. Now we can derive real forms of Maxwell's equations by introducing complex E and 

B fields and separating real and imaginary parts of the equations. 
 Consider both the electric and magnetic fields to be complex quantities, that is 
 
                (3) 

 
where Re Im Re Im, , andE E B B  are real quantities, then substitution of these two equations into the 

complex form of Maxwell's equations above yields, upon separation of real and imaginary parts, two 
sets of Maxwell-like equations where the real parts are the usual Maxwell's equations: 
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where  and  and  -and for the imaginary parts: 
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Note that the i drops from both sides of each equation, giving real equations in all cases. 

i

Imi MiJ ImiJ 1i   M MJ

4 Mi 

Re ReIm Im,E E iE B B iB   

ReE  ImM  ReEJ J ImMJ J
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Figure 1 In the complex multidimensional space model we introduce, in addition to the usual orthogonal 4-space, 
four imaginary components, three spatial and one temporal. This is necessary in order to model remote 
connectedness and to retain the physical causality and symmetry conditions of conventional complex numbers. 
We can consider the eight orthogonal dimensions to be constituents of two intersecting light cones, one axis of 
real (x,t) and the other axis of imaginary (y,t) coordinates. 
 
 The real part of the electric and magnetic fields yield the usual Maxwell equations and the complex 
parts generates a "mirror" set of equations; for example, the divergence of the real component of the 
magnetic field is zero but the divergence of the imaginary part of the electric field is zero, and so forth. 
The imaginary part of the equations, the imaginary electric term replaces the real magnetic term, and 
vice versa. The structure of the real and imaginary parts of the fields form a symmetry in which electric 
real components are substituted by the imaginary part of the magnetic fields and the real part of the 
magnetic field being substituted by the imaginary part of the electric field in the second set of the 
equations [7,16]. 
 The charge density and current density are expressed as complex quantities based on the separation 
of Maxwell's equations above. The complex generalized form for charge density and current is given 
as, 
           

and                           (6) 
 
           
 
where it may be possible to associate the imaginary complex charge with the magnetic monopole and, 
conversely, the electric current has an associated imaginary magnetic current. 
 The above definitions for the complex form of  and J appear to be interesting, where we let 

 and  and also  and  as before. For some interpretations we 

may not necessarily identify  and JRe as electric terms and  and JIm  as magnetic terms. See 

Re ImE Mi i       

Re ImE MJ J iJ J J   


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[7,16] as there are other ways to examine the complexification of the E and B fields. 
 By considering the "mirror" imaginary BIm and EIm fields of the real ERe and BRe field we may have 
an explanation of electrostatic cooling. Extensive research on this effect, and the theoretical approach 
to electromagnetic cooling has been conducted by Rauscher and Beal [17,18]. If JE is neglected then we 
have the usual case where  and  so that no extra or anomalous terms appear. 

In [19], Dirac suggested a model similar to ours and to that of Inomata. Considering the imaginary part 
of Maxwell's equations in complex form we have Re 4 ,MB     where identification of  

is reasonable and where the i term is eliminated from both sides of the equation. Then BRe and are 

real and we consider only real derivatives in the del operation. Later we will examine the-complex form 
of  and perform complex derivatives where we use the transformations x = xRe + xIm  and  

and other complex metric forms. 
 If we take Im 0B   then we have Im / 0E t    and if also Im 0E   then we have 

Im Im/B t cJ   . We identify the temporal change of the imaginary part of the magnetic field term. If 

we use the definition Im ImB B iB   then we can take the total magnetic derivative as 

 
 

         Re Im
Re Im

B B B
c J iJ

t t t
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  
      (7) 

 
 
and again, we find the association of Im Im/B t cJ    We may be able to identify JIm with a magnetic 

current, JM, and associate a putative magnetic monopole current having one sign with the imaginary 
"mirror" part of the magnetic field. Before we proceed further with a physical interpretation of the 
imaginary component of the magnetic field, let us examine two issues in detail. 
 This formulation will assist us in understanding the physical interpretation of the complex model of 
Maxwell's equation. Currently we consider are the relationship between the complex form of E and B 
to the complex spacetime geometry and also the consideration of complex ( ) as a more useful and 

perhaps more primary interpretation of electromagnetic phenomena, rather than E and B. 
 
 
2. Complex Electromagnetic Variables in Complex Multidimensional Spaces  
 
We proceed from our 8D geometry. In [8,9], we defined the notation for the transformations, 

 and  which we have denoted as Re Imx x ix   and . We can 

also denote and  in analogy to  and . We denote 

 and  as before. 

 In [8,9] we define a method for taking complex derivatives and apply this method to our examination 
of the Schrödinger equation in a complex Minkowski space. See Chap. 2. Because of the linear 
superposition principle approximation [10], we can solve the real and imaginary parts of the equation 
separately and sum them in the approximation of a small deviation from linearity. In the case of our 
calculation of the curl and divergence terms in Maxwell's equations we can no longer, to first order, 
make the linear approximation assumption. 
 We can define the divergence operation in the complex multidimensional geometry for a general 
vector  (not to be confused with the vector potential, A ) where we have a vector form 

Re 4 EE    Im 0E 

ImM 

M

 Re Imt t it 

,A 

'x x ix  't t i  Re Imt t it 

1 2x x ix  1 2t t it  1 2E E iE  1 2B B iB 

Re ImE E iE  Re ImB B iB 

Re ImA A i A 
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A(x,y,z)  where each component Ax can be written as  etc. Then 

 

           (8) 

 
We have Re Re Re Im Im Im .x y z x y zA A A A iA iA iA       Upon substitution we have twelve terms, six 

are real and six are imaginary. For ,A  we have for Re Imx x ix   
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      (9) 

 
Also there are twelve terms for the partial derivatives in Re Imy y iy   

and another twelve in terms of the partial derivatives of Re Imz z iz   We address the dependence of 

A and its components as  Also we have dependence of A and its 

components on other components; for example, we can have  Let us 

assume that when we consider A as the general symbol for E and B, that they are dependent only on real 
and imaginary components of space and time. In such a case we also have another twelve terms for 

 totaling forty-eight terms. 

 We can use certain approximations to examine the forms of the complex electromagnetic fields in 
complex spacetime. We will see that more general forms are useful in examining energy transmission 
for transverse and longitudinal components. Consider the two divergent forms of Maxwell's equations. 
We have 4E     and 0B  . If we then write Re ImE E iE   and also Re ImB B iB   we 

have Re Re Re Im Im Im Re Im( , , , , , , , ).E x y z x y z t t  However let us consider only that Re Im( , ),E x x  

Re Im( , )B x x  and Re Im( , )x x , or more specifically that Re Re Im( , )xE x x  and Im Re Im( , ).E x x  Now 
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Collecting real and imaginary terms, we have two equations: 
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           Im Re
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ˆ ˆ ˆx y zxA yA zA   Re Im ,x x xA A iA 
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Note now that the real and imaginary components are mixed. 
 In a similar manner we can write two similar expressions for 0B    for real and imaginary 
components in complex space as 
 

            Re Im

Re Im

0x xB B

x x

 
 

 
          (13) 

and 

         Im Re

Re Im

0.x xB B

x x
             (14) 

 
Again real and imaginary components are mixed, but since i exists on both sides of the second above 
equation, all four of the above equations are completely real. These equations are very restrictive in 
terms of purely spatial, and not temporal, dependence, and that RexA  and ImxA  are taken as dependent 

on Rex  and Imx  where we take the term A as either E or B. In general, other terms such as 

Re Re Im Re( , , ),xE y t E  etc. can come into effect and we can approximate these by terms such as   in E 

and   in B in the above equations so that terms in Re Re Im( , ),x x  etc., which appear as additional terms 

which we can consider to be small compared to the terms in the previous four equations. Perhaps terms 
such as Re Im( , )x x  and others might also act as effective terms. For example, we could write 

 

          Re Im

Re Im Re

0x xB B B

x x x
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The above formalism does not represent strictly a projective geometry but is related to the concept that 
4-space is a slice through a complex multidimensional space. We will make certain approximations 
which simplify the equations but they still remain nonlinear and give E and B fields of the form of 
Sinh2(x), for parameter x [19-24]. 
 We will examine in more detail how a projective geometrical form of the complex E and B fields 
form Hertzian as well as non-Hertzian waves. Then Re Re Im Im/ / .x xB x B x      The term on the right 

may be associated with a term in   such as Im  or .M  For example, we may have a form 

Re Re/x MB x     or, in general, for the consideration of all components, .MB     The shadow 

imaginary terms to the real usual terms may supply insight as to new ways of interpreting conventional 
as well as novel electromagnetic phenomena. We will consider these issues in more detail in the Higgs 
field approximation 
 We turn our attention to the full detailed consideration of the set of derivatives involving complex 
E  and B  in complex spacetime. We use Re ImE E iE   and Re ImB B iB   and Re Imx x ix   and 

Re Im ;t t t   all terms such as Re Im Re Im, , ,E E B B  and Re Im,x x  are real.  

 We use the Cauchy-Riemann relations [8-10]: ( ) ( , ) ( , )f z u x y iv x y   

and   
                   

        '( )
f v v

f z i i
z x x y y

     
    
    

          (16) 
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for x x iy   

 Now consider the definitions 
 
          Re Re Im Im Re Im( , ) ( , ), ( , ) ( , ).x y E x x v x y E x x       (17) 

Then 
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for Re Im .z x ix   

We have the two equations for '( ) :f z  
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Returning to 4 ,E     we have 
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or                       (20) 
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 Using the Cauchy-Riemann relations there are two equations for ,E  
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And 
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The above equations in terms of real spatial derivatives can be separated into real and imaginary terms 
as 
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which is the usual Maxwell equation Re Re( 4 ).E    We also have the "mirror" equation 
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        ImIm Im
Im

Re Re Re

4yx z
EE E
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where the i is canceled. This equation appears to be Im Im4E    as before. 

 For the second equation for 4E     from the Cauchy-Riemann relation. We can write two 
equations in terms of the imaginary parts of space 
 
 

        ImIm Im
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Im Im Im

4y z
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and                       (25) 
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in which we have multiplied through by -i. 
 Let us define a new del operator in terms of imaginary components of space. We define this as, Im  

and the usual del operator,  interchangeably as Re.  Then we have our latter two equations which 

become 
 
               ImIm Re4E        and     ReIm Im4E            (26) 

 
 
giving us two more unique new equations. Note the minus sign in the density term in the above equation. 
Similarly, we can write a set of 0B   and have Re 0,B   Im 0,B   ReIm 0B    and 

ImIm 0B   . We can write forms such as Re ImB B    where we identify the term ImB as a 

monopole component. We discuss this further in terms of the Higgs solitons model. 

 The Higgs mechanism involves the carriers of the electroweak force, the 0,W Z  Bosons which are 
hypothesized in analogy to the massless or near massless photon whereas standard hadrons, leptons and 
pions have mass which requires an explanation. Higgs et al [13,25,26] suggests that there was an 
undetected field, the Higgs field, filling the universe. The concept is that a massless Boson such as a 
photon could absorb a Higgs Boson and create a massive particle. Salam and Weinberg utilized the 
Higgs mechanism in a renormalized form to develop the electroweak theory [26]. It has been suggested 
that the CERN LHC Tevatron may produce enough energy to uncover the elusive Higgs particle. The 
question becomes, how does an all pervasive Higgs field filling the universe relate to the nature of the 
vacuum plenum?  
 Elsewhere we have given clear indications that a small photon mass, m  probably exists [13,25]. 

The physics community has thought this would interfere with Gauge Theory, but this is not the case 
because Gauge Theory is only an approximation. This is a key indicator of M-Theory where Planck’s 
constant,   is no longer fundamental but must be modulated by string tension Ts [25]. M-Theory, is 
based essentially on one parameter, string tension, ST  

 



Richard L Amoroso & Elizabeth A Rauscher - Complexification of Maxwell's Equations 
 

9 
 

               
1/ (2 )ST e l    ;       (27)           

 

where e is energy, l is length of the string and   the fine structure constant, 2 /e c  where this e is the 
electron charge. It is well known that the gauge condition is an approximation suggesting Planck’s 
constant,   needs to be recalculated to satisfy the parameters of M-Theory [25]. Since our HAM 

cosmology is aligned with an extension of Einstein’s energy-dependent spacetime metric 3(4)M̂ , (or 

the alternate (+++-) convention) the Stoney 2 /e c , an electromagnetic precursor to Planck’s constant, 
[25] is therefore the choice for studying the recalculation. The factor added to   is string tension ST , 

where 0T  can increase the size of   to the Larmour radius of the hydrogen atom in the small scale and 

lead to infinite size additional dimensionality cosmologically. Thus the fine-tuned Stoney,   and the 
cosmological constant,   adjust the microscopic and cosmological domain limits of  HR  respectively. 
Equation (28) illustrates the initial historical basis for this distinction 
 

    
2

2 2 2
04P S

Gm e Gm
l or l

mc c mc c
   


,         (28) 

 
where P Sl and l  are the length of the Planck and Stoney respectively. 

 One example for rescaling Planck's constant comes from Wolf [25] 
 
             0x h h h      .              (29) 

 
He then suggests that  
 

              
2

0 0

hv
h L

c
                   (30) 

 
where 0 and 0L are time uncertainty and a discrete spacetime correction respectively. Wolf is able to 

speculate that this Planck rescaling has application to Neutron stars, CMBR and black hole formation. 
Our approach for a time, 0 and spacetime corrections, 0L  are different [25]. 

What does this mean for the Higgs mechanism? There are new topological conditions in Calabi-Yau 
mirror symmetry. With the addition of the parameters of string tension and string coupling to the 
fundamental structural-phenomenology of the nature of matter, mass arises in the ‘topological charge’ 
associated with the annihilation-creation vectors of the wave structure of matter in an extended view of 
the de Broglie-Bohm interpretation of quantum field theory. See Chap. 12. 
 We examine the equations involving the curl operation. When we calculate the curl of complex E 
and B fields in a complex geometry we have vector components and the curl operation becomes much 
more complicated. This is because, for a specific vector component, we have partial derivative terms as 
functions of other independent variables. We proceed from the standard form of the curl for a general 
vector ˆ ˆ ˆx y zA xA yA zA    as 
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A
x y z

A A A

x A A y A A
y z z x

z A A
x y

  
 

  

                
  

    

        (31) 

 
where ˆ ˆ ˆ, ,x y z  are unit vectors and A  is a vector quantity. This is the usual three spatial dimensional 

quantity. The del operation,   can be formed as the D’Alembertian operator,   with 
2 2 2(1 )( )c t      which includes ct terms. If we again write Re ImA A i A   and also the 

complexified form of space and time, then we will have many more terms as part of the Re Re Reˆ ˆ ˆ, ,x y z   

components as well as Im Im Imˆ ˆ ˆ, ,x y z  for Reˆ ˆ,x x  etc. If we turn our attention to the curl expressions 

such as E   (1 ) ( )c B t    then we can consider E and B as cases of the general form of A (not 

to be confused with the vector potential of ( , ).A   The usual curl is derived for a 3 x 3 matrix. Consider 

the components Re Re Re Im Imˆ ˆ ˆ ˆˆ( , , , ,x y z x y  and Imˆ )z . Then we can write the generalized curl as 

 

      

Re Re Re Im Im Im

Re Re Re Im Im Im

Im Im ImRe Re Re

ˆ ˆ ˆ ˆˆ ˆ

x y zx y z

x y z x y z

A
x y z x y z

A A AA A A

     
 

     
  (32) 

 
which forms a 3 x 6 matrix. 
 This generalized form is necessary for analyzing E   (1 ) ( )c B t    and 

1( )B E t J       for complex E  and B . (Note: We can handle coupling to other terms or 

additional terms can be handled as coupling to the usual terms which we can define as the coupling 
term g2, as in [10] and Chap. 10).  

Using the set of definitions, Re Re, ,x x xIM y y yIME E iE E E iE     Re ,z z zIME E iE 

Re Im ,x x ix  Re Im ,y y iy  Re Im ,z z iz  and also Re Imˆ ˆ ˆ ,x x xe e ie    Re Imˆ ˆ ˆ ,y y ye e ie 

Re Imˆ ˆ ˆ .z z ze e ie   We formed a vector addition for the limit vector coordinates. We can also form the 

modulus length as 
2 2 2

Re Imˆ ˆ ˆ .x x xe e e   For unit dimensions, 
2

ˆ 2.xe   Expressing the usual form of the 

curl of E , we can use the above equations to calculate E as 
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ˆ ˆ ˆ

ˆ ˆ ˆ .y

x y z

x y z

y x xz z
x y z

e e e

E
x y z

E E E

EE E EE E
e e e

y z z x x y

  
  

  

                         

    (33) 

 
Using the above expression for complex forms of E  and x  we can write 

 

Re Im Re Im

Re Im

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ( ) .y

y xz z
x x y y

x
z z

E EE E
E e ie e ie

y z z x

E E
e ie

x y

                  
 

      

    (34) 

We can express the term in ex as term ,exI  

 

               

Re Im Re Re

Im Im

ˆ ˆ ˆ ˆ( )

ˆ ˆ .

y

y

yz z
x x x x

z
x x

EEE E
e ie e e

y z y z

EE
ie ie

y z

   
              

 
     

      (35) 

 
Applying the Cauchy-Riemann relations to the terms in ˆxe  we have 

 

      

Re ImRe Im
Re Re

Re Re Re Re

Re ImRe Im
Im Im

Re Re Re Re

ˆ ˆ ˆ

ˆ ˆ .

y yz z
x x x

y yz z
x x

E EE E
Ie e i e i

y y z z

E EE E
ie i ie i

y y z z

     
            

     
            

        (36) 

 

We also have another set of terms which we define as '
êxI  from the other of the Cauchy-Riemann 

relations 
 

      

Im Re' ReIm
ˆ Re Re

Im Im Im Im

Im ReReIm
Im Im

Im Im Im Im

ˆ ˆ

ˆ ˆ .

y yzz
ex x x

y yzz
x x

E EEE
I e i e i

y y z z

E EEE
ie i ie i

y y z z

    
            

    
            

         (37) 

 

Separation into real and imaginary parts of êxI  and '
êxI  can be per-formed. For êxI  we have 
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Re ImRe Im
ˆ Re Re Re Im Im

Re Re Re Re

Re ImRe Im
Re Im

Re Re Re Re

ˆ ˆ ˆ ˆ

ˆ ˆ (5.38)

y yz z
ex x x x x

y yz z
x x

E EE E
I e e e e

y z y z

E EE E
e e

y z y z

         
                    

     
            

 

 

and for '
êxI  we have 

 

 

 

Im Re' ReIm
ˆ Im Re Re Im Im

Re Re Re Re

Im ReReIm
Re Im

Re Re Re Re

ˆ ˆ ˆ ˆ

ˆ ˆ 5.39

y yzz
ex x x x x

y yzz
x x

E EEE
I ie ie ie ie

y z y z

E EEE
ie ie

y z y z

        
                    

    
            

  

 

We have eight terms for êxI  and also eight terms for 
ˆ

'

ex
I . Therefore, there are sixteen terms for the  ˆxe  

term of .E  

 For all three components ( ˆ ˆ,x ye e  and ˆze ) of the curl, we have a total of forty-eight terms. Returning 

to ˆxe  terms only then, let us consider these terms only in 1 ( ).E c B t      From ˆRe ,eI  we have, 

using the separation of B  into real and imaginary parts and using the x component only, 
 

        

Re ImRe Im
Re Im

Re Re Re Re

Re

Re

ˆ ˆ

1

y yz z
x x

x

E EE E
e e

y z y z

B

c x

     
           


 



        (40) 

 
where we use the expression as 
 

                 yx z
BB BB

t t t t

 
  

   
          (41) 

 
and applying the Cauchy-Riemann relations to the x component of B we have for the temporal element 

Re Im ,t t it   for / ,xB t   then Re Re Im Re( ) ( ).x xB t i B t      

 For real parts we consider the Re RexB t   term only, which we use in the above equation. We can 

define a term in terms of the imaginary directed component Imˆ ;xe  let 

 

                          Im2 Im
Im Re Re Re Im

Re Re

ˆ, , yz
x

EE
g A x y z e

y z

 
     

      (42) 

so that the expression now reads 
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             Re 2Re Re
Re Im Re Re Re

Re Re Re

1
ˆ , , .yz x

x

EE B
e g x y z

y z c x

  
        

    (43) 

 

Terms not incorporated into the 2g   term comprise the usual Maxwell equation. We consider g2 to be 

a coupling to a small order perturbation term given by  Im Re Re Re, ,x y z , where our components 

projected from the imaginary components of E and B lie on the imaginary axis Imˆ .xe  Contributions from 

other imaginary dimensions of space and time can yield contributions that give rise to transverse 
components of the electromagnetic field and can contribute to energy transmission terms. 
 From ˆ ImexI  we can also form the equation 

 

           Im ImRe Re Im
Re Im

Re Re Re Re Re

1
ˆ ˆy yz z x

x x

E EE E B
e e

y z y z c t

        
                  

 (44)  

 
where the “i’s" cancel from both sides. The terms in this equation are components of the Imˆxe  direction. 

 Separation into real and imaginary parts are made for terms in '
êxI  from the second coupling relation. 

For the real part we have 
 

              
Re

Im Re' ReIm
ˆ Re Re Im Im

Im Im Im Im

ˆ ˆ ˆ ˆ
x

y y zz
e x x x x

E E EE
I e e e e

z y z y

  
   

   
     (45) 

 

and similarly for the imaginary parts 
Im

'
ˆ .
xeI  All these terms are in Im Im,x y  and. Im .z  A similar process 

can be done for '
ˆ ˆ,ey eyI I  and '

ˆ ˆ, .ez ezI I  In general, we can write 

 

                             Re Im Re ImE iE E i E      

and                     (46) 
 

                       Re Im Re ImIm Im ImE iE E i E         

 
For current purposes, we will not explore terms in Im  which involve Im Im Im, , ,x y z       etc. We 

will briefly discuss the relationship of the complex electric and magnetic fields, complex spacetime 
metrics [8,9] and the interpretation of models of the magnetic monopole. 
 
 
3. Complex Electromagnetic Field Vectors, Virtual Energy States and Magnetic Monopole 
Interpretations  
 
We will briefly discuss some issues related to magnetic monopole model interpretations. Let us start 
from the metric element measure for fields associated with electric and magnetic charge. Essentially, if 
monopoles exist they will fill in the zeroes in Maxwell's equations. Comparing 4 RE     and 

0B   and (1 ) ( ) (4 ) EB c E t c J      to (1 ) ( ) 0E c B t      indicates complete 
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symmetry if the zeroes on the right side were replaced by B  and JB respectively. In relativistic notation 

we have for the electric current ( ) ( ), (4 )E EJ F x c J  
     and 0.F x

    If monopole fields 

exist the right side of the second equation would be written in terms of a 4D magnetic current ( ).BJ  

 Dirac hypothesizes that the pole strength of a magnetic monopole-like electric charge would be 
quantized and that a conservation principle for monopole strength would exist analogous to electric 
charge conservation principles. In [27] we examine the role of magnetic monopoles in a real 
multidimensional geometry. We demonstrate that the form of the quantized monopole introduced by 
Schwinger [27], in which the electric and magnetic charge is put on an equal footing, is consistent with 

the n-dimensional Descartes geometry [27,28]. If we have 2 /e c    ~1/137.037, where   is the 
fine structure constant, we can form an analogous expression: /em c n  where n is an integer 28]. 
This expression defines a quantized form of the magnetic monopole. 
 In the Dirac monopole model [19], (where m is the ‘magnetic charge’ which is termed g in 
Schwinger’s notation) if the product of the pole strengths are given as em n c   and 1

2n   (the 

smallest quantum value), then this gives 68.5m   times the value of e. In the Schwinger model, n is 
taken as unity so that 137 .m e  The latter value is the one usually considered in experimental 
explorations. 
 The set of assumptions for the Schwinger monopole is one of the simplest there is; it is the monopole 
structure for which most experimental detectors are designed to determine if monopoles exist. This 
picture brings into question the whole issue of the nature of charge as a quantized entity. We discuss 
the possibility of a more complete expression of charge as a quantum number in [24,28,29].  
 Teller [30] suggests that monopole detection will be made only in very high energy experiments. 
Alvarez [31], and his group conducted extensive monopole detection studies. Silvers presents some 
theoretical formulations that are relevant to the experimental detection of magnetic monopoles. 
Attempts have been made to find monopoles in moon rocks [32] by looking at heavy ionized radiation 
damage tracks [33]. Wheeler [34] has developed expressions for quantized charge which may have 
relevance to monopole formulation and detection. 
 
 
4. Higgs Field Magnetic Monopole 
 
Our model of plasma instabilities and superconductivity are based on the field theoretic approach. Both 
Abelian and non-Abelian fields are considered. The Abelian Higgs field can be represented as a 3D 
kink soliton which acts like a bare point soliton. We might identify such a system as a "vortex." In four 
dimensions we can identify a non-Abelian soliton as a static monopole [35]. 
 The common definition in the quantum solutions of the sine-Gordon equation is that the institon is 
a finite action entity in space and time which is associated with the content of the vacuum. In elementary 
particle physics this institon state could be identified with the quark-gluon states. The soliton solution 
is an entity of finite energy in space [36] and time and is associated with the quark states in elementary 
particle physics. 
 The 3D Abelian Higgs confined field soliton, in the same absence of symmetry breaking, defines 
quark confinement [37]. The Lagrangian, L for the Higgs field is given as 
 

     
2 2 22 21

2 4

g
L F F ieA h

x



  

    


     (47) 

 

where 2g  is a coupling term (which acts like a potential) to a nonlinear field factor, and 2h   is an 
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additional field term. The Higgs-Goldstone spontaneous splitting is due to the field shift term h. 
 The electromagnetic field F  is given in terms of the four-vector potential by 

( ) ( )F A x A x           where the vector potential, A  transforms as a gauge 

(1 )A A e h    which defines the quantity h. The indexes   and   runs 1 to 4. The phase   

represents the kink in the Higgs field in 3D. The form of   is given by its periodic form ine   . We 

define the ( , )jA A  , where the index j runs 1 to 3, in their usual four space form. We use   to 

represent the temporal component of the potential field A  where jA  is the vector potential. 

 Let us consider photon activation of pair production of a retarded (forward in time) and advanced 
(backward in time) potential waves in an analogy to the Cramer Transactional model [13]. The usual 

physical gauge condition gives 0   but for our coupling soliton theory, the kink ine    cannot be 
transformed away. The stability of the vortex solutions depends on the finite value of n. The gauge 
condition in the space with kink solitons becomes 
 

           ' 1
A A n

e x 



 


          (48) 

 
The Lagrangian, L gives the trajectories of the soliton where A is considered as the pair producing 
photon field. Solitons are coupled as a 1/e term and dominate as the coupling term g2 becomes larger. 
See Chap. 8 for generalized extended Gauge conditions. 
 In [10,35] we discuss how soliton solutions to the nonlinear Schrödinger equation relate to the kink 
monopole soliton. It is actually through the relativistic formalism for the soliton solutions of the Dirac 
equation that we see that the kink soliton monopole is one such solution [35]. See Chap. 12. Both the 
Schrödinger [10] and Dirac equation are solved in the complex Minkowski space which contributes the 
nonlinear term leading to the soliton solutions. The soliton retains its identity in space and time and acts 
as a field particle that acts as a signal for remote connectedness events. The form of the soliton explains 
the source of the effect of the vacuum state virtual states. The exciton (pair production) couples to 
acoustic or acustiton modes giving rise to the soliton solution (Chaps. 10 and 12). 
 The Higgs field monopole relates to the symmetry term in the complex form of Maxwell equations. 
The current solution to the electromagnetic equations are of nonrelativistic form. The Higgs field 
method is a relativistic form. We will outline a relativistic complexification of Maxwell's equations. 
 
 
5.  Some Further Speculations on Monopole Structures  
 

The relation ( ) ( )F A x A x 
         insures that the divergence of the B field is zero. In the 

condition where monopoles are allowed the condition on the relationship of F  in terms of A  is 

relaxed. We can write an expression in terms of a monopole, field strength, m. Then we can write a for 
 

                                    ( )
A A

F m f f
x x

 

 
 

 
  
 

                           (49) 

 

where f  is an arbitrary given function of space, x,y,z and f    ( ) ( ) .f x f x 
       

 A number of tests for monopoles have been explored. Eberhard summarizes some of these, including 
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the Price, Lexan controversial plate examination [38] Dirac has suggested a possible test using a soliton 
model. The form of the coupling constant, m, will then depend on the geometric form of the soliton. A 
quantum theory can be constructed for specific types of monopoles. We can define a form for m from 

the soliton model ( ) / 4A m   where 2 2x y    for an x directionally oriented solenoid axis 

and   is the zenith angle of ( , , ).    Consider the flux   and we then use the monopole condition 

2iem     [39,45]. If we consider the quantized flux condition in superconductivity vacua, 

such as ( ) 0,   then   acts as a creation operator and   as a destruction operator for magnetic 

charge. Asymptotically we have ( ) 0x ieA
      with solutions of the form  

 

          
( )

0

ie dx A x
e


                  (50) 

 
with the quantized condition for a closed path, 
 

         ( ) 2e dx A x n
         (51) 

 
where n is an integer. So the quantized flux can be considered to be obeying the condition 2 / .n e  
This condition holds for an infinite solenoid on the z axis (Aharanov-Bohm experiment). 
 More detailed consideration along this line may be fruitful to design a test for a possible monopole 
utilizing a solenoid configuration [41]. See Chap. 4. A more detailed examination of this picture and 
the suggested experiment by the Eyring Research Group should be made in which they suggest a test 
of the issues connecting E  and B  and A  and   [42]. In a suggested experiment by Mandelstam [43], 

gauge invariance and Poincairé invariance conditions need evaluation. The complexification of 

Maxwell's equations give us a detailed manner in which to formulate the nonlinear coupled terms, 2g . 
 
 
6. The Structure of Non-Hertzian Waves in Complex Geometries and Electromagnetic Energy 
Transmission 
 
Heinreich Hertz made two contributions that had a major influence on the interpretation of the nature 
and structure of electromagnetic waves. Maxwell had already shown the intimate relationship between 
electric and magnetic phenomena which had drawn together many of the discoveries by Faraday [15]. 
One of the two issues that Hertz put forward was that radio and light waves were part of the same 
phenomena; i.e. part of the electromagnetic spectra. The other was that electromagnetic waves were 
composed of the continuous orthogonal oscillations of electric and magnetic vector components 
transverse to the direction of motion. These oscillations traveled at the velocity of light (Maxwell) and 
the velocity of light is a constant in all frames of Einstein. 
 The former proposition of Hertz led to a coherent picture of many phenomena (such as radio, light, 
x-rays, and  -rays) as part of the electromagnetic spectra. The condition on the vector oscillations of 

E  and B  may have been too restrictive and also that longitudinal components may exist and may have 
most significant implications [44-47]. Because of the great success of the former issue the second 
consideration was readily accepted. There was also a lack of understanding of Tesla's energy 
transmission ideas in his cryptic patents and also he was unable to complete vital tests of his ideas due 
to loss of funding from J.P. Morgan and his family [44]. Therefore the issue of longitudinal components 
of E  and B  and their possible interpretation as effects on A  or ( , )A   was summarily dismissed 
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from classical electromagnetic theory. The Aharonov-Bohm experiment appears to show that the 
( , )A  fields are detectable outside of the action of the E and B fields.  

 The ground wave and the ionospheric wave are set up in such a manner as to produce the 
predicted 1.57 ratio to the velocity of light which was stated by Tesla in one of his patents 
[44,47]. In his model Tesla treated the Earth as a finite capacitative reactance component 
surrounded by an ion shell of variable altitude, beginning at about 50 km in height, which 
represents a system whereby a resonant ringing signal can be set up and transmitted. Although 
the system represents a leaky capacitor with a Q of about 4 to 5 it is possible to set up a resonant 
state that appears as though a signal is transmitted and received from any two points on the 
Earth’s surface. In actuality, according to the Rauscher-Van Bise model, the signal is not 
‘transmitted and received’ but represents a nonlocal global coherent state. Any event which 
can ‘wiggle’ the static Earth-ionosphere magnetic flux is transmitted as both a local and 
nonlocal influence. 
 We will discuss in this section one model of non-Hertzian waves and suggest that there may be more 
modest tests of longitudinal wave effects and energy transmission than the major energy transmission 
program Tesla envisioned [44-48]. Some possible considerations for experiments may involve a 
solenoid Aharonov-Bohm type experiment and certain antenna designs for transmission and reception 
of significant signal, energy information and perhaps polarization experiments. See Chap. 4 
 If we consider the complex form of E  and B  then we can consider an orthogonal space in which 

the real components ReE  and ReB  are transverse projections to the direction of propagation of the wave 

and are the usual transverse components. The orthogonal components ImE  and ImB  (where ImE  and 

ImB  themselves are real) are projections on the direction of propagation of the wave and comprise the 

longitudinal components. These longitudinal components may act in an acoustic-like or acusticon 
motion ReE , ReB , ImE  and ImB  are all mutually orthogonal although models can  be considered in 

which, although maxima of ReE  and ReB  are 90° out of phase, those of ImE  and ImB  can be in phase 

or 90° out of phase [49]. 
 Longitudinal oscillations of ImE  and ImB  (See Fig. 2) appear as presence and absence of 

these fields varying from maximum projection of E  and B  to zero projection on the direction 

of propagation. The constraint conditions Re ImE E iE   and Re ImB B iB   but we can also 

express the relationship between transverse and longitudinal components as Re ImE E ieE   

and Re ImB B ibB   where e and b can be chosen to be greater than or less than unity. This 
way we can determine the relationship between the magnitude of the transverse and 
longitudinal components. The existence of the imaginary components of E  and B  derive their 
existence from the imaginary components of space and time. Dependent relationships such as 

Im Im Im( , )E x t  can be found as well as Im Re Im Re Im( , , , )E x x t t  can be formed. Essentially though, ImE  

and ImB  derive their meaning from the components Im Im( , )x t  as previously discussed. 

 New issues to address with the new formalism are primarily related to the possibility of non-Hertzian 
wave activity and transmission either in space or in a dielectric media. Possible means of "lossless" 
energy transmission or communication would necessarily involve non-Hertzian wave phenomena 
which does not attenuate in the usual 1/r2 diffusion mode. Of course laser light does not attenuate 
significantly in free space and is Hertzian and coherent, but a great amount of energy is not transmitted, 
nor can lasers be utilized (in their current form) to communicate with higher efficiency with undersea 
systems [50]. 
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Figure 2  Hertzian and non-Hertzian waves. Where E and B are decoupled into two components ERe and EIm and 
BRe and BIm.  
 
 Certain properties of the lasing phenomena do hold some clues for us because of its coherence 
properties. The possibility exists for utilization of the laser system (Hertzian wave) for remote 
communication, which can be formulated in terms of the remote connectedness properties of 
multidimensional geometries [8]. As stated before, phenomena such as Bell's interconnectedness 
theorem, Young's double slit phenomena, supercoherence phenomena and plasma instabilities (or 
coherent electron-electron states) etc. derive their properties and structures from the properties of 
remote connectedness and apparent superluminal connection in the 4-space as a subset of HD 
geometries [9,13]. 
 Planck in his 1922 book on electromagnetic theory expresses the concept that energy is key to an 
understanding of Maxwell's equations and therefore proceeds from the Poynting vector, S  

(perpendicular to the vectors E  and B ) which is in the direction of energy flow [50,51]. Note that S is 
also called the radiant vector. The electromagnetic energy field is calculated by the work to create the 
field on ergs  
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where   is the dielectric constant or permittivity of the media and   is the permeability (for free space 

or matter that is isotropic and non-ferromagnetic) and 1/c   in matter and 0 01/c   in 

vacuum. Then ( 4 )S c E H  , where B H  and the velocity in the direction of the Poynting 

vector is /v s w  where v = c is usually the case and where c is the velocity of light in vacuo. If we 

assume that each erg of moving energy has a mass of 1/c2, using 2E mc  or a mass of about 
201/ (9 10 ) gm.; the energy in a cubic centimeter will have momentum equal to 

 

           2 2/ /w c v s c        (53) 
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for ,B H  or similar expressions, depending on the media. In free space this is the magnitude of the 
momentum in unit volume so that the electromagnetic momentum in free space may be thought of as 
ordinary momentum possessed by the moving electromagnetic field. 
 The vectors E  and B  are represented as waves of electric and magnetic fields moving in a direction 

of propagation perpendicular to their amplitude variation. This variation is sinusoidal and transverse to 
the direction of propagation of the electromagnetic disturbance. For propagation in the x direction then, 

( ), 0,y x zE f x vt E E     and / ( );zH f x vt    

0x yH H   and / /v c    so that the wave can be in a media or free space. Then we have a 

wave equation  
 

          
f f
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       (54)  

 

for sin 2 ( )y

x
E A vt
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  and sin 2 ( )z

x
H t A vt 


   which are plane wave forms. Now let us 

briefly discuss possible longitudinal components. 
 It probably would not make sense to consider longitudinal vector modes along S  but scalar modes 

may be perfectly acceptable. As indicated by other calculations, acoustic type collective excitations 
arise from coherent, collective, nonlinear phenomena. Consider the propagation of an acoustic type 
mode, which are described as a soliton, if interaction with a source term (or exciton term) exists. Such 
a mode will not involve a Poynting vector energy term and with a source term would not obey the usual 
1/r2 dispersion. Actually, the recoherence from the nonlinear term overcomes the dispersion loss and 
disturbances do not eventually "wipe out", such as by water waves from a rock tossed into a pond, but 
retain their amplitude as in the soliton case [51].  Water waves cause interatomic friction and loss 
converts to heat in the water media. Electromagnetic energy disperses by dielectric (displacement 
currents), excitation of a media, and 1/r2 dispersion. The Hertzian wave momentum "pushes" through 
space. 

 The energy relationship for non-Hertzian waves is not of the form 2 2( ) 8S E H     does not 

fall off as 1/r2 with distance. The question then becomes, what is the energy content in standing and 
transmitted coherent non-dispersive waves such as solitons? Certain properties of ELF waves may not 
only depend on their extremely long wave lengths (~109 cm), but also on a possible mechanism for 
creating and transmitting extremely low frequency nonlinear waves. These may have some non-
Hertzian properties particularly below 10KHz. These properties may explain low loss (non-attenuation) 
of wave energy and lack of frequency shifts when observed from different spatial locations in recently 
observed (since 1976) ELF phenomena [45]. The energy content is assumed to be distributed throughout 
the field in the direction of the Poynting vector, which is perpendicular to E  and B  and has a 

magnitude 

          sin .
4

c
S EB 


        (55) 

 
As before the velocity of propagation in the direction of S  is given as / Ev S  and   is the angle 

between E  and B . 

 The transverse mode may be associated with an acoustic-like wave of energy transmission. We have 
explored the manner in which acoustic modes reflect coherent, collective, nonlinear processes and relate 



Richard L Amoroso & Elizabeth A Rauscher - Complexification of Maxwell's Equations 
 

20 
 

to the coherent state, as modeled in the soliton physics of [10,24,45]. The soliton mode is pictured as a 
coupling of a collective acoustic mode to exciton (electron-positron) modes in a media. See Fig. 2. 
 Let us briefly examine a possible interpretation of a more general form of the electromagnetic field, 
 . We can consider complexification of   as Re Imi      Consider the terms Re Im ;i     

Re Im ;i     2 2 2
Re ImE E E   and 2 2 2

Re ImB B B  . We use the modulus of a vector form as 
2

*,E EE  for example. Then we can form   as    

                                  

 2 2 2 2
total Re Re Im Re Re Im Im Im

1

8
E i E E i E


          

                        2 2 2 2
Re Re Im Re Re Im Im Im .B i B B i B                 (56) 

 

We collect the terms in Re and Im  The usual terms in   are 2
Re ReE  and 2

Re Re.B  We also have real 

terms 2
Re ImE  and 2

Re ImB  which comprise Re . The parts that comprise Im  are given by 2
Im Re ,E

2
Im Im ,E  etc., as 

      2 2 2 2
Im Im Re Im Im Re Re Im Im

1
.

4
E E B B i   


            (57) 

 
 The traditional terms in Re  as the usual terms as 

 

     2 2 2 2
Re Re Re Re Re Re Im Re Im

1
.

4
E B E B   


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These latter two terms come from projected longitudinal components of the electromagnetic field. The 

usual components, 2
Re ReE  and 2

Re ReB . 

 The corresponding longitudinal Poynting vector is given as 
 

          ' cos
4

c
S EB 


         (59) 

 
To be more precise, we have the usual transverse Poynting vector 
 

                   Re Re Re sin
4

c
S E B 


           (60) 

 
and the longitudinal Poynting vector 
 

           Im Im Im cos
4

c
S E B 


            (62) 

 
In each case respectively the angle   is defined between ReE  and ReB  or, in ImS  as between ImE  and 

ImB . These expressions depend on the assumption that both the transverse and longitudinal components 
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are transmitted at the velocity of light, c, and that c retains its relationship with   and   . 

 The constraints on Im  and therefore on 2
Im Im ,E  etc. terms, must be such as to retain the relationship 

between c and totalE  and total . If the acoustic (longitudinal acusticon) mode of transmission should 

occur at some other velocity, such as v > c, then we need to examine the whole issue of Lorentz 
invariance. See Chaps. 2 and 9. Feinberg [10] has demonstrated that v > c signals for tachyonic particles 
with complex mass can occur [25] and arguments such as these have been demonstrated to be consistent 
with the complex Minkowski space [8,44]. See Chap. 2. In fact, the structure of the metric demands a 
superluminal signal. Note that Tesla described a non-Hertzian superluminal signal [44]. The form of 
the Poynting vector then reflects signaling, should it be detected, in which SIm would depend on some 
general velocity v > c. The longitudinal acoustic mode then may require new considerations in 
experimental detection designs that involve some of the considerations in the concepts in tachyon 
detection. It may well be that the monopole is a tachyon and may therefore require similar approaches 
to those of attempted monopole detection [37] in which remote connection in the multidimensional 
Cartesian geometry is related to superluminal signals and magnetic monopoles. Also similar 
considerations are made for complex geometries [9]. 
 Two main issues come to mind. First, can information be transmitted by a superluminal acoustic 
wave?, and second, can energy be transmitted by a superluminal acoustic wave? We have previously 
demonstrated that collective coherent acoustic modes occur in matter in complex Minkowski spaces 
[24] and that acoustic modes coupled with vacuum state polarization may account for a variety of 
coherent phenomena such as plasma instabilities and superconductivity. These phenomena appear to 
depend on the remote connectivity of the manifold which is well described by the complex geometry. 
 Orthogonality of Re Re,E B  and Im Im,E B  is insured. A frequency dependent interaction between 
transverse and longitudinal components could lead to a standing wave, configuration. A self-reinforcing 
configuration could develop which would allow remote information transfer and interaction. Essentially 
such a model would be analogous to the coherence configuration of a laser but also have properties of 
nonlocality; possibly of energy ‘transmission’ or simultaneous information effects such as Bell’s 
Theorem. See Chap. 4. Precise geometric transmitters (antennas) which form a nonlinear geometric 
array would be necessary to transmit the "acoustic" longitudinal components of the field. 
 Possible biological effects from ELF radiation may be due to nonlinear tissue "windowing” [21-
23,52-72].Nonlinear properties of tissues in which lipoproteins may act as receiving antennas could 
explain biological activity to ELF or higher frequency electromagnetic fields [24] which are not 
explained by the usual thermal effects, where intensity is below the half degree threshold. Additional 
calculations and interpretations are in progress which relate to both the laser coherence remote 
information effects (communication) and possible models of nonlinear transmitter receivers for ELF 
radiation. 
 Maxwell and Hertz primarily respectively dealt theoretically and experimentally with radio 
frequencies (RF) and above. Light can be produced by the excitation from charged particles such as e- 
and p+ in the atmosphere such as from lightning in the visible and x-ray region such as the sprits and 
jets in the upper atmosphere and the aurora borealis which lies above them. These phenomena tend to 
perturb the Earths steady state fields, as well as from solar wind activity leading to ULF, VLF and ELF 
phenomena. Most research has been in the MHz and above frequency region and only recently studied 
in geophysics [22,44,45,73-81] and biological science [20,21,52-72]. Maxwell’s equations are wave 
equations and well described phenomena down to the upper KHz region but not so well for the ELF 
and VLF region of the electromagnetic spectrum. Some of the principles of the applications to low 
frequency phenomena can be listed as follows: Note that the standard Maxwell’s equations fail in this 
region below about 10KHz because not only are Hertzian waves involved but so are non-Hertzian waves 
as formulated in this chapter. Phenomena in geophysics and biology exhibit both Hertzian and non-
Hertzian phenomena and apply to the low end of the electromagnetic spectrum. Particularly in biology 
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collective neuronal processes in the brain and cardiac system exhibit non-Hertzian receiving and 
transmitting modalities. Antenna designs are based on Hertzian wave phenomena and hence are not 
designed to pick up and receive non-Hertzian systems. Rauscher and Van Bise have designed such a 
system [22,44,45,73-81] which detects ELF, VLF and ULF signals involving Hertzian and non-Hertzian 
waves up to 500 KHz. These researchers have also applied this research to understanding and 
developing interactive systems with biological tissue to enhance its function through resonance 
coupling [20,21, 52-72]. 
 
 
7. Summary and Concluding Remarks 
 
Complexifying and expanding Maxwell’s equations allows us to understand and expand upon our 
knowledge of low intensity and low frequency phenomena which is consistent with collective resonant 
recoherence of electric and magnetic transverse and longitudinal phenomena which can accommodate 
nonlocal interactions. With our new formulation, a number of systems can be reexamined and new ones 
developed. Some of the areas of research that can be examined and are being explored for technological 
development are: 
 

 Energy systems and energy and information transmission and designing non-Hertzian antennas 
 Better design and development and theoretical understanding of controlling and utilization of 

plasma energy 
 More complete understanding of nonlocality in quantum processes and the development of 

quantum computation [13] 
 A deeper and more complete and comprehensive understanding of the Earth and Earth’s 

ionosphere and magnetosphere, understanding and data analysis using the T-1050 detection 
system (Rauscher-Van Bise design patent US 4-724-390) and analysis program for better solar 
wind, Earth and lunar processes [22,45] as well as  design and science method and volcanic 
prediction as to location, approximate magnitude with warning cycles six weeks, two to three 
weeks and about two hours before the impending seismic event by deployment and operation 
of an array of earthquake detecting precursor sights [22,73-81]. 

 Emergence of new medical modalities which are non-invasive, gentler and medically effective 
and cost efficient. These involve methods of complete external cardiac normalization (US 
Patent 4-723-536 - non-invasive heart pacemaker) and pain reduction (US Patent 4-724-390) 
and elimination and brain wave effects that correct abnormal brain functions involving highly 
specific resonances tuned to biological tissue by pulsed magnetic fields. Biological maladaptive 
conditions not treatable by current medical modalities can be effectively treated with long term 
enhanced biological functional outcomes [20,21,23,58-71]. 

 
Some additional implications of complexification of Maxwell’s equations for low, intermediate and 
high frequency phenomena: 
 
 Relaxation and modification of gauge invariance conditions in which non-Hertzian or 

longitudinal waves occur.  ' 1
A A n

e x 



 


 is modified. See Chap. 8. 

 Comparison to the Boltzman-Maxwell or Vlassov Magneto Hydrodynamic (MHD) equations 
which allows transverse and longitudinal components of E and B in a high temperature plasma 
around 106 oK. 
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 The usual condition, 0.F B
y x
 

 
   
 

 In complexified modified form 

Maxwell’s equations, 0B   have a monopole term mentioned earlier. 

 Possible advanced potential ‘pilot’ wave mode of remote connection and Bell’s Theorem. See 
Chap. 4. 

 Possible explanation of the Aharonov-Bohm experiment where ,A   outside the effect of E 

and B. We have 0 0andB B A E B      for tensor potential, A


, vector potential, 

A and scalar potential,  . See Chap. 4.  

 Finite but very small mass of the photon, m  has been postulated [25] and the mass of the 

neutrino has been detected experimentally [27,29]. 
 

Some examples of modifications of Maxwell’s equations for ULF, ELF, VLF and LF frequency 
range are listed as follows: 

 
 Maxwell’s equations and the Hertzian electromagnetic wave assumptions are primarily 

applicable to 10KHz  . For example in MHD oscillatory collections, electron motion 
produces electromagnetic waves that have both transverse and longitudinal components even 
in the RF region of the EM spectrum [45]. Also the 10KHz region and below apply to biological 
systems [20,21,52-72]. 

 For frequencies below 10KHz we can treat Maxwell’s equations in the slowly varying soliton-
like envelope approximation (SVEA) [20,21].  

 We consider periodic variations of the magnetic field governed by nonlinear evolution 
equations with dispersion, diffusion and dissipative modes overcome by nonlinear 
recoherences, sinxx tt t xx         where the and   terms represent wave 

dissipation losses and x and t are the usual independent spacetime variables and sin  is the 

nonlinear term. Note xx  stands for 2 2/ x   and tt  stands for 2 2/ .t   

 Analogy is made to the Korteweg-deVries equation in which nonlinear terms of the dispersive 
losses, xxx  yield soliton solutions [20,21]. 

 Both transverse and longitudinal modes of excitation are generated and a generalization of the 
usual gauge conditions are formulated such as to accommodate both Hertzian and non-Hertzian 
phenomena. 

 The Lagrangian forms for the modified gauge conditions are of the form 
2 21/ 2( ) 1/ 2( ) cosxx ttL       are made, which is written for a model of naturally 

occurring coherent time evolutionary soliton-like wave. 
 Some forms of relaxation of the gauge invariance effect conditions on the divergence of the 

magnetic field, 0B   and hence relate to the possibility of a magnetic monopole. 

 The separation of E and B for the ELF region of the spectrum represents what occurs in some 
types of biological tissue and atmospheric and ionospheric phenomena and other applications..  

 
The E and B fields no longer primarily act in concert as an electromagnetic wave, but can act as 

electric and magnetic fields separately but in a coordinated manner which occurs in the detection of 
biological signaling as well as in the detection and analysis of ionospheric resonances, seismic and 
volcanic precursors and other low frequency, low intensity resonant phenomena. 
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