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The issue of whether Bell's theorem and other remote connectedness phenomena, such as Young's 
double slit experiment, demands superluminal or space-like signals or prior generated luminal signals 
is an area of hot debate. This also relates to the existence of advanced vs. retarded potentials and 

annihilation creation operators which are of interest in this regard. Using the complex model of A  we 
will examine the issue of the nonlocality of Bell's theorem as quantum mechanical ‘transactions’ 
providing a microscopic communication path between detectors across space-like intervals, which 
violate the EPR locality postulate [1]. See Chap. 4. This picture appears consistent with the remote 
connectedness properties of complex Minkowski space. Also, there are implications for macroscopic 
communications channels; another area of debate. Detailed discussions of Bell's theorem are given in 
[2].  
 
 
1. Vector and Scalar Potentials and Fields 

 

We formulate fields in terms of A or ),(
~

jAA   where jA  is A  rather than the tensor, F  or E  or 

B . We proceed from the usual continuity equation / 0J t      and utilize the expression F   

/ /A x A x        . For the usual retarded potentials then, we have the Lorentz condition 
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We also derive  
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 Equations (1) and (2) are the usual retarded potential solutions. The radiation field in quantum 
electrodynamics (QED) is usually quantized in terms of ( , ).A   Conversion back to the E and B fields 

can be performed using /E A t     and .B A   Quantization of the field consists of 

regarding the phase space coordinates (x, k) or (q, p) as quantum mechanical coordinates of a set of 
equivalent harmonic oscillators using the variables of / / andp E c c c      so that 

/ .k n c  [3]. Using the second quantized method and treating rr qk , and rA as quantum numbers 
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then we have quantized allowable energy levels rn  and r  such as ( )r r r
r

W n      for two 

quantum states, andn  . Solutions are given in the form  
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and we have a Hamiltonian equation of motion 0)( 2  abab qckp  or abab pq   and for its 

Hamiltonian  
 

           2 2 2 21
2 [ ( ) ]ab abH p ck q q  .        (4)  

 

The electromagnetic field energy of the volume integral 8/)( 22 BE   is just equal to the 
Hamiltonian.  
 We examine such phenomena as absorption and polarization in terms of the complexification of 


E  

and 

B or 


A  and  . Defining the usual ED  (for displacement field) and HB   are performed 

for a homogeneous isotopic media. If we introduce 0p and 0m as independent of 

E and


H where the 

induced polarizations of the media are absorbed into the parameters  and  , we have 
 
              0pED     and  0
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Then we define a complex field as  
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so that we have Maxwell's equations now written as  
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Using vector identities [3] and resolving into real and imaginary parts, we have  
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for the magnetic and electric fields. 

We define Q in terms of the complex vector potential that Re complexA V  and Re complex   where 

V is the complex potential as a vector-like quantity. Then  
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subject to the condition similar to before, 0V t
     . Then 
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Separation into real and imaginary parts of these potentials, V and   can be written as  
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Upon substitution into the equation for Q and separation into real and imaginary parts we have  
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The usual equations for the fields result when ImA  and Im  are taken as zero.  

If free currents and charges are everywhere zero in the region under consideration, then we have  
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and we can express the field in terms of a single complex Hertzian-like vector L  as the solution of  
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We can define  L  by  
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where Re     and we can write such expressions as  
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This formalism works for a dielectric media but if the media is conducting the field equations is no 
longer symmetric then the method fails. Symmetry is maintained by introducing a complex induced 
capacity  '

Re Im /i     . If the vector B is in a solenoid charge-free region then this method works. 

Calculation of states of polarization by the complex method demonstrates its usefulness and validity. 
Also, absorption can be considered in terms of complex fields. In the complex space, V may also contain 
non-Hertzian as well as Hertzian components, L. We will apply this method to solutions that can be 
described as retarded and advanced and may explain Bell's theorem and other nonlocal phenomena. 
Linear and circular polarization can be expressed in terms of complex vectors ImRe iAAA  . The 

light quanta undergoing this polarization is given as, kn    ˆ . Complex unit vectors are 
introduced so that real and imaginary components are considered orthogonal. We have a form such as 

Im Re Im Re
ˆ ˆ ˆ ˆ( ) ( )A A A j j     . The linearly polarized wave at angle   is 

 

                                         Re Re
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Now let us consider use of this polarization formalism to describe the polarization-detection process in 
the calcium source photon experiment of Clauser et al [4], Aspect, et al [5] and Gisin, et al [6]. First we 
examine solutions to the field equations for time-like and space-like events. The non-locality of Bell's 
theorem appears to be related to the remote connectedness of the complex geometry and the stability of 
the soliton over space and time. 
 We will consider periodically varying fields which move along the x-axis later in this chapter. For 
source-free space, we can write 
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where F represents either E  or B . The two independent solutions for this equation are [7]  
 
               0( , ) sin(2 )E x t E kx t      

and                       (19) 
                             )(2sin),( 0 tkxBtxB          

 
and k is the wave number and   the frequency of the wave. The   sign refers to the two independent 
solutions to the above second order equation in space and time. The wave corresponding to E and B

will exist only when t0 < 0 (past lightcone) and the wave corresponding to E and B will exist for t0 > 0 
(future lightcone) where t0 is at the origin of the lightcone or the moment “now”. Then the E  wave 

arrives at a point x in a time t after emission, while E  wave arrive at x in time, t before emission (like 

a tachyonic signal). 
 
 
2. Advanced and Retarded Solutions 
 
Using Maxwell's equations for one spatial dimension, x, and the Poynting vector which indicates the 
direction of energy and momentum flow of the electromagnetic wave, we find that E and B correspond 
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to a wave emitted in the +x direction but with energy flowing in the -x direction. For example, E (x, t) 

is a negatives-energy and negative-frequency solution. The wave signal will arrive t = x/c before it is 
emitted, and is termed an advanced wave. The solution E(x,t) is the normal positive-energy solution and 
arrives at x in time, t = x/c, after the instant of emission and is called the retarded potential, which is the 
usual potential. 
 The negative energy solutions can be interpreted in the quantum picture in quantum electrodynamics 
as virtual quantum states such as vacuum states in the Fermi-Dirac sea model [8] See Chap. 12. These 
virtual states are not fully realizable as a single real state but can definitely effect real physical processes 
to a significant testable extent [9]. The causality conditions in S-matrix theory, as expressed by analytic 
continuation in the complex plane, relate real and virtual states [10,11] and Chap. 4. Virtual states can 
operate as a polarizable media leading to modification of real physical states. In fact, coherent collective 
excitations of a real media can be explained through the operations in a underlying virtual media [9]. 
These virtual states in physical plasma operating through collective quantum electron states, effect the 
dielectric constant, conductivity and other electromagnetic properties of plasma which, experimentally 
differ from the classical properties and agree with theoretical quantum conditions which include the 
vacuum state [9,12]. 
 Four solutions emerge: Two retarded ( 1F  and 

2F ) connecting processes in the forward light cone 

and two advanced, ( 3F and 4F ) connecting processes in the backward slight cone [13]. These four 

solutions are 
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 
          (20) 

 
 
where 1F  is for a wave moving in the (-x, + t) direction, 2F  is for a (+x, +t) moving wave, 3F  is for a 

(-x, -t) moving wave, and 4F is a (+x, -t) moving wave. 1F  and 4F  are complex conjugates of each other 

and 2F and 3F , are complex conjugates of each other, so that 
41 FF   and 32 FF  ; where the usual 

solutions to Maxwell's equations are then retarded plane wave solutions [3,13].  
 The proper formulation of nonlocal correlations, which appear to come out of complex geometries 
provides a conceptual framework for a number of quantum mechanical paradoxes and appear to be 
explained by Bell's nonlocality, Young's double slit experiment, the Schrödinger cat paradox, 
superconductivity, superfluidity, and plasma ‘instabilities’ or coherent collective states including 
Wheeler's ‘delayed choice experiment’. (See Chap. 4) A paradox is caused by a lack of under-standing 
of a physical observation and is resolved by a new and better comprehension of the interpretation of the 
observation and/or new observation. Interpretation of these phenomena is made in terms of their 
implications about the lack of locality and the decomposition of the wave function which arises from 
the action of advanced waves which ‘verify’ the quantum mechanical transactions or communications. 
See Fig. 1. 
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Figure 1 Adaptation of a complex Minkowski lightcone showing advanced-retarded future-past elements, F1 – 
F4, see Eq. (20), of a Cramer wavefront transaction with a central Witten model Ising lattice string vertex able to 
undergo continuous-state symmetry transformations of the Riemann sphere, 0   rotation. 
 
 Cramer [13] demonstrated that the communication path between detectors in the Bell inequality 
experiments can be represented by space-like intervals that produce the quantum mechanical result by 
the addition of two time-like 4-vectors having time components of opposite signs, which demonstrate 
the locality violations of Bell's theorem; and are consistent with the Clauser, Fry, Aspect and Gisen 
experiments [4-6]. This model essentially is an ‘action-at-a-distance’ formalism [14].  
 One can think of the emitter (in Bell's or Young's experimental quantum condition) as sending out a 
pilot or probe ‘wave’ in various allowed directions to seek a ‘transaction’ or collapse of the wave 
function. A receiver or absorber detects or senses one of these probe waves, ‘sets its state’ and sends a 
‘verifying wave’ back to the emitter confirming the transaction and arranging for the transfer of actual 
energy and momentum. This process comprises the nonlocal collapse of the wave function. De Broglie 
termed such a wave a pilot wave. The question becomes: does such a principle have macroscopic 
effects? The distance record for Bell's nonlocality theorem was 10km in 1997 [6], obtained by Nicolas 
Gisin and his team at the University of Geneva. Starting from a Geneva railway station they sent 
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entangled photons along optical fibers through the city to destinations separated by 10km. They showed 
that observing the state of one member of the pair instantaneously determined the state of the other. 
 An attempt to examine such possible macroscopic effects over large distances has been made by 
Partridge [15]. Using 9.7GHz microwaves transmitted by a conical horn antenna so that waves were 
beamed in various directions. Partridge found that there was little evidence for decreased emission 

intensities in any direction for an accuracy of a few parts per th910 . Interpretation of such a process is 
made in terms of advanced potentials. Previously mentioned complex dimensional geometries give rise 
to solutions of equations forming subluminal and superluminal signal propagations or solitons. See 
Chaps. 9 and 10. 
 The possibility of a remote transmitter-absorber communicator now appears to be a possibility. The 
key to this end is an experiment by Pflelgov and Mandel [16]. Interference effects have been 
demonstrated, according to the authors, in the superposition of two light beams from two independent 
lasers. Intensity is kept so low that, to high probability, one photon is absorbed before the next is emitted. 
The analogy to Young's double slit experiment is enormous.   
 In Wheeler's work [17-19], he presents a detailed discussion of the physics of delayed choice photon 
interference and the double slit experiment (based on the Solvay conference Bohr-Einstein dialogue). 
Wheeler discusses the so-called Bohm ‘hidden variables’ as a possible determinant that nonlocality 
collapses the wave function [17]. Remote wave functions once entangled remain entangled over space-
like separation, i.e. provide a possible solution to the Schrödinger cat paradox. Further theoretical and 
experimental investigation is indicated; but there appears to be a vast potential for remote non-local 
communication and perhaps even energy transfer [3]. In Chap. 9 we detail the forms of transformations 
of the vector and scalar potentials at rest and in moving frames, continuing our formulation in terms of 
( , )A  . The issues of sub and superluminal transformations of A and   are given in a complex 

Minkowski space. Both damped and oscillatory solutions are found and conditions for advanced and 
restored potentials are given. 
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