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FOREWORD 

 

Neutrosophic logic, symbolic logic, set, probability, statistics, etc., are, respectively, 

generalizations of fuzzy and intuitionistic fuzzy logic and set, classical and imprecise 

probability, classical statistics, and so on. Neutrosophic logic, symbol logic, and set are gaining 

significant attention in solving many real-life problems that involve uncertainty, 

impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. A number of new 

netrosophic theories have been proposed and have been applied in computational intelligence, 

mutiple attribute decision making, image processing, medical diagnosis, fault diagnosis, 

optimization design, etc. This Special Issue gathers original research papers that report on the 

state-of-the-art and recent advancements in neutrosophic information theory to soft 

computing, artificial intelligence, big and small data mining, decision making problems, 

pattern recognition, information processing, image processing, and many other practical 

achievements. 

In the first chapter (NS-Cross Entropy-Based MAGDM under Single-Valued Neutrosophic 

Set Environment), the authors Surapati Pramanik, Shyamal Dalapati, Shariful Alam, Florentin 

Smarandache, Tapan Kumar Roy propose a new cross entropy measure under a single-valued 

neutrosophic set (SVNS) environment, namely NS-cross entropy, and prove its basic 

properties. Also, they define weighted NS-cross entropy measure, investigate its basic 

properties, and develop a novel multi-attribute group decision-making (MAGDM) strategy 

that is free from the drawback of asymmetrical behavior and undefined phenomena. It is 

capable of dealing with an unknown weight of attributes and an unknown weight of decision-

makers. Finally, a numerical example of multi-attribute group decision-making problem of 

investment potential is solved to show the feasibility, validity and efficiency of the proposed 

decision-making strategy. 

Single-valued neutrosophic hesitant fuzzy set (SVNHFS) is a combination of single-

valued neutrosophic set and hesitant fuzzy set, and its aggregation tools play an important 

role in the multiple criteria decision-making (MCDM) process. The second paper (Generalized 

Single-Valued Neutrosophic Hesitant Fuzzy Prioritized Aggregation Operators and Their Applications 

to Multiple Criteria Decision-Making) investigates the MCDM problems in which the criteria 

under SVNHF environment are in different priority levels. First, the generalized single-valued 

neutrosophic hesitant fuzzy prioritized weighted average operator and generalized single-

valued neutrosophic hesitant fuzzy prioritized weighted geometric operator are developed 

based on the prioritized average operator. Second, some desirable properties and special cases 

of the proposed operators are discussed in detail. Third, an approach combined with the 

proposed operators and the score function of single-valued neutrosophic hesitant fuzzy 

element is constructed to solve MCDM problems. Finally, the authors Rui Wang, Yanlai Li 

provide an example of investment selection to illustrate the validity and rationality of the 

proposed method. 



Single-valued neutrosophic sets (SVNSs) handling the uncertainties characterized by 

truth, indeterminacy, and falsity membership degrees, are a more flexible way to capture 

uncertainty. In the third paper (Some New Biparametric Distance Measures on Single-Valued 

Neutrosophic Sets with Applications to Pattern Recognition and Medical Diagnosis), the authors 

Harish Garg and Nancy propose some new types of distance measures, overcoming the 

shortcomings of the existing measures, for SVNSs with two parameters along with their 

proofs. The various desirable relations between the proposed measures have also been 

derived. A comparison between the proposed and the existing measures has been performed 

in terms of counter-intuitive cases for showing its validity. The proposed measures have been 

illustrated with case studies of pattern recognition as well as medical diagnoses, along with 

the effect of the different parameters on the ordering of the objects. 

A graph structure is a generalization of simple graphs. Graph structures are very useful 

tools for the study of different domains of computational intelligence and computer science. 

In the fourth research paper, Certain Concepts in Intuitionistic Neutrosophic Graph Structures, the 

authors Muhammad Akram and Muzzamal Sitara introduce certain notions of intuitionistic 

neutrosophic graph structures, illustrating these notions by several examples. They investigate 

some related properties of intuitionistic neutrosophic graph structures, and also present an 

application of intuitionistic neutrosophic graph structures. 

A neutrosophic cubic set is the hybridization of the concept of a neutrosophic set and 

an interval neutrosophic set. A neutrosophic cubic set has the capacity to express the hybrid 

information of both the interval neutrosophic set and the single valued neutrosophic set 

simultaneously. As newly defined, little research on the operations and applications of 

neutrosophic cubic sets has been reported in the current literature. In the fifth paper, NC-

TODIM-Based MAGDM under a Neutrosophic Cubic Set Environment, the authors Surapati 

Pramanik, Shyamal Dalapati, Shariful Alam and Tapan Kumar Roy propose the score and 

accuracy functions for neutrosophic cubic sets and prove their basic properties. They also 

develop a strategy for ranking of neutrosophic cubic numbers based on the score and accuracy 

functions. The authors firstly develop a TODIM (Tomada de decisao interativa e multicritévio) 

in the neutrosophic cubic set (NC) environment, which is called the NC-TODIM. They 

establish a new NC-TODIM strategy for solving multi attribute group decision making 

(MAGDM) in neutrosophic cubic set environment. They illustrate the proposed NC-TODIM 

strategy for solving a multi attribute group decision making problem to show the applicability 

and effectiveness of the developed strategy. They also conduct sensitivity analysis to show the 

impact of ranking order of the alternatives for different values of the attenuation factor of 

losses for multi-attribute group decision making strategies. 

In the sixth paper, VIKOR Method for Interval Neutrosophic Multiple Attribute Group 

Decision-Making, the authors Yu-Han Huang, Gui-Wu Wei and Cun Wei extend the VIKOR 

method to multiple attribute group decision-making (MAGDM) with interval neutrosophic 

numbers (INNs). Firstly, the basic concepts of INNs are briefly presented. The method first 

aggregates all individual decision-makers’ assessment information based on an interval 



neutrosophic weighted averaging (INWA) operator, and then employs the extended classical 

VIKOR method to solve MAGDM problems with INNs. The validity and stability of this 

method are verified by example analysis and sensitivity analysis, and its superiority is 

illustrated by a comparison with the existing methods. 

The concept of intuitionistic neutrosophic sets provides an additional possibility to 

represent imprecise, uncertain, inconsistent and incomplete information, which exists in real 

situations. The seventh research article (Certain Competition Graphs Based on Intuitionistic 

Neutrosophic Environment) presents the notion of intuitionistic neutrosophic competition 

graphs. Then, the authors Muhammad Akram and Maryam Nasir discuss the p-competition 

intuitionistic neutrosophic graphs and the m-step intuitionistic neutrosophic competition 

graphs. Further, applications of intuitionistic neutrosophic competition graphs in ecosystem 

and career competition are described. 

The notion of a neutrosophic commutative N-ideal in BCK-algebras is introduced in 

the eight paper (Neutrosophic Commutative N -Ideals in BCK-Algebras), and several properties 

are investigated. Relations between a neutrosophic N-ideal and a neutrosophic commutative 

N-ideal are discussed by authors Seok-Zun Song, Florentin Smarandache, Young Bae Jun. 

Characterizations of a neutrosophic commutative N-ideal are considered. 

Neutrosophic N-structures with applications in BCK/BCI-algebras is the title of the ninth 

paper. The notions of a neutrosophic N-subalgebra and a (closed) neutrosophic N-ideal in a 

BCK/BCI-algebra are introduced by authors Young Bae Jun, Florentin Smarandache and 

Hashem Bordbar, and several related properties are investigated. Characterizations of a 

neutrosophic N-subalgebra and a neutrosophic N-ideal are considered, and relations between 

a neutrosophic N-subalgebra and a neutrosophic N-ideal are stated. Conditions for a 

neutrosophic N-ideal to be a closed neutrosophic N-ideal are provided. 

Recently, the TODIM has been used to solve multiple attribute decision making 

(MADM) problems. The single-valued neutrosophic sets (SVNSs) are useful tools to depict the 

uncertainty of the MADM. In the tenth paper, TODIM Method for Single-Valued Neutrosophic 

Multiple Attribute Decision Making, Dong-Sheng Xu, Cun Wei and Gui-Wu Wei extend the 

TODIM method to the MADM with the single-valued neutrosophic numbers (SVNNs). Firstly, 

the definition, comparison, and distance of SVNNs are briefly presented, and the steps of the 

classical TODIM method for MADM problems are introduced. Then, the extended classical 

TODIM method is proposed to deal with MADM problems with the SVNNs, and its significant 

characteristic is that it can fully consider the decision makers’ bounded rationality which is a 

real action in decision making. Furthermore, we extend the proposed model to interval 

neutrosophic sets (INSs). Finally, a numerical example is proposed. 

Visual object tracking is a critical task in computer vision. Challenging things always 

exist when an object needs to be tracked. For instance, background clutter is one of the most 

challenging problems. The mean-shift tracker is quite popular because of its efficiency and 

performance in a range of conditions. However, the challenge of background clutter also 



disturbs its performance. In the eleventh article, Neutrosophic Similarity Score Based Weighted 

Histogram for Robust Mean-Shift Tracking, the authors Keli Hu, En Fan, Jun Ye, Changxing Fan, 

Shigen Shen and Yuzhang Gu propose a novel weighted histogram based on neutrosophic 

similarity score to help the mean-shift tracker discriminate the target from the background. 

The authors utilize the single valued neutrosophic set (SVNS), which is a subclass of NS to 

improve the mean-shift tracker. First, two kinds of criteria are considered as the object feature 

similarity and the background feature similarity, and each bin of the weight histogram is 

represented in the SVNS domain via three membership functions T(Truth), I(indeterminacy), 

and F(Falsity). Second, the neutrosophic similarity score function is introduced to fuse those 

two criteria and to build the final weight histogram. Finally, a novel neutrosophic weighted 

mean-shift tracker is proposed. The proposed tracker is compared with several mean-shift 

based trackers on a dataset of 61 public sequences. The results revealed that this method 

outperforms other trackers, especially when confronting background clutter. 

To describe both certain linguistic neutrosophic information and uncertain linguistic 

neutrosophic information simultaneously in the real world, Jun Ye proposes in the twelfth 

paper (Linguistic Neutrosophic Cubic Numbers and Their Multiple Attribute Decision-Making 

Method) the concept of a linguistic neutrosophic cubic number (LNCN), including an internal 

LNCN and external LNCN. In LNCN, its uncertain linguistic neutrosophic number consists of 

the truth, indeterminacy, and falsity uncertain linguistic variables, and its linguistic 

neutrosophic number consists of the truth, indeterminacy, and falsity linguistic variables to 

express their hybrid information. Then, the author presents the operational laws of LNCNs 

and the score, accuracy, and certain functions of LNCN for comparing/ranking LNCNs. Next, 

the author proposes a LNCN weighted arithmetic averaging (LNCNWAA) operator and a 

LNCN weighted geometric averaging (LNCNWGA) operator to aggregate linguistic 

neutrosophic cubic information and discuss their properties. Further, a multiple attribute 

decision-making method based on the LNCNWAA or LNCNWGA operator is developed 

under a linguistic neutrosophic cubic environment. Finally, an illustrative example is provided 

to indicate the application of the developed method. 
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Abstract: A single-valued neutrosophic set has king power to express uncertainty characterized by
indeterminacy, inconsistency and incompleteness. Most of the existing single-valued neutrosophic
cross entropy bears an asymmetrical behavior and produces an undefined phenomenon in some
situations. In order to deal with these disadvantages, we propose a new cross entropy measure under
a single-valued neutrosophic set (SVNS) environment, namely NS-cross entropy, and prove its basic
properties. Also we define weighted NS-cross entropy measure and investigate its basic properties.
We develop a novel multi-attribute group decision-making (MAGDM) strategy that is free from the
drawback of asymmetrical behavior and undefined phenomena. It is capable of dealing with an
unknown weight of attributes and an unknown weight of decision-makers. Finally, a numerical
example of multi-attribute group decision-making problem of investment potential is solved to show
the feasibility, validity and efficiency of the proposed decision-making strategy.

Keywords: neutrosophic set; single-valued neutrosophic set; NS-cross entropy measure; multi-attribute
group decision-making

1. Introduction

To tackle the uncertainty and modeling of real and scientific problems, Zadeh [1] first introduced
the fuzzy set by defining membership measure in 1965. Bellman and Zadeh [2] contributed important
research on fuzzy decision-making using max and min operators. Atanassov [3] established the
intuitionistic fuzzy set (IFS) in 1986 by adding non-membership measure as an independent component
to the fuzzy set. Theoretical and practical applications of IFSs in multi-criteria decision-making
(MCDM) have been reported in the literature [4–12]. Zadeh [13] introduced entropy measure in the
fuzzy environment. Burillo and Bustince [14] proposed distance measure between IFSs and offered an
axiomatic definition of entropy measure. In the IFS environment, Szmidt and Kacprzyk [15] proposed
a new entropy measure based on geometric interpretation of IFS. Wei et al. [16] developed an entropy
measure for interval-valued intuitionistic fuzzy set (IVIFS) and presented its applications in pattern
recognition and MCDM. Li [17] presented a new multi-attribute decision-making (MADM) strategy
combining entropy and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in
an IVIFS environment. Shang and Jiang [18] introduced the cross entropy in the fuzzy environment.
Vlachos and Sergiadis [19] presented intuitionistic fuzzy cross entropy by extending fuzzy cross
entropy [18]. Ye [20] defined a new cross entropy under an IVIFS environment and presented an
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optimal decision-making strategy. Xia and Xu [21] put forward a new entropy and a cross entropy and
employed them for multi-attribute criteria group decision-making (MAGDM) strategy under an IFS
environment. Tong and Yu [22] defined cross entropy under an IVIFS environment and applied it to
MADM problems.

The study of uncertainty took a new direction after the publication of the neutrosophic set
(NS) [23] and single-valued neutrosophic set (SVNS) [24]. SVNS appeals more to researchers for
its applicability in decision-making [25–54], conflict resolution [55], educational problems [56,57],
image processing [58–60], cluster analysis [61,62], social problems [63,64], etc. The research on
SVNS gained momentum after the inception of the international journal “Neutrosophic Sets and
Systems”. Combining with the neutrosophic set, a number of hybrid neutrosophic sets such
as the neutrosophic soft set [65–72], the neutrosophic soft expert set [73–75], the neutrosophic
complex set [76], the rough neutrosophic set [77–86], the rough neutrosophic tri complex set [87],
the neutrosophic rough hyper complex set [88], the neutrosophic hesitant fuzzy sets/multi-valued
neutrosophic set [89–97], the bipolar neutrosophic set [98–103], the rough bipolar neutrosophic set [104],
the neutrosophic cubic set [105–113], and the neutrosophic cubic soft set [114,115] has been reported
in the literature. Wang et al. [116] defined the interval neutrosophic set (INS). Different interval
neutrosophic hybrid sets and their theoretical development and applications have been reported
in the literature, such as the interval-valued neutrosophic soft set [117], the interval neutrosophic
complex set [118], the interval neutrosophic rough set [119–121], and the interval neutrosophic hesitant
fuzzy set [122]. Other extensions of neutrosophic sets, such as trapezoidal neutrosophic sets [123,124],
normal neutrosophic sets [125], single-valued neutrosophic linguistic sets [126], interval neutrosophic
linguistic sets [127,128], simplified neutrosophic linguistic sets [129], single-valued neutrosophic
trapezoid linguistic sets [130], interval neutrosophic uncertain linguistic sets [131–133], neutrosophic
refined sets [134–139], linguistic refined neutrosophic sets [140] bipolar neutrosophic refined sets [141],
and dynamic single-valued neutrosophic multi-sets [142] have been proposed to enrich the study of
neutrosophics. So the field of neutrosophic study has been steadily developing.

Majumdar and Samanta [143] defined an entropy measure and presented an MCDM strategy
under SVNS environment. Ye [144] proposed cross entropy measure under the single-valued
neutrosophic set environment, which is not symmetric straight forward and bears undefined
phenomena. To overcome the asymmetrical behavior of the cross entropy measure, Ye [144] used a
symmetric discrimination information measure for single-valued neutrosophic sets. Ye [145] defined
cross entropy measures for SVNSs to overcome the drawback of undefined phenomena of the cross
entropy measure [144] and proposed a MCDM strategy.

The aforementioned applications of cross entropy [144,145] can be effective in dealing with
neutrosophic MADM problems. However, they also bear some limitations, which are outlined below:

i. The strategies [144,145] are capable of solving neutrosophic MADM problems that require the
criterion weights to be completely known. However, it can be difficult and subjective to offer
exact criterion weight information due to neutrosophic nature of decision-making situations.

ii. The strategies [144,145] have a single decision-making structure, and not enough attention is paid
to improving robustness when processing the assessment information.

iii. The strategies [144,145] cannot deal with the unknown weight of the decision-makers.

Research gap:

MAGDM strategy based on cross entropy measure with unknown weight of attributes and
unknown weight of decision-makers.

This study answers the following research questions:

i. Is it possible to define a new cross entropy measure that is free from asymmetrical phenomena
and undefined behavior?
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ii. Is it possible to define a new weighted cross entropy measure that is free from the asymmetrical
phenomena and undefined behavior?

iii. Is it possible to develop a new MAGDM strategy based on the proposed cross entropy measure
in single-valued neutrosophic set environment, which is free from the asymmetrical phenomena
and undefined behavior?

iv. Is it possible to develop a new MAGDM strategy based on the proposed weighted cross entropy
measure in the single-valued neutrosophic set environment that is free from the asymmetrical
phenomena and undefined behavior?

v. How do we assign unknown weight of attributes?
vi. How do we assign unknown weight of decision-makers?

Motivation:

The above-mentioned analysis describes the motivation behind proposing a comprehensive
NS-cross entropy-based strategy for tackling MAGDM under the neutrosophic environment.
This study develops a novel NS-cross entropy-based MAGDM strategy that can deal with multiple
decision-makers and unknown weight of attributes and unknown weight of decision-makers and free
from the drawbacks that exist in [144,145].

The objectives of the paper are:

1. To define a new cross entropy measure and prove its basic properties, which are free from
asymmetrical phenomena and undefined behavior.

2. To define a new weighted cross measure and prove its basic properties, which are free from
asymmetrical phenomena and undefined behavior.

3. To develop a new MAGDM strategy based on weighted cross entropy measure under
single-valued neutrosophic set environment.

4. To develop a technique to incorporate unknown weight of attributes and unknown weight
of decision-makers in the proposed NS-cross entropy-based MAGDM under single-valued
neutrosophic environment.

To fill the research gap, we propose NS-cross entropy-based MAGDM, which is capable of dealing
with multiple decision-makers with unknown weight of the decision-makers and unknown weight of
the attributes.

The main contributions of this paper are summarized below:

1. We define a new NS-cross entropy measure and prove its basic properties. It is straightforward
symmetric and it has no undefined behavior.

2. We define a new weighted NS-cross entropy measure in the single-valued neutrosophic set
environment and prove its basic properties. It is straightforward symmetric and it has no
undefined behavior.

3. In this paper, we develop a new MAGDM strategy based on weighted NS cross entropy
to solve MAGDM problems with unknown weight of the attributes and unknown weight
of decision-makers.

4. Techniques to determine unknown weight of attributes and unknown weight of decisions makers
are proposed in the study.

The rest of the paper is presented as follows: Section 2 describes some concepts of SVNS.
In Section 3 we propose a new cross entropy measure between two SVNS and investigate its properties.
In Section 4, we develop a novel MAGDM strategy based on the proposed NS-cross entropy with
SVNS information. In Section 5 an illustrative example is solved to demonstrate the applicability and
efficiency of the developed MAGDM strategy under SVNS environment. In Section 6 we present
comparative study and discussion. Section 7 offers conclusions and the future scope of research.
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2. Preliminaries

This section presents a short list of mostly known definitions pertaining to this paper.

Definition 1 [23] NS. Let U be a space of points (objects) with a generic element in U denoted by u, i.e., u ∈ U.
A neutrosophic set A in U is characterized by truth-membership measure TA(u), indeterminacy-membership
measure IA(u) and falsity-membership measure FA(u), where TA(u), IA(u), FA(u) are the measures from U
to ]− 0, 1+ [i.e., TA(u), IA(u), FA(u):U→]− 0, 1+[ NS can be expressed as A = {<u; (TA(u), IA(u), FA(u))>:
∀ u ∈U}. Since TA(u), IA(u), FA(u) are the subsets of ]−0, 1+ [there the sum (TA(u) + IA(u) + FA(u)) lies
between −0 and 3+.

Example 1. Suppose that U = {u1, u2, u3, . . .} be the universal set. Let R1 be any neutrosophic set in U.
Then R1 expressed as R1 = {<u1; (0.6, 0.3, 0.4)>: u1 ∈ U}.

Definition 2 [24] SVNS. Assume that U be a space of points (objects) with generic elements u ∈ U. A SVNS
H in U is characterized by a truth-membership measure TH(u), an indeterminacy-membership measure IH(u),
and a falsity-membership measure FH(u), where TH(u), IH(u), FH(u) ∈ [0, 1] for each point u in U. Therefore,
a SVNS A can be expressed as H = {u, (TH (u), I H (u), FH (u)) | ∀u ∈ U}, whereas, the sum of TH(u), IH(u)
and FH(u) satisfy the condition 0 ≤ TH(u) + IH(u) + FH(u) ≤ 3 and H(u) = <(TH (u), IH (u), FH (u)> call a
single-valued neutrosophic number (SVNN).

Example 2. Suppose that U = {u1, u2, u3, . . .} be the universal set. A SVNS H in U can be expressed as:
H = {u1, (0.7, 0.3, 0.5)| u1 ∈ U} and SVNN presented H = <0.7, 0.3, 0.5>.

Definition 3 [24] Inclusion of SVNSs. The inclusion of any two SVNS sets H1 and H2 in U is denoted by
H1 ⊆ H2 and defined as follows:

H1 ⊆ H2, TH1(u) ≤ TH2(u), IH1(u) ≥ IH2(u), FH1(u) ≥ FH2(u) i f f f or all u ∈ U.

Example 3. Let H1 and H2 be any two SVNNs in U presented as follows: H1 = <(0.7, 0.3, 0.5)> and
H2 = <(0.8, 0.2, 0.4)> for all u ∈ U. Using the property of inclusion of two SVNNs, we conclude that H1 ⊆ H2.

Definition 4 [24] Equality of two SVNSs. The equality of any two SVNS H1 and H2 in U denoted by
H1 = H2 and defined as follows:

TH1(u) = TH2(u), IH1(u) = IH2(u) and FH1(u) = FH2(u) f or all u ∈ U.

Definition 5 Complement of any SVNSs. The complement of any SVNS H in U denoted by Hc and defined
as follows:

Hc = {u, 1− TH , 1− IH , 1− FH | u ∈ U}.

Example 4. Let H be any SVNN in U presented as follows: H = < (0.7, 0.3, 0.5) >. Then compliment of H is
obtained as Hc = <(0.3, 0.7, 0.5)>.

Definition 6 [24] Union. The union of two single-valued neutrosophic sets H1 and H2 is a neutrosophic set
H3 (say) written as

H3 = H1∪H2.
TH3(u) = max {TH1(u), TH2(u)}, IHJ3(u) = min {IH1(u), IH2(u)}, FH3 (u) = min {FH1(u), FH2(u)}, ∀ u ∈ U.
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Example 5. Let H1 and H2 be two SVNSs in U presented as follows:

H1 = <(0.6, 0.3, 0.4)> and H2 = <(0.7, 0.3, 0.6)>. Then union of them is presented as:

H1 ∪ H2 =< (0.7, 0.3, 0.4) > .

Definition 7 [24] Intersection. The intersection of two single-valued neutrosophic sets H1 and H2 denoted by
H4 and defined as

H4 = H1 ∩ H2
TH4 (u) = min {TH1(u), TH2(u)}, IH4(u) = max{IH1(u), IH2(u)}
FH4(u) = max {FH1(u), FH2(u)}, ∀ u ∈ U.

Example 6. Let H1 and H2 be two SVNSs in U presented as follows:

H1 = <(0.6, 0.3, 0.4)> and H2 = <(0.7, 0.3, 0.6)>.

Then intersection of H1 and H2 is presented as follows:

H1∩H2 = <(0.6, 0.3, 0.6)>

3. NS-Cross Entropy Measure

In this section, we define a new single-valued neutrosophic cross-entropy measure for measuring
the deviation of single-valued neutrosophic variables from an a priori one.

Definition 8 NS-cross entropy measure. Let H1 and H2 be any two SVNSs in U = { u1, u2, u3, . . . , un}.
Then, the single-valued cross-entropy of H1 and H2 is denoted by CENS (H1, H2) and defined as follows:

CENS (H1, H2) =
1
2

 n
∑

i = 1

〈 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉

(1)

Example 7. Let H1 and H2 be two SVNSs in U, which are given by H1 = {u, (0.7, 0.3, 0.4)| u ∈ U} and
H2 = {u, (0.6, 0.4, 0.2)| u ∈ U}. Using Equation (1), the cross entropy value of H1 and H2 is obtained as
CENS(H 1, H2) = 0.707.

Theorem 1. Single-valued neutrosophic cross entropy CENS(H 1, H2) for any two SVNSs H1, H2, satisfies
the following properties:

i. CENS(H 1, H2) ≥ 0.
ii. CENS(H 1, H2) = 0 if and only if TH1(ui) = TH2(ui), IH1(ui) = IH2(ui), FH1(ui) =

FH2(ui), ∀ ui ∈ U.
iii. CENS(H 1, H2) = CENS (Hc

1, Hc
2)

iv. CENS (H1, H2) = CENS (H2, H1)
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Proof. (i) For all values of ui ∈ U,
∣∣TH1(ui)

∣∣ ≥ 0,
∣∣TH2(ui)

∣∣ ≥ 0,
∣∣TH1(ui)− TH2(ui)

∣∣ ≥ 0,√
1 +

∣∣TH1(ui)
∣∣2 ≥ 0,

√
1 +

∣∣TH2(ui)
∣∣2 ≥ 0,

∣∣∣(1− TH1
(ui))

∣∣∣ ≥ 0,
∣∣(1− TH2(ui))

∣∣ ≥ 0,∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ ≥ 0,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 ≥ 0,

√
1 +

∣∣∣(1− TH2
(ui))

∣∣∣2 ≥ 0.

Then,

 2|TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 ≥ 0.

Similarly,

 2|IH1 (ui)−IH2 (ui)|√
1+|IH1 (ui)|2+

√
1+|IH2 (u)|

2 +
2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 ≥ 0,

and

 2|FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 ≥ 0.

Therefore, CENS (H 1, H2) ≥ 0.
Hence complete the proof.

(ii)

 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 = 0, ⇔ TH1(ui) = TH2(ui) , 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u) |
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 = 0 ⇔ IH1(ui) = IH2(ui) , and, 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 = 0, ⇔ F H1(ui) = FH2(ui)

Therefore, CENS(H 1, H2) = 0, iff TH1(ui) = TH2(ui), IH1(ui) = IH2(ui), FH1(ui) = FH2(ui),
∀ ui ∈ U.

Hence complete the proof.
(iii) Using Definition 5, we obtain the following expression

CENS (Hc
1, Hc

2) =
1
2

 n
∑

i =1

〈 2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2 +
2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2

 + 2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2 +
2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2

+ 2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2 +
2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2

〉
= 1

2

 n
∑

i=1

〈 2|TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
+ 2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉 = CESN(H1, H2)

Therefore, CENS(H 1, H2) = CENS(H
c
1, Hc

2).
Hence complete the proof.

(iv) Since,
∣∣TH1(ui)− TH2(ui)

∣∣ =
∣∣TH2(ui)− TH1(ui)

∣∣, ∣∣IH1(ui)− IH2(ui)
∣∣ =∣∣IH2(ui)− IH1(ui)

∣∣, ∣∣FH1(ui)− FH2(ui)
∣∣ =

∣∣FH2(ui)− FH1(ui)
∣∣, ∣∣∣(1− TH1

(ui))− (1− TH2(ui))
∣∣∣ =∣∣(1− TH2(ui))− ( 1− TH1(ui))

∣∣, ∣∣(1− IH1(ui))− (1− IH2(ui))
∣∣ =

∣∣(1− IH2(ui))− (1− IH1(ui))
∣∣,
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∣∣∣(1− FH1
(ui))− (1− FH2(ui))

∣∣∣ =
∣∣(1− FH2(ui))− (1− FH1(ui))

∣∣, then,
√

1 +
∣∣TH1(ui)

∣∣2 +√
1 +

∣∣TH2(ui)
∣∣2 =

√
1 +

∣∣TH2(ui)
∣∣2 +

√
1 +

∣∣TH1(ui)
∣∣2,
√

1 +
∣∣IH1(ui)

∣∣2 +
√

1 +
∣∣IH2(ui)

∣∣2 =√
1 +

∣∣IH2(ui)
∣∣2 +

√
1 +

∣∣IH1(ui)
∣∣2,

√
1 +

∣∣FH1(ui)
∣∣2 +

√
1 +

∣∣FH2(ui)
∣∣2 =

√
1 +

∣∣FH2(ui)
∣∣2 +√

1 +
∣∣FH1(ui)

∣∣2,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− TH2(ui))

∣∣2 =
√

1 +
∣∣(−TH2(ui) )

∣∣2 +√
1 +

∣∣(1− TH1(ui))
∣∣2,
√

1 +
∣∣(1− IH1(ui))

∣∣2 +
√

1 +
∣∣(1− IH2(ui))

∣∣2 =
√

1 +
∣∣(1− IH2(ui))

∣∣2 +√
1 +

∣∣(1− IH1(ui))
∣∣2,

√
1 +

∣∣∣(1− FH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− FH2(ui))

∣∣2 =
√

1 +
∣∣(1− FH2(ui))

∣∣2 +√
1 +

∣∣(1− FH1(ui))
∣∣2, ∀ ui ∈ U.

Therefore, CENS(H 1, H2) = CENS (H2, H1).
Hence complete the proof.

Definition 9 Weighted NS-cross entropy measure. We consider the weight wi (i = 1, 2, ..., n) for the

element ui (i = 1, 2, .., n) with the conditions wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

Then the weighted cross entropy between SVNSs H1 and H2 can be defined as follows:

CEw
NS (H1, H2) =

1
2

〈
n
∑

i = 1
wi


 2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2
+

2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui) |2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui)) −(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1 −IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+

 2 |FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2


〉 (2)

Theorem 2. Single-valued neutrosophic weighted NS-cross-entropy (defined in Equation (2)) satisfies the
following properties:

i. CEw
NS (H 1, H2) ≥ 0.

ii. CEw
NS (H 1, H2) = 0, if and only if TH1(ui) = TH2(ui) IH1(ui) = IH2(ui), FH1(ui) = FH2(ui),

∀ ui ∈ U.
iii. CEw

NS (H 1, H2) = CEw
NS (Hc

1, Hc
2)

iv. CEw
NS (H 1, H2)= CEw

NS ( H 2, H1)

Proof. (i). For all values of ui ∈ U,
∣∣TH1(ui)

∣∣ ≥ 0
∣∣TH2(ui)

∣∣ ≥ 0,
∣∣TH1(ui)− TH2(ui)

∣∣ ≥ 0,√
1 +

∣∣TH1(ui)
∣∣2 ≥ 0,

√
1 +

∣∣TH2(ui)
∣∣2 ≥ 0,

∣∣∣(1− TH1
(ui))

∣∣∣ ≥ 0,
∣∣(1− TH2(ui))

∣∣ ≥ 0,∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ ≥ 0,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 ≥ 0,

√
1 +

∣∣∣(1− TH2
(ui))

∣∣∣2 ≥ 0, then, 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 ≥ 0.

Similarly,

 2 |IH1 (ui)−IH2 (ui)|√
1+|IH1 (ui)|2+

√
1+|IH2 (u)|

2 +
2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 ≥ 0,

and

 2 |FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 ≥ 0.

Since wi ∈ [0, 1] and
n
∑

i=1
wi = 1, therefore, CEw

NS (H 1, H2) ≥ 0.

Hence complete the proof.
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(ii) Since,

 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 = 0, ⇔ TH1(ui) = TH2(ui) , 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui) |2+
√

1+|IH2 (u) |
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 = 0, ⇔ IH1(ui) = IH2(ui) , 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 = 0, ⇔ F H1(ui) = FH2(ui)

and wi ∈ [0, 1] ,
n
∑

i=1
wi = 1, wi ≥ 0. Therefore, CEw

NS (H1, H2) = 0 iff TH1(ui) = TH2(ui),

IH1(ui) = IH2(ui), FH1(ui) = FH2(ui), ∀ ui ∈ U.
Hence complete the proof.

(iii) Using Definition 5, we obtain the following expression

CEw
NS (Hc

1, Hc
2) =

1
2

 n
∑

i =1
wi

〈 2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2 +
2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2

 + 2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2 +
2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2

+ 2
∣∣∣(1−FH1

(ui)) −(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2 +
2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2

〉
= 1

2

 n
∑

i =1
wi

〈 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui)) −(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉 = CEw

NS (H1, H2)

Therefore, CEw
NS (H1, H2) = CEw

NS (Hc
1, Hc

2).
Hence complete the proof.

(iv) Since
∣∣TH1(ui)− TH2(ui)

∣∣ =
∣∣TH2(ui)− TH1(ui)

∣∣, ∣∣IH1(ui)− IH2(ui)
∣∣ =

∣∣IH2(ui)− IH1(ui)
∣∣,∣∣FH1(ui)− FH2(ui)

∣∣ =
∣∣FH2(ui)− FH1(ui)

∣∣, ∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ =∣∣(1− TH2(ui))− (1− TH1(ui))
∣∣, ∣∣(1− IH1(ui))− (1− IH2(ui))

∣∣ =
∣∣(1− IH2(ui))− (1− IH1(ui))

∣∣,∣∣∣(1− FH1
(ui))− (1− FH2(ui))

∣∣∣ =
∣∣(1− FH2(ui))− (1− FH1(ui))

∣∣, we obtain
√

1 +
∣∣TH1(ui)

∣∣2 +√
1 +

∣∣TH2(ui)
∣∣2 =

√
1 +

∣∣TH2(ui)
∣∣2 +

√
1 +

∣∣TH1(ui)
∣∣2,
√

1 +
∣∣IH1(ui)

∣∣2 +
√

1 +
∣∣IH2(ui)

∣∣2 =√
1 +

∣∣IH2(ui)
∣∣2 +

√
1 +

∣∣IH1(ui)
∣∣2,

√
1 +

∣∣FH1(ui)
∣∣2 +

√
1 +

∣∣FH2(ui)
∣∣2 =

√
1 +

∣∣FH2(ui)
∣∣2 +√

1 +
∣∣FH1(ui)

∣∣2,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− TH2(ui))

∣∣2 =
√

1 +
∣∣(−TH2(ui) )

∣∣2 +√
1 +

∣∣(1− TH1(ui))
∣∣2,
√

1 +
∣∣(1− IH1(ui))

∣∣2 +
√

1 +
∣∣(1− IH2(ui))

∣∣2 =
√

1 +
∣∣(1− IH2(ui))

∣∣2 +√
1 +

∣∣(1− IH1(ui))
∣∣2,

√
1 +

∣∣∣(1− FH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− FH2(ui))

∣∣2 =
√

1 +
∣∣(1− FH2(ui))

∣∣2 +√
1 +

∣∣(1− FH1(ui))
∣∣2, ∀ ui ∈ U and wi ∈ [0, 1] ,

n
∑

i=1
wi = 1.

Therefore, CEw
NS (H1, H2) = CEw

NS (H2, H1).
Hence complete the proof.
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4. MAGDM Strategy Using Proposed Ns-Cross Entropy Measure under SVNS Environment

In this section, we develop a new MAGDM strategy using the proposed NS-cross entropy measure.

Description of the MAGDM Problem

Assume that A = {A1, A2, A3, . . . , Am} and G = {G1, G2, G3, . . . , Gn} be the discrete set
of alternatives and attributes respectively and W = {w1, w2, w3, . . . , wn} be the weight vector of

attributes Gj(j = 1, 2, 3, . . . , n), where wj ≥ 0 and
n
∑

j=1
wj = 1. Assume that E =

{
E1, E2, E3, . . . , Eρ

}
be the set of decision-makers who are employed to evaluate the alternatives. The weight vector
of the decision-makers Ek (k = 1, 2, 3, . . . , ρ) is λ =

{
λ1, λ2, λ3, . . . , λρ

}
(where, λk ≥ 0 and

ρ

∑
k=1

λk = 1), which can be determined according to the decision-makers’ expertise, judgment quality

and domain knowledge.
Now, we describe the steps of the proposed MAGDM strategy (see Figure 1) using NS-cross

entropy measure.
MAGDM Strategy Using Ns-Cross Entropy Measure

Step 1. Formulate the decision matrices

For MAGDM with SVNSs information, the rating values of the alternatives Ai (i = 1, 2, 3, . . . , m)

based on the attribute Gj ( j = 1, 2, 3, . . . , n) provided by the k-th decision-maker can be expressed in
terms of SVNN as ak

ij =< Tk
ij, Ik

ij, Fk
ij > (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , ρ). We present

these rating values of alternatives provided by the decision-makers in matrix form as follows:

Mk =


G1 G2 . . . . Gn

A1 ak
11 ak

12 . . . ak
1n

A2 ak
21 ak

2n ak
22

. . . . . .
Am ak

m1 ak
m2 . . . ak

mn

 (3)

Step 2. Formulate priori/ideal decision matrix

In the MAGDM, the a priori decision matrix has been used to select the best alternatives among
the set of collected feasible alternatives. In the decision-making situation, we use the following decision
matrix as a priori decision matrix.

P =


G1 G2 . . . . Gn

A1 a∗11 a∗12 . . . a∗1n
A2 a∗21 a∗22 a∗2n
. . . . . .

Am a∗m1 a∗m2 . . . a∗mn

 (4)

where, a∗ij =< max
i

(Tk
ij), min

i
(Ik

ij), min
i

(Fk
ij) >) corresponding to benefit attributes and a∗ij =<

min
i

(Tk
ij), max

i
(Ik

ij), max
i

(Fk
ij) > corresponding to cost attributes, and (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . ,

n; k = 1, 2, 3, . . . , ρ).

Step 3. Determinate the weights of decision-makers

To find the decision-makers’ weights we introduce a model based on the NS-cross entropy
measure. The collective NS-cross entropy measure between Mk and P (Ideal matrix) is defined
as follows:

CEc
NS(Mk, P) =

1
m

m

∑
i=1

CENS

(
Mk(Ai), P(Ai)

)
(5)
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where, CENS

(
Mk(Ai), P(Ai)

)
=

n
∑

j=1
CENS(Mk(Ai(Gj)), P(Ai(Gj))).

Thus, we can introduce the following weight model of the decision-makers:

λK =

(
1÷ CEc

NS(Mk, P)
)

ρ

∑
k=1

(
1÷ CEc

NS(Mk, P)
) (6)

where, 0 ≤ λK ≤ 1 and
ρ

∑
k=1

λK = 1 for k = 1, 2, 3, . . . , ρ.
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Step 4. Formulate the weighted aggregated decision matrix

For obtaining one group decision, we aggregate all the individual decision matrices (Mk) to
an aggregated decision matrix (M) using single valued neutrosophic weighted averaging (SVNWA)
operator ([51]) as follows:

aij = SVNSWAλ( a1
ij, a2

ij, a3
ij, . . . , aρij) = (λ1a1

ij ⊕ λ2a2
ij ⊕ λ3a3

ij ⊕ . . .⊕ λρaρij) =

< 1−
ρ

∏
k=1

(1 − Tk
ij)

λk ,
ρ

∏
k=1

(Ik
ij)

λk ,
ρ

∏
k=1

(Fk
ij)

λk >
(7)

Therefore, the aggregated decision matrix is defined as follows:

M =


G1 G2 . . . . Gn

A1 a11 a12 . . . a1n
A2 a21 a22 a2n
. . . . . .

Am am1 am2 . . . amn

 (8)

where, aij =< Tij, Iij, Fij >, (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , ρ).

Step 5. Determinate the weight of attributes

To find the attributes weight we introduce a model based on the NS-cross entropy measure.
The collective NS-cross entropy measure between M (Weighted aggregated decision matrix) and P
(Ideal matrix) for each attribute is defined by

CEj
NS(M, P) =

1
m

m

∑
i=1

CENS
(

M(Ai(Gj)), P(Ai(Gj))
)

(9)

where, i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n.
Thus, we defined a weight model for attributes as follows:

wj =

(
1÷ CEj

NS(M, P)
)

n
∑

J=1

(
1÷ CEj

NS(M, P)
) (10)

where, 0 ≤ wj ≤ 1 and
n
∑

j=1
wj = 1 for j = 1, 2, 3, . . . , n.

Step 6. Calculate the weighted NS-cross entropy measure

Using Equation (2), we calculate weighted cross entropy value between weighted aggregated
matrix and priori matrix. The cross entropy values can be presented in matrix form as follows:

NS Mw
CE =


CEw

NS (A1)

CEw
NS (A2)

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .

CEw
NS (Am)

 (11)

Step 7. Rank the priority

Smaller value of the cross entropy reflects that an alternative is closer to the ideal alternative.
Therefore, the preference priority order of all the alternatives can be determined according to the
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increasing order of the cross entropy values CEw
NS (Ai) (i = 1, 2, 3, . . . , m). Smallest cross entropy value

indicates the best alternative and greatest cross entropy value indicates the worst alternative.

Step 8. Select the best alternative

From the preference rank order (from step 7), we select the best alternative.

5. Illustrative Example

In this section, we solve an illustrative example adapted from [12] of MAGDM problems to reflect
the feasibility, applicability and efficiency of the proposed strategy under the SVNS environment.

Now, we use the example [12] for cultivation and analysis. A venture capital firm intends to make
evaluation and selection of five enterprises with the investment potential:

(1) Automobile company (A1)
(2) Military manufacturing enterprise (A2)
(3) TV media company (A3)
(4) Food enterprises (A4)
(5) Computer software company (A5)

On the basis of four attributes namely:

(1) Social and political factor (G1)
(2) The environmental factor (G2)
(3) Investment risk factor (G3)
(4) The enterprise growth factor (G4).

The investment firm makes a panel of three decision-makers.
The steps of decision-making strategy (4.1.1.) to rank alternatives are presented as follows:

Step: 1. Formulate the decision matrices

We represent the rating values of alternatives Ai (i = 1, 2, 3, 4, 5) with respects to the attributes Gj
(j = 1, 2, 3, 4) provided by the decision-makers Ek (k = 1, 2, 3) in matrix form as follows:

Decision matrix for E1 decision-maker

M1 =



G1 G2 G3 G4

A1 (0.9, 0.5, 0.4) (0.7, 0.4, 0.4) (0.7, 0.3, 0.4) (0.5, 0.4, 0.9)
A2 (0.7, 0.2, 0.3) (0.8, 0.4, 0.3) (0.9, 0.6, 0.5) (0.9, 0.1, 0.3)
A3 (0.8, 0.4, 0.4) (0.7, 0.4, 0.2) (0.9, 0.7, 0.6) (0.7, 0.3, 0.3)
A4 (0.5, 0.8, 0.7) (0.6, 0.3, 0.4) (0.7, 0.2, 0.5) (0.5, 0.4, 0.7)
A5 (0.8, 0.4, 0.3) (0.5, 0.4, 0.5) (0.6, 0.4, 0.4) (0.9, 0.7, 0.5)


(12)

Decision matrix for E2 decision-maker

M 2 =



G1 G2 G3 G4

A1 (0.7, 0.2, 0.3) (0.5, 0.4, 0.5) (0.9, 0.4, 0.5) (0.6, 0.5, 0.3)
A2 (0.7, 0.4, 0.4) (0.7, 0.3, 0.4) (0.7, 0.3, 0.4) (0.6, 0.4, 0.3)
A3 (0.6, 0.4, 0.4) (0.5, 0.3, 0.5) (0.9, 0.5, 0.4) (0.6, 0.5, 0.6)
A4 (0.7, 0.5, 0.3) (0.6, 0.3, 0.6) (0.7, 0.4, 0.4) (0.8, 0.5, 0.4)
A5 (0.9, 0.4, 0.3) (0.6, 0 .4, 0.5) (0.8, 0.5, 0.6) (0.5, 0.4, 0.5)


(13)
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Decision matrix for E3 decision-maker

M 3 =



G1 G2 G3 G4

A1 (0.7, 0.2, 0.5) (0.6, 0.4, 0.4) (0.7, 0.4, 0.5) (0.9, 0.4, 0.3)
A2 (0.6, 0.5, 0.5) (0.9, 0.3, 0.4) (0.7, 0.4, 0.3) (0.8, 0.4, 0.5)
A3 (0.8, 0.3, 0.5) (0.9, 0.3, 0.4) (0.8, 0.3, 0.4) (0.7, 0.3, 0.4)
A4 (0.9, 0.3, 0.4) (0.6, 0.3, 0.4) (0.5, 0.2, 0.4) (0.7, 0.3, 0.5)
A5 (0.8, 0.3, 0.3) (0.6, 0.4, 0.3) (0.6, 0.3, 0.4) (0.7, 0.3, 0.5)


(14)

Step: 2. Formulate priori/ideal decision matrix

A priori/ideal decision matrix Please provide a sharper picture

P =



G1 G2 G3 G4

A1 (0.9, 0.2, 0.3) (0.7, 0.4, 0.4) (0.9, 0.3, 0.4) (0.9, 0.4, 0.3)
A2 (0.7, 0.2, 0.3) (0.9, 0.3, 0.3) (0.9, 0.3, 0.3) (0.9, 0.1, 0.3)
A3 (0.8, 0.3, 0.4) (0.9, 0.3, 0.2) (0.9, 0.3, 0.4) (0.7, 0.3, 0.3)
A4 (0.9, 0.3, 0.3) (0.6, 0.3, 0.4) (0.7, 0.2, 0.4) (0.7, 0.3, 0.4)
A5 (0.9, 0.3, 0.3) (0.6, 0.4, 0.3) (0.8, 0.3, 0.4) (0.9, 0.3, 0.5)


(15)

Step: 3. Determine the weight of decision-makers

By using Equations (5) and (6), we determine the weights of the three decision-makers as follows:

λ1 =
(1÷ 0.9)

3.37
≈ 0.33, λ2 =

(1÷ 1.2)
3.37

≈ 0.25, λ1 =
(1÷ .07)

3.37
≈ 0.42.

Step: 4. Formulate the weighted aggregated decision matrix

Using Equation (7) the weighted aggregated decision matrix is presented as follows:
Weighted Aggregated decision matrix

M =



G1 G2 G3 G4

A1 (0.8, 0.3, 0.4) (0.6, 0.4, 0.4) (0.8, 0.4, 0.4) (0.7, 0.4, 0.5)
A2 (0.7, 0.3, 0 .4) (0.8, 0.3, 0.4) (0.8, 0.4, 0.4) (0.8, 0.2, 0.3)
A3 (0.8, 0.4, 0.4) (0.8, 0.3, 0.3) (0.9, 0.5, 0.5) (0.7, 0.3, 0.4)
A4 (0.7, 0.5, 0.5) (0.6, 0.3, 0.4) (0.6, 0.2, 0.4) (0.7, 0.4, 0.5)
A5 (0.8, 0.4, 0.4) (0.6, 0.4, 0.4) (0.7, 0.4, 0.4) (0.8, 0.5, 0.5)


(16)

Step: 5. Determinate the weight of the attributes

By using Equations (9) and (10), we determine the weights of the four attribute as follows:

w1 =
(1÷ 0.26)

25
≈ 0.16, w2 =

(1÷ 0.11)
25

≈ 0.37, w3 =
(1÷ 0.20)

25
≈ 0.20, w4 =

(1÷ 0.15)
25

≈ 0.27.

Step: 6. Calculate the weighted SVNS cross entropy matrix

Using Equation (2) and weights of attributes, we calculate the weighted NS-cross entropy values
between ideal matrix and weighted aggregated decision matrix.
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NS Mw
CE =


0.195
0.198
0.168
0.151
0.184

 (17)

Step: 7. Rank the priority

The cross entropy values of alternatives are arranged in increasing order as follows:

0.151 < 0.168 < 0.184 < 0.195 < 0.198.

Alternatives are then preference ranked as follows:

A4 > A3 > A5 > A1 > A2.

Step: 8. Select the best alternative

From step 7, we identify A4 is the best alternative. Hence, Food enterprises (A4) is the best
alternative for investment.

In Figure 2, we draw a bar diagram to represent the cross entropy values of alternatives which
shows that A4 is the best alternative according our proposed strategy.

In Figure 3, we represent the relation between cross entropy values and acceptance values of
alternatives. The range of acceptance level for five alternatives is taken by five points. The high
acceptance level of alternatives indicates the best alternative for acceptance and low acceptance level
of alternative indicates the poor acceptance alternative.

We see from Figure 3 that alternative A4 has the smallest cross entropy value and the highest
acceptance level. Therefore A4 is the best alternative for acceptance. Figure 3 indicates that alternative
A2 has highest cross entropy value and lowest acceptance value that means A2 is the worst alternative.
Finally, we conclude that the relation between cross entropy values and acceptance value of alternatives
is opposite in nature.Information 2018, 9, x  15 of 22 
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6. Comparative Study and Discussion

In literature only two MADM strategies [144,145] have been proposed. No MADGM strategy
is available. So the proposed MAGDM is novel and non-comparable with the existing cross entropy
under SVNS for numerical example.

i. The MADM strategies [144,145] are not applicable for MAGDM problems. The proposed
MAGDM strategy is free from such drawbacks.

ii. Ye [144] proposed cross entropy that does not satisfy the symmetrical property straightforward
and is undefined for some situations but the proposed strategy satisfies symmetric property and
is free from undefined phenomenon.

iii. The strategies [144,145] cannot deal with the unknown weight of the attributes whereas the
proposed MADGM strategy can deal with the unknown weight of the attributes

iv. The strategies [144,145] are not suitable for dealing with the unknown weight of decision-makers,
whereas the essence of the proposed NS-cross entropy-based MAGDM is that it is capable of
dealing with the unknown weight of the decision-makers.

7. Conclusions

In this paper, we have defined a novel cross entropy measure in SVNS environment. The proposed
cross entropy measure in SVNS environment is free from the drawbacks of asymmetrical behavior
and undefined phenomena. It is capable of dealing with the unknown weight of attributes and the
unknown weight of decision-makers. We have proved the basic properties of the NS-cross entropy
measure. We also defined weighted NS-cross entropy measure and proved its basic properties. Based
on the weighted NS-cross entropy measure, we have developed a novel MAGDM strategy to solve
neutrosophic multi-attribute group decision-making problems. We have at first proposed a novel
MAGDM strategy based on NS-cross entropy measure with technique to determine the unknown
weight of attributes and the unknown weight of decision-makers. Other existing cross entropy
measures [144,145] can deal only with the MADM problem with single decision-maker and known
weight of the attributes. So in general, our proposed NS-cross entropy-based MAGDM strategy is not
comparable with the existing cross-entropy-based MADM strategies [144,145] under the single-valued
neutrosophic environment. Finally, we solve a MAGDM problem to show the feasibility, applicability
and efficiency of the proposed MAGDM strategy. The proposed NS-cross entropy-based MAGDM
can be applied in teacher selection, pattern recognition, weaver selection, medical treatment selection
options, and other practical problems. In future study, the proposed NS-cross entropy-based MAGDM
strategy can be also extended to the interval neutrosophic set environment.
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Abstract: Single-valued neutrosophic hesitant fuzzy set (SVNHFS) is a combination of single-valued
neutrosophic set and hesitant fuzzy set, and its aggregation tools play an important role in the
multiple criteria decision-making (MCDM) process. This paper investigates the MCDM problems in
which the criteria under SVNHF environment are in different priority levels. First, the generalized
single-valued neutrosophic hesitant fuzzy prioritized weighted average operator and generalized
single-valued neutrosophic hesitant fuzzy prioritized weighted geometric operator are developed
based on the prioritized average operator. Second, some desirable properties and special cases of
the proposed operators are discussed in detail. Third, an approach combined with the proposed
operators and the score function of single-valued neutrosophic hesitant fuzzy element is constructed
to solve MCDM problems. Finally, an example of investment selection is provided to illustrate the
validity and rationality of the proposed method.

Keywords: multiple criteria decision-making (MCDM); single-valued neutrosophic hesitant
fuzzy set (SVNHFS); generalized single-valued neutrosophic hesitant fuzzy prioritized weighted
average operator; generalized single-valued neutrosophic hesitant fuzzy prioritized weighted
geometric operator

1. Introduction

In daily life, MCDM problems happen in many fields; decision makers determine the best one
from several alternatives through evaluating them with respect to the corresponding criteria. Due to
the high complexity of the social environment, the evaluation information given by decision makers is
often uncertain, incomplete, and inconsistent. With the demand for accuracy of decision-making results
is getting higher and higher, much research in recent years has focused on the MCDM problems under
fuzzy environment [1]. In 1965, Zadeh [2] developed the fuzzy set (FS) theory, which is a powerful
tool to express the fuzzy information. However, there are several obvious limitations of FS theory in
expressing uncertain information, which are attracting widespread interest in improving FS theory.

Atanassov [3] introduced the non-membership function to extend FS theory and proposed the
intuitionistic fuzzy set (IFS) theory. IFS can express the membership and non-membership information
simultaneously; the property can deal with some applications effectively, which FS cannot. For example,
ten decision makers vote for an affair, four present agreement, three suggest different opinions, and the
others choose to give up. The example above can be characterized by IFS, i.e., the value of membership
is 0.4, and the value of non-membership is 0.3. However, expressing the voting information by FS
is impossible. To describe the fuzziness of evaluation information more effective, Atanassov and
Gargov [4] utilized the interval number to extend the membership and non-membership functions
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and put forward the interval-valued intuitionistic fuzzy set (IVIFS) theory. Nevertheless, in the real
decision-making process, only considering the membership and non-membership information is not
comprehensive sometimes. For instance, a decision maker gives her/his evaluation on a viewpoint,
she/he may think the positive probability is 0.5, the false probability is 0.6, and the indeterminacy
probability is 0.2 [5]. Obviously, IFS and IVIFS theory cannot deal with this situation. Therefore,
Smarandache [6] defined the neutrosophic set (NS), which can be regarded as a generalization of
FS and IFS [7]. NS consists of three independent membership functions, namely, truth-membership,
indeterminacy-membership, and falsity-membership functions. Whereas, NS theory was originally
proposed from a philosophical point of view, and it is difficult to apply NS theory in the field of science
and engineering. To solve this problem, Wang [8,9] defined the concepts of interval neutrosophic
set (INS) and single-valued neutrosophic set (SVNS), which are specific cases of NS.

Another drawback of FS is that its membership value is single; while determining the exact
value of membership may be difficult for decision makers due to doubt. To deal with this situation,
Torra and Narukawa [10] and Torra [11] extended the FS theory to hesitant fuzzy set (HFS) theory
through allowing decision makers to give several different values of membership. Furthermore,
Chen [12] defined the concept of interval-valued hesitant fuzzy set (IVHFS), in which the possible
membership values can be expressed by interval numbers. Considering the complex information given
by decision makers, Zhu [13] introduced the non-membership hesitancy function to propose the dual
hesitant fuzzy set (DHFS) theory. According to the aforementioned analysis of improved FS theory
from two directions, Ye [14] developed the single-valued neutrosophic hesitant fuzzy set (SVNHFS)
combined with NS and HFS theory, in addition, Liu and Shi [7] extended the SVNHFS to interval
neutrosophic hesitant fuzzy set (INHFS). Consequently, SVNHFS and INHFS not only can characterize
the inconsistent and indeterminate information but also allow decision makers to give several possible
values of truth-membership, indeterminacy-membership, and falsity-membership functions.

Besides the evaluation information, aggregation tools also are important parts of MCDM process.
Ye [14] developed the operational laws and cosine measure of single-valued neutrosophic hesitant fuzzy
elements (SVNHFEs), and proposed the single-valued neutrosophic hesitant fuzzy weighted average
(SVNHFWA) operator and single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG)
operator to aggregate SVNHFEs. Şahin and Liu [15] constructed the decision-making approach based
on the correlation coefficient and weighted correlation coefficient of SVNHFEs. Biswas et al. [16]
put forward several approaches for decision-making under SVNHF environment by using distance
measures of SVNHFEs. Liu and Luo [17] proposed the single-valued neutrosophic hesitant fuzzy
ordered weighted average (SVNHFOWA) operator and single-valued neutrosophic hesitant fuzzy
hybrid weighted average (SVNHFHWA) operator, and applied them into MCDM process. Liu and
Zhang [18] developed the single-valued neutrosophic hesitant fuzzy Heronian mean aggregation
operators to deal with MCDM problems. Liu and Shi [7] defined the operational laws of INHFSs and
proposed interval neutrosophic hesitant fuzzy generalized weighted average (INHFGWA) operator,
interval neutrosophic hesitant fuzzy generalized ordered weighted average (INHFGOWA) operator,
and interval neutrosophic hesitant fuzzy generalized hybrid weighted average (INHFGHWA) operator.
Ye [19] determined the ranking of alternatives combined with the correlation coefficient of INHFSs.

The aforementioned decision-making methods are applied to the situation of the aggregated
arguments and are in the same priority; whereas, in many real situations, criteria always have different
priorities. For example, a mother chooses the dried milk for her baby, the criteria she considers
are price and safety. Obviously, a prioritization ordering exists between the criteria, i.e., safety is
much more important than price [20]. To deal with this situation, Yager [21] proposed the prioritized
average (PA) operator to aggregate the evaluation information concerning the criteria of different
priorities. Since the PA operator was presented, many scholars have focused on extending the
PA operator into the fuzzy environment. For instance, Yu [20] proposed the intuitionistic fuzzy
prioritized weighted average (IFPWA) operator and intuitionistic fuzzy prioritized weighted geometric
(IFPWG) operator, and investigated their properties. Yu et al. [22] extended the PA operator into IVIF
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environment and developed the interval-valued intuitionistic fuzzy prioritized weighted average
(IVIFPWA) operator and interval-valued intuitionistic fuzzy prioritized weighted geometric (IVIFPWG)
operator. Liu and Wang [23] studied the aggregation operator under IN environment and put forward
the interval neutrosophic prioritized ordered weighted average (INPOWA) operator. Furthermore,
Wei [24] extended the PA operator into hesitant fuzzy MCDM problems. Jin et al. [25] developed
interval-valued hesitant fuzzy Einstein prioritized weighted average (IVHFEPWA) operator and the
interval-valued hesitant fuzzy Einstein prioritized weighted geometric (IVHFEPWG) operator through
improving the operations of IVHFSs. However, to our best knowledge, little attention has been paid to
the prioritized aggregation operators under SVNHF environment.

This paper proposes the aggregation operators for SVNHFEs, in which the aggregation arguments
have different priority levels, and develops an approach for decision-making. To do this, the rest
of this paper is organized as follows. Section 2 briefly introduces some basic concepts of SVNS,
HFS, SVNHFS, and the PA operator. Section 3 develops the generalized single-valued neutrosophic
hesitant fuzzy prioritized weighted average (GSVNHFPWA) operator and generalized single-valued
neutrosophic hesitant fuzzy prioritized weighted geometric (GSVNHFPWG) operator, and investigates
some desirable properties and special cases of the proposed operators. Section 4 constructs an approach
for decision-making based on the proposed operators. Section 5 provides a numerical example
to illustrate the applications and advantages of the proposed method. Section 6 summarizes the
conclusions of this research.

2. Preliminaries

In this section, we briefly introduce some basic concepts, including the definitions of NS, SVNS,
HFS, and SVNHFS. The operations of SVNHFEs and the PA operator are also presented, which are
used in the subsequent discussion.

2.1. The Single-Valued Neutrosophic Set

Definition 1. Ref. [6] Let X be a universe of discourse, with a generic element in X denoted by x.
An NS A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x). The functions TA(x), IA(x), and FA(x)
are real standard or non-standard subsets of ]−0, 1+[, i.e., TA(x) : X →]−0, 1+[ , IA(x) : X →]−0, 1+[ ,
and FA(x) : X →]−0, 1+[ . Thus, the sum of three aforementioned functions satisfies the condition of
−0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

NS theory was originally proposed from the angle of philosophy and can be regarded as
a generalization of FS, IFS, and IVIFS. However, the NS is not easily used for real scientific and
engineering decision-making problems. To solve this limitation, Wang [8] defined the concept of SVNS,
which is a special case of NS.

Definition 2. Ref. [8] Let X be a universe of discourse, with a generic element in X denoted by x. An SVNS A
is given by

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X }, (1)

where TA(x) is the truth-membership function, IA(x) is the indeterminacy-membership function, and FA(x)
is the falsity-membership function. For each point x in X, the functions TA(x), IA(x), and FA(x) satisfy the
conditions of TA(x), IA(x), FA(x) ∈ [0, 1] and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

2.2. The Hesitant Fuzzy Set

During the decision-making process, decision makers sometimes may be confused when
determining the exact membership value of an element to the set because of the existing several
possible membership values. Considering this situation, Torra and Narukawa [10] defined the concept
of HFS.
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Definition 3. Ref. [10] Let X be a non-empty and finite set, an HFS A on X is defined by a function hA(x)
that when applied to X returns a finite subset of [0, 1], which can be expressed as

A = {〈x, hA(x)〉|x ∈ X }, (2)

where hA(x) is a set of some different values in [0, 1], indicating the possible membership degrees of the element
x ∈ X to A.

2.3. The Single-Valued Neutrosophic Hesitant Fuzzy Set

Based on the combination of SVNS and HFS, Ye [14] proposed the concept of SVNHFS.

Definition 4. Ref. [14] Let X be a non-empty and finite set, an SVNHFS N on X is expressed as

N =
{〈

x, t̃(x), ĩ(x), f̃ (x)
〉
|x ∈ X

}
, (3)

where t̃(x) =
{

γ
∣∣γ ∈ t̃(x)

}
, ĩ(x) =

{
δ
∣∣∣δ ∈ ĩ(x)

}
, and f̃ (x) =

{
η
∣∣∣η ∈ f̃ (x)

}
are three sets of some

different values in [0, 1], denoting the possible truth-membership hesitant, possible indeterminacy-membership
hesitant, and possible falsity-membership hesitant degrees of the element x ∈ X to N. And they satisfy the
conditions of γ, δ, η ⊆ [0, 1] and 0 ≤ supγ+ + supδ+ + supη+ ≤ 3, where γ+ = ∪γ∈t̃(x)max{γ},

δ+ = ∪
δ∈ĩ(x)max{δ}, and η+ = ∪

η∈ f̃ (x)max{η} for x ∈ X. For convenience, we call ñ =
{̃

t(x), ĩ(x), f̃ (x)
}

is an SVNHFE, denoted by ñ =
{

t̃, ĩ, f̃
}

.

Definition 5. Ref. [14] Let ñ =
{

t̃, ĩ, f̃
}

, ñ1 =
{

t̃1, ĩ1, f̃1

}
and ñ2 =

{
t̃2, ĩ2, f̃2

}
be three SVNHFEs, λ > 0,

then the basic operations of SVNHFEs are defined as

ñ1 ⊕ ñ2 =
{

t̃1 ⊕ t̃2, ĩ1 ⊗ ĩ2, f̃1 ⊗ f̃2

}
= ∪

γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{γ1 + γ2 − γ1γ2}, {δ1δ2}, {η1η2}}; (4)

ñ1 ⊗ ñ2 =
{

t̃1 ⊗ t̃2, ĩ1 ⊕ ĩ2, f̃1 ⊕ f̃2

}
= ∪

γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{γ1γ2}, {δ1 + δ2 − δ1δ2}, {η1 + η2 − η1η2}}; (5)

λñ = ∪
γ∈t̃,δ∈ĩ,η∈ f̃

{{
1− (1− γ)λ

}
,
{

δλ
}

,
{

ηλ
}}

; (6)

ñλ = ∪
γ∈t̃,δ∈ĩ,η∈ f̃

{{
γλ
}

,
{

1− (1− δ)λ
}

,
{

1− (1− η)λ
}}

. (7)

Definition 6. Ref. [18] Let ñ =
{

t̃, ĩ, f̃
}

be an SVNHFE, then the score function s(ñ) of ñ is given by

s(ñ) =
[

1
l ∑l

i=1 γi +
1
p∑p

i=1 (1− δi) +
1
q ∑q

i=1(1− ηi)

]/
3 , (8)

where l, p, q are the numbers of values in t̃, ĩ, f̃ , respectively. Obviously, the range of s(ñ) is limited to [0, 1].

Definition 7. Ref. [18] Let ñ1 =
{

t̃1, ĩ1, f̃1

}
and ñ2 =

{
t̃2, ĩ2, f̃2

}
be two SVNHFEs, then the comparison

method of them is expressed by

(1) If s(ñ1) > s(ñ2), then ñ1 > ñ2;
(2) If s(ñ1) < s(ñ2), then ñ1 < ñ2;
(3) If s(ñ1) = s(ñ2), then ñ1 = ñ2.
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2.4. The Prioritized Average Operator

Aggregation operators play an important role in group decision-making to fusion the evaluation
information. In view of priority relations between the criteria, Yager [21] developed the PA operator to
solve this problem.

Definition 8. Ref. [21] Let C = {C1, C2, . . . , Cn} be a collection of criteria, and priority relations between the
criteria exist which can be expressed by the ordering of C1 � C2 � C3 � · · · � Cn. That means criteria Cj has
a higher priority level than criteria Ck if j < k. The value Cj(x) is the evaluation information of alternative x
with respect to criteria Cj. Thus, if

PA
(
Cj(x)

)
= ∑n

j=1 wjCj(x), (9)

then the function PA is called the prioritized average (PA) operator, where wj = Tj/∑n
j=1Tj,Tj = ∏

j−1
k=1 Ck(x),

T1 = 1.

3. Generalized Single-Valued Neutrosophic Hesitant Fuzzy Prioritized Aggregation Operators

The PA operator can effectively solve the decision-making problems that the criteria have different
priorities; however, it can only be used in the situation where the aggregated arguments are exact values.
Combined with the PA operator and the generalized mean operators [26], we extend the PA operator to
deal with the decision-making problems under SVNHF environment. In this section, the GSVNHFPWA
operator and GSVNHFPWG operator are proposed, and their properties are presented simultaneously.
Besides, several special cases of the GSVNHFPWA operator and GSVNHFPWG operator are also
discussed through changing the values of the parameter λ.

3.1. Generalized Single-Valued Neutrosophic Hesitant Fuzzy Prioritized Average Operator

Definition 9. Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, and let GSVNHFPWA :

Ωn → Ω , if

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

T1

∑n
j=1 Tj

ñλ
n

)1/λ

, (10)

then the function GSVNHFPWA is called the GSVNHFPWA operator. Where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n),

T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.

According to the operational laws of SVHFEs in Definition 5, we can obtain the theorem as follows.

Theorem 1. Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, then their aggregated value by

using the GSVNHFPWA operator is also an SVNHFE, and

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

Tn

∑n
j=1 Tj

ñλ
n

)1/λ

= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃n∈t̃n ,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃n∈ĩn ,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃n∈ f̃n



1−

n
∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj

1/λ
,

1−

1−
n
∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj

1/λ
 ,

1−

1−
n
∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj


1/λ

.

(11)

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.
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Proof. We can use mathematical induction to prove the Theorem 1:

(a) For n = 1, since

GSVNHFPWAλ(ñ1) =

(
T1

∑n
j=1 Tj

ñλ
1

)1/λ

=

(
T1

T1
ñλ

1

)1/λ

= ñ1.

Obviously, Equation (11) holds for n = 1.
(b) For n = 2, since

ñλ
1 = ∪

γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1

{{
γλ

1

}
,
{

1− (1− δ1)
λ
}

,
{

1− (1− η1)
λ
}}

,

ñλ
2 = ∪

γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{
γλ

2

}
,
{

1− (1− δ2)
λ
}

,
{

1− (1− η2)
λ
}}

,

Then

T1
∑n

j=1 Tj
ñλ

1 = ∪
γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1

{{
1−

(
1− γλ

1
) T1

∑n
j=1 Tj

}
,

{(
1− (1− δ1)

λ
) T1

∑n
j=1 Tj

}
,

{(
1− (1− η1)

λ
) T1

∑n
j=1 Tj

}}
,

T2
∑n

j=1 Tj
ñλ

2 = ∪
γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{
1−

(
1− γλ

2
) T2

∑n
j=1 Tj

}
,

{(
1− (1− δ2)

λ
) T2

∑n
j=1 Tj

}
,

{(
1− (1− η2)

λ
) T2

∑n
j=1 Tj

}}
.

We have

T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 =

∪
γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{
1−

(
1− γλ

1
) T1

∑n
j=1 Tj + 1−

(
1− γλ

2
) T2

∑n
j=1 Tj −

(
1−

(
1− γλ

1
) T1

∑n
j=1 Tj

)(
1−

(
1− γλ

2
) T2

∑n
j=1 Tj

)}
,

{((
1− (1− δ1)

λ
) T1

∑n
j=1 Tj

)((
1− (1− δ2)

λ
) T2

∑n
j=1 Tj

)}
,

{((
1− (1− η1)

λ
) T1

∑n
j=1 Tj

)((
1− (1− η2)

λ
) T2

∑n
j=1 Tj

)}
.

= ∪
γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{
1−

(
1− γλ

1
) T1

∑n
j=1 Tj

(
1− γλ

2
) T2

∑n
j=1 Tj

}
,

{((
1− (1− δ1)

λ
) T1

∑n
j=1 Tj

)((
1− (1− δ2)

λ
) T2

∑n
j=1 Tj

)}
,

{((
1− (1− η1)

λ
) T1

∑n
j=1 Tj

)((
1− (1− η2)

λ
) T2

∑n
j=1 Tj

)}
.

Thus

GSVNHFPWAλ(ñ1, ñ1) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2

)1/λ

=

∪
γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2



1−

(
1− γλ

1
) T1

∑n
j=1 Tj (1− γλ

2
) T2

∑n
j=1 Tj


1/λ
 ,

1−
(

1−
((

1− (1− δ1)
λ
) T1

∑n
j=1 Tj

)((
1− (1− δ2)

λ
) T2

∑n
j=1 Tj

))1/λ
,

1−
(

1−
((

1− (1− η1)
λ
) T1

∑n
j=1 Tj

)((
1− (1− η2)

λ
) T2

∑n
j=1 Tj

))1/λ
.

i.e., Equation (11) holds for n = 2.
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(c) If Equation (11) holds for n = k, we have

GSVNHFPWAλ(ñ1, ñ2, . . . , ñk) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

Tk

∑n
j=1 Tj

ñλ
k

)1/λ

= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃k∈t̃k ,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃k∈ĩk ,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃k∈ f̃k



1−

k
∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj


1/λ
,

1−

1−
k

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ
 ,

1−

1−
k

∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj


1/λ

.

When n = k + 1, combined with the operations of SVNHFE in Definition 5, we have

T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

Tk

∑n
j=1 Tj

ñλ
k ⊕

Tk+1

∑n
j=1 Tj

ñλ
k+1 =

= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃k∈t̃k ,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃k∈ĩk ,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃k∈ f̃k


1−

k
∏
j=1

(
1− γλ

j

) Tj

∑n
j=1 Tj

 ,


k

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj

,


k

∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj

⊕

∪
γk+1∈t̃k+1,δk+1∈ĩk+1,ηk+1∈ f̃k+1


1−

(
1− γλ

k+1

) Tk+1

∑n
j=1 Tj

,


(

1− (1− δk+1)
λ
) Tk+1

∑n
j=1 Tj

,


(

1− (1− ηk+1)
λ
) Tk+1

∑n
j=1 Tj




= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃k+1∈t̃k+1,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃k+1∈ĩk+1,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃k+1∈ f̃k+1


1−

k+1
∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj

 ,

k+1
∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj

,

k+1
∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj

.

Then

GSVNHFPWAλ(ñ1, ñ2, . . . , ñk+1) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

Tk+1

∑n
j=1 Tj

ñλ
k+1

)1/λ

= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃k+1∈t̃k+1,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃k+1∈ĩk+1,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃k+1∈ f̃k+1



1−

k+1
∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj


1/λ
,

1−

1−
k+1
∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ
 ,

1−

1−
k+1
∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj


1/λ

.

i.e., Equation (11) holds for n = k + 1, thus we can confirm Equation (11) holds for all n. The proof
of Theorem 1 is completed. �

Some desirable properties of the GSVNHFPWA operator are presented as below.

Theorem 2. (Idempotency) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, where

Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk. If all

ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) are equal, i.e., ñj = ñ =

{
t̃, ĩ, f̃

}
, t̃ = γ, ĩ = δ, and f̃ = η, then

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ =
{

t̃, ĩ, f̃
}

. (12)
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Proof. Since ñj = ñ =
{

t̃, ĩ, f̃
}

, by Theorem 1, we have

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñλ ⊕ T2

∑n
j=1 Tj

ñλ ⊕ · · · ⊕ Tn

∑n
j=1 Tj

ñλ

)1/λ

= ∪
γ̃∈t̃,δ̃∈ĩ,η̃∈ f̃



1−

n
∏
j=1

(
1− γλ

) Tj
∑n

j=1 Tj

1/λ
,

1−

1−
n
∏
j=1

(
1− (1− δ)λ

) Tj
∑n

j=1 Tj

1/λ
 ,

1−

1−
n
∏
j=1

(
1− (1− η)λ

) Tj
∑n

j=1 Tj

1/λ



= ∪
γ̃∈t̃,δ̃∈ĩ,η̃∈ f̃



1−

(
1− γλ

) ∑n
j=1 Tj

∑n
j=1 Tj

1/λ
,

1−

1−
(

1− (1− δ)λ
) ∑n

j=1 Tj
∑n

j=1 Tj

1/λ
 ,

1−

1−
(

1− (1− η)λ
) ∑n

j=1 Tj
∑n

j=1 Tj

1/λ



= ∪
γ̃∈t̃,δ̃∈ĩ,η̃∈ f̃

{{(
γλ
)1/λ

}
,
{

1−
(
(1− δ)λ

)1/λ
}

,
{

1−
(
(1− η)λ

)1/λ
}}

= ∪
γ̃∈t̃,δ̃∈ĩ,η̃∈ f̃

{{γ}, {δ} , {η}} = ñ =
{

t̃, ĩ, f̃
}

.

Then, the proof of Theorem 2 is completed. �

Theorem 3. (Boundedness) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, where

Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.

And let ñ− = {{γ−}, {δ+}, {η+}} and ñ+ = {{γ+}, {δ−}, {η−}}, where γ+ = ∪γj∈t̃j
max

{
γj
}

,

δ+ = ∪
δj∈ĩj

max
{

δj
}

, η+ = ∪
ηj∈ f̃ j

max
{

ηj
}

, γ− = ∪γj∈t̃j
min

{
γj
}

, δ− = ∪
δj∈ĩj

min
{

δj
}

,

and η− = ∪
ηj∈ f̃ j

min
{

ηj
}

. Then

ñ− ≤ GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (13)

Proof. Since γ− ≤ γj ≤ γ+, δ− ≤ δj ≤ δ+, and η− ≤ ηj ≤ η+. First, when λ ∈ (0, ∞), then

γλ
j ≥

(
γ−
)λ, 1− γλ

j ≤ 1−
(
γ−
)λ,
(

1− γλ
j

) Tj
∑n

j=1 Tj ≤
(

1−
(
γ−
)λ
) Tj

∑n
j=1 Tj ,

n

∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj ≤
n

∏
j=1

(
1−

(
γ−
)λ
) Tj

∑n
j=1 Tj

,

1−
n

∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj ≥ 1−
n

∏
j=1

(
1−

(
γ−
)λ
) Tj

∑n
j=1 Tj

,

1−
n

∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj


1/λ

≥

1−
n

∏
j=1

(
1−

(
γ−
)λ
) Tj

∑n
j=1 Tj


1/λ

= γ−.

Similarly, we have1−
n

∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj


1/λ

≤

1−
n

∏
j=1

(
1−

(
γ+
)λ
) Tj

∑n
j=1 Tj


1/λ

= γ+.

And as δ− ≤ δj ≤ δ+, then

1− δj ≤ 1− δ−,
(
1− δj

)λ ≤
(
1− δ−

)λ, 1−
(
1− δj

)λ ≥ 1−
(
1− δ−

)λ,

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj ≥

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj ,
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n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj ≥

n

∏
j=1

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj

,

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj ≤ 1−

n

∏
j=1

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj

,

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ

≤

1−
n

∏
j=1

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj


1/λ

,

1−

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ

≥ 1−

1−
n

∏
j=1

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj


1/λ

= δ−.

Similarly, we have

1−

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ

≤ 1−

1−
n

∏
j=1

(
1−

(
1− δ+

)λ
) Tj

∑n
j=1 Tj


1/λ

= δ+.

On the other hand,

η− ≤ 1−

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ

≤ η+.

Let GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ = {{γ}, {δ}, {η}}, then

s(ñ) =
1
l ∑l

i=1 γi +
1
p ∑

p
i=1 (1− δi) +

1
q ∑

q
i=1(1− ηi)

3
≥

1
l−∑l−

i=1 γ−i + 1
p−∑

p−

i=1

(
1− δ+i

)
+ 1

q−∑
q−

i=1

(
1− η+

i
)

3
= s(ñ−),

And

s(ñ) =
1
l ∑l

i=1 γi +
1
p ∑

p
i=1 (1− δi) +

1
q ∑

q
i=1(1− ηi)

3
≤

1
l+ ∑l+

i=1 γ+
i + 1

p+ ∑
p+

i=1

(
1− δ−i

)
+ 1

q+ ∑
q+

i=1

(
1− η−i

)
3

= s(ñ+).

If s(ñ−) < s(ñ) < s(ñ+), we have

ñ− < GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) < ñ+.

If s(ñ) = s(ñ−), i.e.,

1
l ∑l

i=1 γi +
1
p ∑

p
i=1 (1− δi) +

1
q ∑

q
i=1(1− ηi)

3
=

1
l−∑l−

i=1 γ−i + 1
p−∑

p−

i=1

(
1− δ+i

)
+ 1

q−∑
q−

i=1

(
1− η+

i
)

3
,

Then
GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ−.

If s(ñ) = s(ñ−), i.e.,

1
l ∑l

i=1 γi +
1
p ∑

p
i=1 (1− δi) +

1
q ∑

q
i=1(1− ηi)

3
≤

1
l+ ∑l+

i=1 γ+
i + 1

p+ ∑
p+

i=1

(
1− δ−i

)
+ 1

q+ ∑
q+

i=1

(
1− η−i

)
3

,
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Then
GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ+.

Based on analysis above, we have

ñ− ≤ GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+λ ∈ (0, ∞).

Similarly, we can obtain

ñ− ≤ GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+λ ∈ (−∞, 0).

The proof of Theorem 3 is completed. �

Theorem 4. (Monotonicity) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) and ñ∗j =

{
t̃∗j , ĩ∗j , f̃ ∗j

}
(j = 1, 2, . . . , n)

be two collections of SVNHFEs, where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T∗j = ∏

j−1
k=1 s

(
ñ∗k
)
(j = 2, . . . , n),

T1 = T∗1 = 1, s(ñk) and s
(
ñ∗k
)

are the score values of SVNHFE ñk and ñ∗k , respectively. If ñj ≤ ñ∗j
(j = 1, 2, . . . , n), then

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ GSVNHFPWAλ(ñ∗1 , ñ∗2 , . . . , ñ∗n). (14)

Proof. It directly follows from Theorem 3. �

Special cases of the GSVNHFPWA operator are shown as follows.

(1) If λ = 1, then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted average (SVNHFPWA) operator:

SVNHFPWA(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ1 ⊕
T2

∑n
j=1 Tj

ñ2 ⊕ · · · ⊕
Tn

∑n
j=1 Tj

ñn

)
. (15)

(2) If λ→ 0 , then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted geometric (SVNHFPWG) operator:

SVNHFPWG(ñ1, ñ2, . . . , ñn) =

(
(ñ1)

T1
∑n

j=1 Tj ⊗ (ñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (ñn)
Tn

∑n
j=1 Tj

)
. (16)

(3) If λ = 2, then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted quadratic average (SVNHFPWQA) operator:

SVNHFPWQA(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ2
1 ⊕

T2

∑n
j=1 Tj

ñ2
2 ⊕ · · · ⊕

Tn

∑n
j=1 Tj

ñ2
n

)1/2

. (17)

(4) If λ = 3, then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted cubic average (SVNHFPWCA) operator:

SVNHFPWCA(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ3
1 ⊕

T2

∑n
j=1 Tj

ñ3
2 ⊕ · · · ⊕

Tn

∑n
j=1 Tj

ñ3
n

)1/3

. (18)
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(5) If λ = 1 and the aggregated arguments are in the same priority level, then the GSVNHFPWA
operator is reduced to the single-valued neutrosophic hesitant fuzzy weighted average
(SVNHFWA) operator [14]:

SVNHFWA(ñ1, ñ2, . . . , ñn) = (w1ñ1 ⊕ w2ñ2 ⊕ · · · ⊕ wnñn). (19)

(6) If λ→ 0 and the aggregated arguments are in the same priority level, then the GSVNHFPWA
operator is reduced to the single-valued neutrosophic hesitant fuzzy weighted geometric
(SVNHFWG) operator [14]:

SVNHFWG(ñ1, ñ2, . . . , ñn) =
(
ñw1

1 ⊗ ñw2
2 ⊗ · · · ⊗ ñwn

n
)
. (20)

(7) If w = (1/n, 1/n, . . . , 1/n)T , λ = 1, and the aggregated arguments are in the same priority level,
then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant fuzzy
arithmetic average (SVNHFAA) operator:

SVNHFAA(ñ1, ñ2, . . . , ñn) =
1
n
(ñ1 ⊕ ñ2 ⊕ · · · ⊕ ñn). (21)

(8) If w = (1/n, 1/n, . . . , 1/n)T , λ→ 0 , and the aggregated arguments are in the same priority level,
then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant fuzzy
geometric average (SVNHFGA) operator:

SVNHFGA(ñ1, ñ2, . . . , ñn) = (ñ1 ⊗ ñ2 ⊗ · · · ⊗ ñn)
1/n. (22)

3.2. Generalized Single-Valued Neutrosophic Hesitant Fuzzy Prioritized Geometric Operator

Based on the GSVNHFPWA operator investigated above, we develop the GSVNHFPWG operator
as the following.

Definition 10. Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, and let GSVNHFPWG :

Ωn → Ω , if

GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) =
1
λ

(
(λñ1)

T1
∑n

j=1 Tj ⊗ (λñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (λñn)
Tn

∑n
j=1 Tj

)
, (23)

then the function GSVNHFPWG is called the GSVNHFPWG operator. Where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n),

T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.

Similarly, according to the operations of SVHFEs in Definition 5, the theorem is obtained as below.

Theorem 5. Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, then their aggregated value by

using the GSVNHFPWG operator is also an SVNHFE, and

GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) =
1
λ

(λñ1)

T1

∑n
j=1 Tj ⊗ (λñ2)

T2

∑n
j=1 Tj ⊗ · · · ⊗ (λñn)

Tn
∑n

j=1 Tj



= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃n∈t̃n ,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃n∈ĩn ,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃n∈ f̃n


1−

1−
n
∏
j=1

(
1−

(
1− γj

)λ
) Tj

∑n
j=1 Tj

1/λ
,


1−

n
∏
j=1

(
1− δλ

j

) Tj
∑n

j=1 Tj

1/λ
 ,


1−

n
∏
j=1

(
1− ηλ

j

) Tj
∑n

j=1 Tj

1/λ

.

(24)

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.
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Proof. The proof procedure of Theorem 5 is similar to Theorem 1. �

Some desirable properties of the GSVNHFPWG operator are presented as below.

Theorem 6. (Idempotency) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, where

Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk. If all

ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) are equal, i.e., ñj = ñ =

{
t̃, ĩ, f̃

}
, t̃ = γ, ĩ = δ, and f̃ = η, then

GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) = ñ =
{

t̃, ĩ, f̃
}

. (25)

Proof. The proof procedure of Theorem 6 is similar to Theorem 2. �

Theorem 7. (Boundedness) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs,

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score value of SVNHFE ñk.

And let ñ− = {{γ−}, {δ+}, {η+}} and ñ+ = {{γ+}, {δ−}, {η−}}, where γ+ = ∪γj∈t̃j
max

{
γj
}

,

δ+ = ∪
δj∈ĩj

max
{

δj
}

, η+ = ∪
ηj∈ f̃ j

max
{

ηj
}

, γ− = ∪γj∈t̃j
min

{
γj
}

, δ− = ∪
δj∈ĩj

min
{

δj
}

, and

η− = ∪
ηj∈ f̃ j

min
{

ηj
}

. Then

ñ− ≤ GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (26)

Proof. The proof procedure of Theorem 7 is similar to Theorem 3. �

Theorem 8. (Monotonicity) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) and ñ∗j =

{
t̃∗j , ĩ∗j , f̃ ∗j

}
(j = 1, 2, . . . , n)

be two collections of SVNHFEs, where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T∗j = ∏

j−1
k=1 s

(
ñ∗k
)
(j = 2, . . . , n),

T1 = T∗1 = 1, s(ñk) and s
(
ñ∗k
)

are the score function values of SVNHFE ñk and ñ∗k , respectively.
If ñj ≤ ñ∗j (j = 1, 2, . . . , n), then

GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) ≤ GSVNHFPWGλ(ñ∗1 , ñ∗2 , . . . , ñ∗n). (27)

Proof. It directly follows from Theorem 7. �

Special cases of the GSVNHFPWG operator are shown as follows:

(1) If λ = 1, then the GSVNHFPWG operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted geometric (SVNHFPWG) operator:

SVNHFPWG(ñ1, ñ2, . . . , ñn) =

(
(ñ1)

T1
∑n

j=1 Tj ⊗ (ñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (ñn)
Tn

∑n
j=1 Tj

)
. (28)

(2) If λ = 1 and the aggregated arguments are in the same priority level, then the GSVNHFPWG
operator is reduced to the SVNHFWG operator [14]:

SVNHFWG(ñ1, ñ2, . . . , ñn) =
(
(ñ1)

w1 ⊗ (ñ2)
w2 ⊗ · · · ⊗ (ñn)

wn
)
. (29)

(3) If w = (1/n, 1/n, . . . , 1/n)T , λ = 1, and the aggregated arguments are in the same priority level,
then the GSVNHFPWG operator is reduced to the SVNHFGA operator:

SVNHFGA(ñ1, ñ2, . . . , ñn) = (ñ1 ⊗ ñ2 ⊗ · · · ⊗ ñn)
1/n. (30)
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4. An Approach for Decision-Making under Single-Valued Neutrosophic Hesitant
Fuzzy Environment

In this section, we utilize the GSVNHFPWA operator and GSVNHFPWG operator to
solve the MCDM problems under SVNHF environment, respectively. For a MCDM problem,
let A = {A1, A2, . . . Am} be a set of m alternatives to be evaluated, C = {C1, C2, . . . , Cn} be a collection
of criteria that prioritizations between the criteria expressed by the linear ordering C1 � C2 � · · · � Cn

exist, i.e., criteria Cj has a higher priority level than the criteria Ck if j < k. Decision makers evaluates
the alternatives over the criteria by using SVNHFEs, let N =

(
ñij
)

m×n(i = 1, 2, . . . , m; j = 1, 2, . . . , n)

be an SVNHF decision matrix, and ñij =
{

t̃ij, ĩij, f̃ij

}
is the evaluation information given by

decision maker. Where t̃ij =
{

γij
∣∣γij ∈ t̃ij

}
represents the possible degrees that the alternative

Ai satisfies the criteria Cj provided by decision maker, ĩij =
{

δij

∣∣∣δij ∈ ĩij
}

represents the possible
indeterminacy degrees that decision maker judges whether the alternative Ai satisfies the criteria Cj,

and f̃ij =
{

ηij

∣∣∣ηij ∈ f̃ij

}
represents the possible degrees that the alternative Ai does not satisfy the

criteria Cj provided by decision maker.
Based on the assumptions above, we use the GSVNHFPWA operator or GSVNHFPWG operator

to construct an approach for decision-making under SVNHF environment. The main steps are
presented below.

Step 1. Calculate the values of Tij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) by the equations as follows.

Tij = ∏j−1
k=1 s(ñik)(i = 1, 2, . . . , m; j = 1, 2, . . . , n), Ti1 = 1. (31)

Step 2. Utilize the GSVNHFPWA operator:

ñi = GSVNHFPWAλ(ñi1, ñi2, . . . , ñin) =

(
Ti1

∑n
j=1 Tij

(ñi1)
λ ⊕ Ti2

∑n
j=1 Tij

(ñi2)
λ ⊕ · · · ⊕ Tin

∑n
j=1 Tij

(ñin)
λ

)1/λ

= ∪
γ̃i1∈t̃i1,γ̃i2∈t̃i2,...,γ̃in∈t̃in ,δ̃i1∈ĩi1,δ̃i2∈ĩi2,...,δ̃in∈ĩin ,η̃i1∈ f̃i1,η̃i2∈ f̃i2,...,η̃in∈ f̃in



1−

n
∏
j=1

(
1−

(
γij
)λ
) Tij

∑n
j=1 Tij

1/λ
 ,

1−

1−
n
∏
j=1

(
1−

(
1− δij

)λ
) Tij

∑n
j=1 Tij

1/λ
,

1−

1−
n
∏
j=1

(
1−

(
1− ηij

)λ
) Tij

∑n
j=1 Tij

1/λ

.

(32)

or the GSVNHFPWG operator:

ñi = GSVNHFPWGλ(ñi1, ñi2, . . . , ñin) =
1
λ

(λñi1)

Ti1

∑n
j=1 Tij ⊗ (λñi2)

Ti2

∑n
j=1 Tij ⊗ · · · ⊗ (λñin)

Tin
∑n

j=1 Tij



= ∪
γ̃i1∈t̃i1,γ̃i2∈t̃i2,...,γ̃in∈t̃in ,δ̃i1∈ĩi1,δ̃i2∈ĩi2,...,δ̃in∈ĩin ,η̃i1∈ f̃i1,η̃i2∈ f̃i2,...,η̃in∈ f̃in


1−

1−
n
∏
j=1

(
1−

(
1− γij

)λ
) Tij

∑n
j=1 Tij

1/λ
 ,


1−

n
∏
j=1

(
1−

(
δij
)λ
) Tij

∑n
j=1 Tij

1/λ
,


1−

n
∏
j=1

(
1−

(
ηij
)λ
) Tij

∑n
j=1 Tij

1/λ

.

(33)

to aggregate the SVNHF decision matrix N =
(
ñij
)

m×n into the SVNHFE ñi =
{

t̃i, ĩi, f̃i

}
of

each alternative.
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Step 3. Rank all the alternatives by calculating the score function value of the SVNHFE ñi =
{

t̃i, ĩi, f̃i

}
combined with Definition 6.

s(ñi) =

[
1
li
∑γi∈t̃i

γi +
1
pi

∑δi∈ĩi
(1− δi) +

1
qi

∑ηi∈ f̃i
(1− ηi)

]/
3 . (34)

Then the bigger the score function value s(ñi), the higher the ranking of alternative xi will be.

5. Numerical Example

In this section, we apply a numerical example of MCDM problem under SVNHF environment to
illustrate the applications and advantages of the proposed method [14].

5.1. Implementation

Suppose that an investment company wants to invest a sum of money in a target company.
After a market survey, four alternative companies are identified to be chosen from, namely, a car
company (A1), a food company (A2), a computer company (A3), and an arms company (A4).
To evaluate the investment potential of a company needs to consider many aspects, such as the
growth prospects of the company, risk degree of the investment, and the impact of the company on
the environment. Therefore, the investment company shall evaluate the four alternative companies
above with respect to three criteria, namely, the environmental impact (C1), the risk (C2), and the
growth (C3). In the real decision-making process, compared with determining the weights of criteria,
identifying the priority level of criteria is more feasible and accurate. Then, according to the weight
vector of three criteria w = (0.40, 0.35, 0.25)T [14], we set up the criteria C1 with the first priority level,
followed by criteria C2 and C3. Decision makers from the investment company express the evaluation
information combined with SVNHFEs, and the SVNHF decision matrix N =

(
ñij
)

m×n is obtained
shown in Table 1 [14].

Table 1. SVNHF decision matrix.

Alternatives C1 C2 C3

A1 {{0.2, 0.3}, {0.1, 0.2}, {0.5, 0.6}} {{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}} {{0.5, 0.6}, {0.2, 0.3}, {0.3, 0.4}}
A2 {{0.6, 0.7}, {0.1, 0.2}, {0.1, 0.2}} {{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3}} {{0.6, 0.7}, {0.1}, {0.3}}
A3 {{0.5, 0.6}, {0.1}, {0.3}} {{0.5, 0.6}, {0.4}, {0.2, 0.3}} {{0.6}, {0.3}, {0.4}}
A4 {{0.3, 0.5}, {0.2}, {0.1, 0.2, 0.3}} {{0.7, 0.8}, {0.1}, {0.1, 0.2}} {{0.6, 0.7}, {0.1}, {0.2}}

Then, we use the proposed method to determine the ranking result of the four alternative
companies, which are presented as follows.

Step 1. Calculate the values of Tij(i = 1, 2, 3, 4; j = 1, 2, 3) according to Equation (31) as follows:

Tij =


1.000 0.5167 0.3358
1.000 0.7833 0.5875
1.000 0.7167 0.4539
1.000 0.6667 0.5556

.

Step 2. Utilize the GSVNHFPWA operator (which the parameter λ = 1) to aggregate the SVNHF decision

matrix N =
(
ñij
)

m×n(i = 1, 2, 3, 4; j = 1, 2, 3) into the SVNHFE ñi =
{

t̃i, ĩi, f̃i

}
(i = 1, 2, 3, 4) of

each alternative company. Take the alternative company A1 for instance, we have
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ñ1 = GSVNHFPWA1(ñ11, ñ12, ñ13) =

(
T11

∑3
j=1 T1j

(ñ11)
1 ⊕ T12

∑3
j=1 T1j

(ñ12)
1 ⊕ T13

∑3
j=1 T1j

(ñ13)
1

)1/1

= ∪
γ̃11∈t̃11,γ̃12∈t̃12,γ̃13∈t̃13,δ̃11∈ĩ11,δ̃12∈ĩ12,δ̃13∈ĩ13,η̃11∈ f̃11,η̃12∈ f̃12,η̃13∈ f̃13



1−

3
∏
j=1

(
1−

(
γ1j
)1
) T1j

∑3
j=1 T1j


1/1
 ,

1−

1−
3

∏
j=1

(
1−

(
1− δ1j

)1
) T1j

∑3
j=1 T1j


1/1
,

1−

1−
3

∏
j=1

(
1−

(
1− η1j

)1
) T1j

∑3
j=1 T1j


1/1



=
{{

1− (1− 0.2)0.54(1− 0.3)0.28(1− 0.5)0.18 , 1− (1− 0.2)0.54(1− 0.3)0.28(1− 0.6)0.18, 1− (1− 0.2)0.54(1− 0.4)0.28(1− 0.5)0.18,

1− (1− 0.2)0.54(1− 0.4)0.28(1− 0.6)0.18, 1− (1− 0.2)0.54(1− 0.5)0.28(1− 0.5)0.18, 1− (1− 0.2)0.54(1− 0.5)0.28(1− 0.6)0.18,

1− (1− 0.3)0.54(1− 0.3)0.28(1− 0.5)0.18, 1− (1− 0.2)0.54(1− 0.3)0.28(1− 0.6)0.18, 1− (1− 0.2)0.54(1− 0.4)0.28(1− 0.5)0.18,

1− (1− 0.3)0.54(1− 0.4)0.28(1− 0.6)0.18, 1− (1− 0.2)0.54(1− 0.5)0.28(1− 0.5)0.18, 1− (1− 0.2)0.54(1− 0.5)0.28(1− 0.6)0.18
}

,{
1−

(
1− (1− (1− 0.1))0.54(1− (1− 0.1))0.28(1− (1− 0.2))0.18

)
, 1−

(
1− (1− (1− 0.1))0.54(1− (1− 0.1))0.28(1− (1− 0.3))0.18

)
,

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.1))0.28(1− (1− 0.2))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.1))0.28(1− (1− 0.3))0.18
)}

,{
1−

(
1− (1− (1− 0.5))0.54(1− (1− 0.3))0.28(1− (1− 0.3))0.18

)
, 1−

(
1− (1− (1− 0.5))0.54(1− (1− 0.3))0.28(1− (1− 0.4))0.18

)
,

1−
(

1− (1− (1− 0.5))0.54(1− (1− 0.4))0.28(1− (1− 0.3))0.18
)

, 1−
(

1− (1− (1− 0.5))0.54(1− (1− 0.4))0.28(1− (1− 0.4))0.18
)

,

1−
(

1− (1− (1− 0.6))0.54(1− (1− 0.3))0.28(1− (1− 0.3))0.18
)

, 1−
(

1− (1− (1− 0.6))0.54(1− (1− 0.3))0.28(1− (1− 0.4))0.18
)

,

1−
(

1− (1− (1− 0.6))0.54(1− (1− 0.4))0.28(1− (1− 0.3))0.18
)

, 1−
(

1− (1− (1− 0.6))0.54(1− (1− 0.4))0.28(1− (1− 0.4))0.18
)}

.

and obtain the SVNHFE ñ1 as the following.

ñ1 = {{0.2922, 0.3203, 0.3220, 0.3414, 0.3489, 0.3556, 0.3675, 0.3691, 0.3811, 0.3941,
0.4004, 0.4242}, {0.1134, 0.1220, 0.1648, 0.1774}, {0.3953, 0.4164, 0.4283, 0.4512,

0.4361, 0.4595, 0.4726, 0.4979}}.

Similarly, the SVNHFEs of other alternative companies can be computed as follows:

ñ2 = {{0.6000, 0.6275, 0.6363, 0.6613, 0.6457, 0.6701, 0.6778, 0.7000}, {0.1000, 0.1257,
0.1340, 0.1684}, {0.1651, 0.1887, 0.2211, 0.2528}};

ñ3 = {{0.5228, 0.5567, 0.5694, 0.6000}, {0.1989}, {0.2787, 0.3186}};

ñ4 = {{0.5280, 0.5608, 0.5821, 0.6111, 0.5943, 0.6225, 0.6408, 0.6657}, {0.1366},
{0.1189, 0.1464, 0.1625, 0.2000, 0.1950, 0.2400}}.

Step 3. Calculate the score function value of the SVNHFE ñi by using Equation (34):

s(ñ1) = 0.5902, s(ñ2) = 0.7711, s(ñ3) = 0.6882, s(ñ4) = 0.7623.

Then, we can obtain the ranking order of four alternative companies is A2 � A4 � A3 � A1,
the food company A2 is the best alternative.

If we replace the GSVNHFPWA operator in the aforementioned procedures with the
GSVNHFPWG operator, the decision-making steps of the proposed method can be described as follows.

Step 1′. See Step 1.
Step 2′. Utilize the GSVNHFPWG operator (which the parameter λ = 1) to aggregate the SVNHF decision

matrix N =
(
ñij
)

m×n(i = 1, 2, 3, 4; j = 1, 2, 3) into the SVNHFE ñi =
{

t̃i, ĩi, f̃i

}
(i = 1, 2, 3, 4) of

each alternative company. Take an alternative company A1 for example, we have
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ñ1 = GSVNHFPWG1(ñ11, ñ12, ñ13) =

(ñ11)

T11

∑3
j=1 T1j ⊗ (ñ12)

T12

∑3
j=1 T1j ⊗ (ñ13)

T13

∑3
j=1 T1j



= ∪
γ̃11∈t̃11,γ̃12∈t̃12,γ̃13∈t̃13,δ̃11∈ĩ11,δ̃12∈ĩ12,δ̃13∈ĩ13,η̃11∈ f̃11,η̃12∈ f̃12,η̃13∈ f̃13


1−

1−
3

∏
j=1

(
1−

(
1− γ1j

)1
) T1j

∑3
j=1 T1j


1/1
 ,


1−

3
∏
j=1

(
1−

(
δ1j
)1
) T1j

∑3
j=1 T1j


1/1
,


1−

3
∏
j=1

(
1−

(
η1j
)1
) T1j

∑3
j=1 T1j


1/1



=
{{

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.3))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.3))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.4))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.4))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.5))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.5))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.3))0.54(1− (1− 0.3))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.3))0.54(1− (1− 0.3))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.3))0.54(1− (1− 0.4))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.3))0.54(1− (1− 0.4))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.5))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.5))0.28(1− (1− 0.6))0.18
)}

,{
1− (1− 0.1)0.54(1− 0.1)0.28(1− 0.2)0.18 , 1− (1− 0.1)0.54(1− 0.1)0.28(1− 0.3)0.18, 1− (1− 0.2)0.54(1− 0.1)0.28(1− 0.2)0.18,

1− (1− 0.2)0.54(1− 0.1)0.28(1− 0.3)0.18
}

,
{

1− (1− 0.5)0.54(1− 0.3)0.28(1− 0.3)0.18 , 1− (1− 0.5)0.54(1− 0.3)0.28(1− 0.4)0.18,

1− (1− 0.5)0.54(1− 0.4)0.28(1− 0.3)0.18, 1− (1− 0.5)0.54(1− 0.4)0.28(1− 0.4)0.18, 1− (1− 0.6)0.54(1− 0.3)0.28(1− 0.3)0.18,

1− (1− 0.6)0.54(1− 0.3)0.28(1− 0.4)0.18, 1− (1− 0.6)0.54(1− 0.4)0.28(1− 0.3)0.18, 1− (1− 0.6)0.54(1− 0.4)0.28(1− 0.4)0.18
}

.

and obtain the SVNHFE ñ1 as the following:

ñ1 = {{0.2644, 0.2733, 0.2865, 0.2961, 0.3049, 0.3151, 0.3291, 0.3402, 0.3566, 0.3686,
0.3795, 0.3923}, {0.1190, 0.1401, 0.1733, 0.1931}, {0.4163, 0.4324, 0.4408, 0.4562,

0.4825, 0.4968, 0.5043, 0.5179}}.

Similarly, the SVNHFEs of other alternative companies can be computed as follows:

ñ2 = {{0.6000, 0.6234, 0.6314, 0.6559, 0.6403, 0.6652, 0.6738, 0.7000}, {0.1000, 0.1344,
0.1436, 0.1763}, {0.1866, 0.2217, 0.2260, 0.2594}};

ñ3 = {{0.5194, 0.5517, 0.5649, 0.6000}, {0.2531}, {0.2917, 0.3222}};

ñ4 = {{0.4600, 0.4781, 0.4788, 0.4976, 0.5789, 0.6016, 0.6026, 0.6262}, {0.1465},
{0.1261, 0.1565, 0.1712, 0.2000, 0.2196, 0.2467}}.

Step 3′. Calculate the score function value of the SVNHFE ñi by using Equation (34):

s(ñ1) = 0.5669, s(ñ2) = 0.7622, s(ñ3) = 0.6663, s(ñ4) = 0.7358.

Then, we can obtain the ranking order of four alternative companies is A2 � A4 � A3 � A1,
and the food company A2 is also the best alternative.

In real life, decision makers may determine the value of the parameter λ according to the
decision-making problem itself or their preference. To analyze the influence of the parameter λ on the
final ranking result, we change the parameter λ of the GSVNHFPWA operator and GSVNHFPWG
operator in the numerical example above. Different values of the parameter λ are provided, such as
0.001, 0.5, 1, 2, 3, 5, 10, 20, and 50, which is determined by decision makers in decision-making process.
Combined with the proposed method, we can obtain the score function values of four alternative
companies, then the ranking results are determined as shown in Tables 2 and 3. Tables 2 and 3 show
that when the GSVNHFPWA operator is used to aggregate arguments, the best alternative is the
food company A2 for 0 < λ ≤ 3, but the best alternative is the arms company A4 for 5 ≤ λ ≤ 50.
Besides, when the GSVNHFPWG operator is used to aggregate arguments, the best alternative is
always the food company A2 for 0 < λ ≤ 50, however, there are some differences in specific ranking
for λ = 50. Thus, the different ranking results indicate that the parameter λ plays a very important
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role in the aggregation process; decision makers should be cautious to determine the value of λ in real
decision-making process.

Table 2. Score function values obtained by the GSVNHFPWA operator and the rankings of alternatives
for different values of λ.

The Value of λ s(ñ1) s(ñ2) s(ñ3) s(ñ4) Ranking

λ = 0.001 0.5834 0.7702 0.6856 0.7571 A2 � A4 � A3 � A1
λ = 0.5 0.5866 0.7706 0.6869 0.7596 A2 � A4 � A3 � A1
λ = 1 0.5902 0.7711 0.6882 0.7623 A2 � A4 � A3 � A1
λ = 2 0.5984 0.7721 0.6910 0.7676 A2 � A4 � A3 � A1
λ = 3 0.6071 0.7732 0.6937 0.7727 A2 � A4 � A3 � A1
λ = 5 0.6232 0.7753 0.6991 0.7811 A4 � A2 � A3 � A1
λ = 10 0.6500 0.7810 0.7109 0.7954 A4 � A2 � A3 � A1
λ = 20 0.6734 0.7902 0.7253 0.8104 A4 � A2 � A3 � A1
λ = 50 0.6927 0.8023 0.7394 0.8261 A4 � A2 � A3 � A1

Table 3. Score function values obtained by the GSVNHFPWG operator and the rankings of alternatives
for different values of λ.

The Value of λ s(ñ1) s(ñ2) s(ñ3) s(ñ4) Ranking

λ = 0.01 0.5735 0.7667 0.6766 0.7454 A2 � A4 � A3 � A1
λ = 0.5 0.5704 0.7647 0.6718 0.7408 A2 � A4 � A3 � A1
λ = 1 0.5669 0.7622 0.6663 0.7358 A2 � A4 � A3 � A1
λ = 2 0.5592 0.7569 0.6553 0.7251 A2 � A4 � A3 � A1
λ = 3 0.5512 0.7518 0.6459 0.7152 A2 � A4 � A3 � A1
λ = 5 0.5372 0.7435 0.6324 0.6998 A2 � A4 � A3 � A1
λ = 10 0.5166 0.7317 0.6132 0.6806 A2 � A4 � A3 � A1
λ = 20 0.5013 0.7311 0.5964 0.6686 A2 � A4 � A3 � A1
λ = 50 0.5718 1.0000 0.8765 0.8030 A2 � A3 � A4 � A1

5.2. Comparison and Discussion

To further verify the effectiveness of the proposed method, we compare the aforementioned
ranking order with the results of other decision-making methods for analyzing the same numerical
example as shown in Table 4; these methods include the SVNHFWA operator and SVNHFWG
operator [14], correlation coefficient of DHFSs [27], correlation coefficient of SVNEs [28], and correlation
coefficient of SVNHFEs [15]. From Table 4, we can see that the ranking order of four alternatives
obtained by the SVNHFWA operator is A4 � A2 � A3 � A1 due to the feature of emphasizing
group major points; besides, the ranking order of four alternatives in other methods are always
A2 � A4 � A3 � A1, which is consistent with our proposed method.

Table 4. Comparison result of different decision-making methods.

Decision-Making Method Ranking

The GSVNHFPWA operator (λ = 1) A2 � A4 � A3 � A1
The GSVNHFPWG operator (λ = 1) A2 � A4 � A3 � A1

The SVNHFWA operator A4 � A2 � A3 � A1
The SVNHFWG operator A2 � A4 � A3 � A1

Correlation coefficient of DHFSs A2 � A4 � A3 � A1
Correlation coefficient of SVNEs A2 � A4 � A3 � A1

Correlation coefficient of SVNHFEs A2 � A4 � A3 � A1
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With regard to the existing five decision-making methods above, the methods based on the
correlation coefficient of DHFSs and correlation coefficient of SVNEs are only applicable to the
DHF and SVN environment, respectively, while DHFS and SVNS are the specific cases of SVNHFS.
On the other hand, the other three methods can only solve the decision-making problems that the
criteria are in the same priority level. Therefore, the comparison result indicates that the proposed
method, not only can deal with the decision-making problems effectively but, also has several
advantages as follows: (1) decision makers evaluate the alternatives by using SVNHFEs, which contains
truth-membership, indeterminacy-membership, and falsity-membership degrees, and SVNHFS is
also a generalization of HFS, DHFS, and SVNS; thus, SVNHFEs can express more reliable evaluation
information of decision makers; (2) the GSVNHFPWA operator and GSVNHFPWG operator can solve
the decision-making problems that the criteria are in different priority levels, which is not considered in
other decision-making methods under SVNHF environment; and (3) the GSVNHFPWA operator and
GSVNHFPWG operator can be reduced to several aggregation operators through adjusting the value
of the parameter λ, including the SVNHFWA operator and SVNHFWG operator [14]. Decision makers
can determine the exact value of the parameter λ to respond to the possible situations in real life.

6. Conclusions

This paper studies the MCDM problems under SVNHF environment, while the criteria are in
different priority levels. Motivated by the idea of the PA operator, we develop the GSVNHFPWA
operator and GSVNHFPWG operator for aggregating SVNHFEs based on the related researches
of SVNS and HFS theory. Some desirable properties of the proposed operators are investigated in
detail, such as idempotency, boundedness, and monotonicity. Furthermore, we obtained several
special cases that reduced from the proposed operators by changing the value of the parameter λ.
Then, an approach for MCDM in which the criteria have different priorities is constructed combined
with these operators. Finally, a numerical example is provided to illustrate the applications of the
proposed method, and several advantages are reflected by the comparison between the proposed
method and several existing decision-making methods. In the future, we shall investigate the SVNHF
prioritized aggregation operators according to the different t-norm and t-conorm operational laws,
and develop more aggregation operators for SVNHFSs.
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Abstract: Single-valued neutrosophic sets (SVNSs) handling the uncertainties characterized by truth,
indeterminacy, and falsity membership degrees, are a more flexible way to capture uncertainty. In this
paper, some new types of distance measures, overcoming the shortcomings of the existing measures,
for SVNSs with two parameters are proposed along with their proofs. The various desirable relations
between the proposed measures have also been derived. A comparison between the proposed and
the existing measures has been performed in terms of counter-intuitive cases for showing its validity.
The proposed measures have been illustrated with case studies of pattern recognition as well as
medical diagnoses, along with the effect of the different parameters on the ordering of the objects.

Keywords: decision-making; single-valued neutrosophic sets; distance measure; pattern recognition;
uncertainties

1. Introduction

The classical measure theory has been widely used to represent uncertainties in data.
However, these measures are valid only for precise data, and hence they may be unable to give
accurate judgments for data uncertain and imprecise in nature. To handle this, fuzzy set (FS) theory,
developed by Zadeh [1], has received much attention over the last decades because of its capability of
handling uncertainties. After this, Atanassov [2] proposed the concept of an intuitionistic fuzzy set
(IFS), which extends the theory of FSs with the addition of a degree of non-membership. As IFS theory
has widely been used by researchers [3–16] in different disciplines for handling the uncertainties in data,
hence its corresponding analysis is more meaningful than FSs’ crisp analysis. Nevertheless, neither the
FS nor IFS theory are able to deal with indeterminate and inconsistent information. For instance, we
take a person giving their opinion about an object with 0.5 being the possibility that the statement is
true, 0.7 being the possibility that the statement is false and 0.2 being the possibility that he or she is not sure.
To resolve this, Smarandache [17] introduced a new component called the “indeterminacy-membership
function” and added the “truth membership function” and “falsity membership function”, all which are
independent components lying in ]0−, 1+[, and hence the corresponding set is known as a neutrosophic
set (NS), which is the generalization of the IFS and FS. However, without specification, NSs are difficult
to apply to real-life problems. Thus, a particular case of the NS called a single-valued NS (SVNS) has
been proposed by Smarandache [17], Wang et al. [18].

After this pioneering work, researchers have been engaged in extensions and applications
to different disciplines. However, the most important task for the decision-maker is to rank the
objects so as to obtain the desired object(s). For this, researchers have made efforts to enrich the
concept of information measures in neutrosophic environments. Broumi and Smarandache [19]
introduced the Hausdorff distance, while Majumdar [20] presented the Hamming and Euclidean
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distance for comparing the SVNSs. Ye [21] presented the concept of correlation for single-valued
neutrosophic numbers (SVNNs). Additionally, Ye [22] improved the concept of cosine similarity for
SVNSs, which was firstly introduced by Kong et al. [23] in a neutrosophic environment. Nancy and
Garg [24] presented an improved score function for ranking the SVNNs and applied them to solve the
decision-making problem. Garg and Nancy [25] presented the entropy measure of order α and applied
them to solve decision-making problems. Recently, Garg and Nancy [26] presented a technique for
order preference by similarity to ideal solution (TOPSIS) method under an interval NS environment
to solve decision-making problems. Aside from these, various authors have incorporated the idea
of NS theory into the similarity measures [27,28], distance measures [29,30], the cosine similarity
measure [19,22,31], and aggregation operators [22,31–40].

Thus, on the basis of the above observations, it has been observed that distance or similarity
measures are of key importance in a number of theoretical and applied statistical inference and
data processing problems. It has been deduced from studies that similarity, entropy and divergence
measures could be induced by the normalized distance measure on the basis of their axiomatic
definitions. On the other hand, SVNSs are one of the most successful theories to handle the uncertainties
and certainties in the system, but little systematic research has explored these problems. The gap in
the research motivates us to develop some families of the distance measures of the SVNS to solve
the decision-making problem, for which preferences related to different alternatives are taken in the
form of neutrosophic numbers. The main contributions of this work are summarized as follows:
(i) to highlight the shortcomings of the various existing distance measures under the single-valued
neutrosophic information through illustrative examples; (ii) to overcome the shortcomings of the
existing measures, this paper defines some new series of biparametric distance measures between
SVNSs, which depend on two parameters, namely, p and t, where p is the Lp norm and t identifies
the level of uncertainty. The various desirable relations between these have been investigated in
detail. Then, we utilized these measures to solve the problem of pattern recognition as well as medical
diagnosis and compared their performance with that of some of the existing approaches.

The rest of this paper is organized as follows. Section 2 briefly describes the concepts of
NSs, SVNSs and their corresponding existing distance measures. Section 3 presents a family of
the normalized and weighted normalized distance measures between two SVNSs. Some of their
desirable properties have also been investigated in detail, while generalized distance measures have
been proposed in Section 4. The defined measures are illustrated, by an example in Section 5, using the
field of pattern recognition and medical diagnosis for demonstrating the effectiveness and stability of
the proposed measures. Finally, a concrete conclusion has been drawn in Section 6.

2. Preliminaries

An overview of NSs and SVNSs is addressed here on the universal set X.

2.1. Basic Definitions

Definition 1 ([17,41]). A neutrosophic set (NS) A in X is defined by its truth membership function (TA(x)),
an indeterminacy-membership function (IA(x)) and a falsity membership function (FA(x)), where all are
subsets of ]0−, 1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x); thus 0− ≤ sup TA(x) +
sup IA(x) + sup FA(x) ≤ 3+ for all x ∈ X. Here, sup represents the supremum of the set.

Wang et al. [18], Smarandache [41] defined the SVNS, which is an instance of a NS.

Definition 2 ([18,41]). A single-valued neutrosophic set (SVNS) A is defined as

A = {〈x, TA(x), IA(x), FA(x)〉 | x ∈ X}
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where TA : X → [0, 1], IA : X → [0, 1] and FA : X → [0, 1] with TA(x) + IA(x) + FA(x) ≤ 3 for all x ∈ X.
The values TA(x), IA(x) and FA(x) denote the truth-membership degree, the indeterminacy-membership degree
and the falsity-membership degree of x to A, respectively. The pairs of these are called single-valued neutrosophic
numbers (SVNNs), which are denoted by α = 〈µA, ρA, νA〉, and class of SVNSs is denoted by Φ(X).

Definition 3. Let A = 〈µA, ρA, νA〉 and B = 〈µB, ρB, νB〉 be two single-valued neutrosophic sets (SVNSs).
Then the following expressions are defined by [18]:

(i) A ⊆ B if and only if (iff) µA(x) ≤ µB(x), ρA(x) ≥ ρB(x) and νA(x) ≥ νB(x) for all x in X;
(ii) A = B iff A ⊆ B and B ⊆ A;
(iii) Ac = {〈νA(x), 1− ρA(x), µA(x) | x ∈ X〉};
(iv) A ∩ B = 〈min(µA(x), µB(x)), max(ρA(x), ρB(x)), max(νA(x), νB(x))〉;
(v) A ∪ B = 〈max(µA(x), µB(x)), min(ρA(x), ρB(x)), min(νA(x), νB(x))〉.

2.2. Existing Distance Measures

Definition 4. A real function d : Φ(X)×Φ(X)→ [0, 1] is called a distance measure [19], where d satisfies
the following axioms for A, B, C ∈ Φ(X):

(P1) 0 ≤ d(A, B) ≤ 1;
(P2) d(A, B) = 0 iff A = B;
(P3) d(A, B) = d(B, A);
(P4) If A ⊆ B ⊆ C, then d(A, C) ≥ d(A, B) and d(A, C) ≥ d(B, C).

On the basis of this, several researchers have addressed the various types of distance
and similarity measures between two SVNSs A = 〈xi, µA(xi), ρA(xi), νA(xi)|xi ∈ X〉 and
B = 〈xi, µB(xi), ρB(xi), νB(xi)|xi ∈ X〉, i = 1, 2, ..., n, which are given as follows:

(i) The extended Hausdorff distance [19]:

DH(A, B) =
1
n

n

∑
i=1

max
{
|µA(xi)− µB(xi)|, |ρA(xi)− ρB(xi)|, |νA(xi)− νB(xi)|

}
(1)

(ii) The normalized Hamming distance [20]:

DNH(A, B) =
1

3n

n

∑
i=1

{
|µA(xi)− µB(xi)|+ |ρA(xi)− ρB(xi)|+ |νA(xi)− νB(xi)|

}
(2)

(iii) The normalized Euclidean distance [20]:

DNE(A, B) =

(
1

3n

n

∑
i=1

{
(µA(xi)− µB(xi))

2 + (ρA(xi)− ρB(xi))
2 + (νA(xi)− νB(xi))

2
})1/2

(3)

(iv) The cosine similarities [22]:

SCS1(A, B) =
1
n

n

∑
i=1

cos

[
π
(
|µA(xi)− µB(xi)| ∨ |ρA(xi)− ρB(xi)| ∨ |νA(xi)− νB(xi)|

)
2

]
(4)

and

SCS2(A, B) =
1
n

n

∑
i=1

cos

[
π
(
|µA(xi)− µB(xi)|+ |ρA(xi)− ρB(xi)|+ |νA(xi)− νB(xi)|

)
6

]
(5)

and their corresponding distances denoted by DCS1 = 1− SCS1 and DCS2 = 1− SCS2.



Information 2017, 8, 162 4 of 20

(v) The tangent similarities [42]:

ST1(A, B) = 1− 1
n

n

∑
i=1

tan

[
π
(
|µA(xi)− µB(xi)| ∨ |ρA(xi)− ρB(xi)| ∨ |νA(xi)− νB(xi)|

)
4

]
(6)

and

ST2(A, B) = 1− 1
n

n

∑
i=1

tan

[
π
(
|µA(xi)− µB(xi)|+ |ρA(xi)− ρB(xi)|+ |νA(xi)− νB(xi)|

)
12

]
(7)

and their corresponding distances denoted by DT1 = 1− ST1 and DT2 = 1− ST2.

2.3. Shortcomings of the Existing Measures

The above measures have been widely used; however, simultaneously they have some drawbacks,
which are illustrated with the numerical example that follows.

Example 1. Consider two known patterns A and B, which are represented by SVNSs in a universe X given by
A = 〈x, 0.5, 0.0, 0.0 | x ∈ X〉, B = 〈x, 0.0, 0.5, 0.0 | x ∈ X〉. Consider an unknown pattern C ∈ SVNSs(X),
which is recognized where C = 〈x, 0.0, 0.0, 0.5 | x ∈ X〉; then the target of this problem is to classify the pattern
C in one of the classes A or B. If we apply the existing measures [19,20,22,42] defined in Equations (1)–(7)
above, then we obtain the following:

Pair DH DNH DNE DCS1 DCS2 DT1 DT1

(A,C) 0.5 0.3333 0.4048 0.2929 0.1340 0.4142 0.2679
(B,C) 0.5 0.3333 0.4048 0.2929 0.1340 0.4142 0.2679

Thus, from this, we conclude that these existing measures are unable to classify the pattern C with A and
B. Hence these measures are inconsistent and unable to perform ranking.

Example 2. Consider two SVNSs defined on the universal set X given by A = 〈x, 0.3, 0.2, 0.3 | x ∈ X〉 and
B = 〈x, 0.4, 0.2, 0.4 | x ∈ X〉. If we replace the degree of falsity membership of A (0.3) with 0.4, and that of B
(0.4) with 0.3, then we obtain new SVNSs as C = 〈x, 0.3, 0.2, 0.4 | x ∈ X〉 and D = 〈x, 0.4, 0.2, 0.3 | x ∈ X〉.
Now, by using the distance measures defined in Equations (1)–(7), we obtain their corresponding values
as follows:

Pair DH DNH DNE DCS1 DCS2 DT1 DT1

(A,B) 0.1 0.066 0.077 0.013 0.006 0.078 0.052
(C,D) 0.1 0.066 0.077 0.013 0.006 0.078 0.052

Thus, it has been concluded that by changing the falsity degree of SVNSs and keeping the other
degrees unchanged, the values of their corresponding measures remain the same. Thus, there is no
effect of the degree of falsity membership on the distance measures. Similarly, we can observe the
same for the degree of the truth membership functions.

This seems to be worthless to calculate distance using the measures mentioned above. Thus, there
is a need to build up a new distance measure that overcomes the shortcomings of the existing measures.

3. Some New Distance Measures between SVNSs

In this section, we present the Hamming and the Euclidean distances between SVNSs, which can
be used in real scientific and engineering applications.

Letting Φ(X) be the class of SVNSs over the universal set X, then we define the distances for
SVNSs, A = 〈µA(xi), ρA(xi), νA(xi) | xi ∈ X〉 and B = 〈µB(xi), ρB(xi), νB(xi) | xi ∈ X〉, by considering
the uncertainty parameter t, as follows:
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(i) Hamming distance:

d1(A, B) =
1

3(2 + t)

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣
 (8)

(ii) Normalized Hamming distance:

d2(A, B) =
1

3n(2 + t)

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣
 (9)

(iii) Euclidean distance:

d3(A, B) =

 1
3(2 + t)2

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣2
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣2
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣2



1/2

(10)

(iv) Normalized Euclidean distance:

d4(A, B) =

 1
3n(2 + t)2

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣2
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣2
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣2



1/2

(11)

where t ≥ 3 is a parameter.

Then, on the basis of the distance properties as defined in Definition 4, we can obtain the
following properties:

Proposition 1. The above-defined distance d2(A, B), between two SVNSs A and B, satisfies the following
properties (P1)–(P4):

(P1) 0 ≤ d2(A, B) ≤ 1, ∀A, B ∈ Φ(X);
(P2) d2(A, B) = 0 iff A = B;
(P3) d2(A, B) = d2(B, A);
(P4) If A ⊆ B ⊆ C, then d2(A, C) ≥ d2(A, B) and d2(A, C) ≥ d2(B, C).

Proof. For two SVNSs A and B, we have

(P1) 0 ≤ µA(xi), µB(xi) ≤ 1, 0 ≤ ρA(xi), ρB(xi) ≤ 1 and 0 ≤ νA(xi), νB(xi) ≤ 1. Thus, | µA(xi)−
µB(xi) |≤ 1, | ρA(xi) − ρB(xi) |≤ 1, | νA(xi) − νB(xi) |≤ 1 and | t(µA(xi) − µB(xi)) |≤ t.
Therefore,

| (tµA(xi)− νA(xi)− ρA(xi))− (tµB(xi)− νB(xi)− ρB(xi)) |≤ (2 + t)

| (tρA(xi) + νA(xi)− µA(xi))− (tρB(xi) + νB(xi)− µB(xi)) |≤ (2 + t)

| (tνA(xi) + ρA(xi)− µA(xi))− (tνB(xi) + ρB(xi)− µB(xi)) |≤ (2 + t)

Hence, by the definition of d2, we obtain 0 ≤ d2(A, B) ≤ 1.
(P2) Firstly, we assume that A = B, which implies that µA(xi) = µB(xi), ρA(xi) = ρB(xi), and

νA(xi) = νB(xi) for i = 1, 2, .., n. Thus, by the definition of d2, we obtain d2(A, B) = 0.
Conversely, assuming that d2(A, B) = 0 for two SVNSs A and B, this implies that
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| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|
+ | − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|
+ | − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

 = 0

or

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))| = 0

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))| = 0

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))| = 0

After solving, we obtain µA(xi)− µB(xi) = 0, ρA(xi)− ρB(xi) = 0 and νA(xi)− νB(xi) = 0,
which implies µA(xi) = µB(xi), ρA(xi) = ρB(xi) and νA(xi) = νB(xi). Therefore, A = B. Hence
d2(A, B) = 0 iff A = B.

(P3) This is straightforward from the definition of d2.
(P4) If A ⊆ B ⊆ C, then µA(xi) ≤ µB(xi) ≤ µC(xi), ρA(xi) ≥ ρB(xi) ≥ ρC(xi) and νA(xi) ≥

νB(xi) ≥ νC(xi), which implies that µA(xi) − µB(xi) ≥ µA(xi) − µC(xi), νA(xi) − νB(xi) ≤
νA(xi)− νC(xi), and ρA(xi)− ρB(xi) ≤ ρA(xi)− ρC(xi).

Therefore,

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|
≤ | − t(µA(xi)− µc(xi)) + (ρA(xi)− ρC(xi)) + (νA(xi)− νC(xi))|

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|
≤ | − t(ρA(xi)− ρC(xi))− (νA(xi)− νC(xi)) + (µA(xi)− µC(xi))|

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|
≤ | − t(νA(xi)− νC(xi))− (ρA(xi)− ρC(xi)) + (µA(xi)− µC(xi))|

By adding, we obtain d2(A, B) ≤ d2(A, C). Similarly, we obtain d2(B, C) ≤ d2(A, C).

Proposition 2. Distance d4 as defined in Equation (11) is also a valid measure.

Proof. For two SVNSs A and B, we have

(P1) 0 ≤ µA(xi), µB(xi) ≤ 1, 0 ≤ ρA(xi), ρB(xi) ≤ 1 and 0 ≤ νA(xi), νB(xi) ≤ 1.
Thus, | µA(xi) − µB(xi) |≤ 1, | ρA(xi) − ρB(xi) |≤ 1, | νA(xi) − νB(xi) |≤ 1 and
| t(µA(xi)− µB(xi)) | ≤ t. Therefore,

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2 ≤ (2 + t)2

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2 ≤ (2 + t)2

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2 ≤ (2 + t)2

Hence, by the definition of d4, we obtain 0 ≤ d4(A, B) ≤ 1.
(P2) Assuming that A = B implies that µA(xi) = µB(xi), ρA(xi) = ρB(xi) and νA(xi) = νB(xi) for

i = 1, 2, . . . , n, and hence using Equation (11), we obtain d4(A, B) = 0. Conversely, assuming
that d4(A, B) = 0 implies

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2 = 0

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2 = 0

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2 = 0
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After solving these, we obtain µA(xi)− µB(xi) = 0, ρA(xi)− ρB(xi) = 0 and νA(xi)− νB(xi) = 0;
that is, µA(xi) = µB(xi), ρA(xi) = ρB(xi) and νA(xi) = νB(xi) for t ≥ 3. Hence A = B.
Therefore, d4(A, B) = 0 iff A = B.

(P3) This is straightforward from the definition of d4.
(P4) If A ⊆ B ⊆ C, then µA(xi) ≤ µB(xi) ≤ µC(xi), ρA(xi) ≥ ρB(xi) ≥ ρC(xi), and νA(xi) ≥

νB(xi) ≥ νC(xi). Therefore

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2

≤ | − t(µA(xi)− µc(xi)) + (ρA(xi)− ρC(xi)) + (νA(xi)− νC(xi))|2

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2

≤ | − t(ρA(xi)− ρC(xi))− (νA(xi)− νC(xi)) + (µA(xi)− µC(xi))|2

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2

≤ | − t(νA(xi)− νC(xi))− (ρA(xi)− ρC(xi)) + (µA(xi)− µC(xi))|2

Hence by the definition of d4, we obtain d4(A, B) ≤ d4(A, C). Similarly, we obtain d4(B, C) ≤
d4(A, C).

Now, on the basis of these proposed distance measures, we conclude that this successfully
overcomes the shortcomings of the existing measures as described above.

Example 3. If we apply the proposed distance measures d2 and d4 on the data considered in Example 1 to classify
the pattern C, then corresponding to the parameter t = 3, we obtain d2(A, C) = 0.3333, d2(B, C) = 0.1333,
d4(A, C) = 0.3464 and d4(B, C) = 0.1633. Thus, the pattern C is classified with the pattern B and hence is
able to identify the best pattern.

Example 4. If we utilize the proposed distances d2 and d4 for the above-considered Example 2, then their
corresponding values are d2(A, B) = 0.0267, d2(C, D) = 0.0667, d4(A, B) = 0.0327 and d4(C, D) = 0.6930.
Therefore, there is a significant effect of the change in the falsity membership on the measure values and hence
consequently on the ranking values.

Proposition 3. Measures d1 and d3 satisfy the following properties:

(i) 0 ≤ d1 ≤ n;
(ii) 0 ≤ d3 ≤ n1/2.

Proof. We can easily obtain that d1(A, B) = nd2(A, B), and thus by Proposition 1, we obtain
0 ≤ d1(A, B) ≤ n. Similarly, we can obtain 0 ≤ d3(A, B) ≤ n1/2.

However, in many practical situations, the different sets may have taken different weights,
and thus weight ωi(i = 1, 2, . . . , n) of the element xi ∈ X should be taken into account. In the
following, we develop a weighted Hamming distance and the normalized weighted Euclidean distance
between SVNSs.

(i) The normalized weighted Hamming distance:

d5(A, B)

=
1

3n(2 + t)

n

∑
i=1

ωi


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣
 (12)
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(ii) The normalized weighted Euclidean distance:

d6(A, B)

=


1

3n(2 + t)2

n

∑
i=1

ωi


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣2
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣2
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣2



1/2

(13)

where t ≥ 3 is a parameter.

It is straightforward to check that the normalized weighted distance dk(A, B)(k = 5, 6) between
SVNSs A and B also satisfies the above properties (P1)–(P4).

Proposition 4. Distance measures d2 and d5 satisfy the relation d5 ≤ d2.

Proof. Because ωi ≥ 0, ∑n
i=1 ωi = 1, then for any two SVNSs A and B, we have d5(A, B) =

1
3n(2+t) ∑n

i=1 ωi

{(
| − t(µA(xi) − µB(xi)) + (ρA(xi) − ρB(xi)) + (νA(xi) − νB(xi))| + | − t(ρA(xi) −

ρB(xi)) − (νA(xi) − νB(xi)) + (µA(xi) − µB(xi))| + | − t(νA(xi) − νB(xi)) − (ρA(xi) − ρB(xi)) +

(µA(xi) − µB(xi))|
)}
≤ 1

3n(2+t) ∑n
i=1

(
| − t(µA(xi) − µB(xi)) + (ρA(xi) − ρB(xi)) + (νA(xi) −

νB(xi))|+ | − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|+ | − t(νA(xi)− νB(xi))−
(ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

)
; that is, d5(A, B) ≤ d2(A, B).

Proposition 5. Let A and B be two SVNSs in X; then d5 and d6 are the distance measures.

Proof. Because ωi ∈ [0, 1] and
n
∑

i=1
ωi = 1 then we can easily obtain 0 ≤ d5(A, B) ≤ d2(A, B).

Thus, d5(A, B) satisfies (P1). The proofs of (P2)–(P4) are similar to those of Proposition 1. Similar is
true for d6.

Proposition 6. The distance measures d4 and d6 satisfy the relation d6 ≤ d4.

Proof. The proof follows from Proposition 4.

Proposition 7. The distance measures d2 and d4 satisfy the inequality d4 ≤
√

d2.

Proof. For two SVNSs A and B, we have

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2 ≤ (2 + t)2

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2 ≤ (2 + t)2

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2 ≤ (2 + t)2

which implies that∣∣∣−t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

2 + t

∣∣∣2 ≤ 1∣∣∣−t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣2 ≤ 1∣∣∣−t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣2 ≤ 1



Information 2017, 8, 162 9 of 20

For any a ∈ [0, 1], we have a2 ≤ a. Therefore,∣∣∣−t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

2 + t

∣∣∣2
≤
∣∣∣−t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

2 + t

∣∣∣∣∣∣−t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣2
≤
∣∣∣−t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣
and

∣∣∣−t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣2
≤
∣∣∣−t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣
By adding these inequalities and by the definition of d4, we have

d4(A, B) = 1
3n(2 + t)2

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣2
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣2
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣2



1/2

≤

 1
3n(2 + t)

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣



1/2

≤ (d2(A, B))1/2

As A and B are arbitrary SVNSs, thus we obtain d4 ≤
√

d2.

Proposition 8. Measures d6 and d5 satisfy the inequality d6 ≤
√

d5.

Proof. The proof follows from Proposition 7.

The Hausdroff distance between two non-empty closed and bounded sets is a measure of the
resemblance between them. For example, we consider A = [x1, x2] and B = [y1, y2] in the Euclidean
domain R; the Hausdroff distance in the additive set environment is given by the following [8]:

H(A, B) = max
{
| x1 − y1 |, | x2 − y2 |

}
Now, for any two SVNSs A and B over X = {x1, x2, . . . , xn}, we propose the following utmost

distance measures:

• Utmost normalized Hamming distance:

dH
1 (A, B)

=
1

3n(2 + t)

n

∑
i=1

max
i


| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|,
| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|,
| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

 (14)
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• Utmost normalized weighted Hamming distance:

dH
2 (A, B)

=
1

3n(2 + t)

n

∑
i=1

ωi max
i


| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|,
| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|,
| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

 (15)

• Utmost normalized Euclidean distance:

dH
3 (A, B)

=


1

3n(2 + t)2

n

∑
i=1

max
i


| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2,

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2,

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2




1/2

(16)

• Utmost normalized weighted Euclidean distance:

dH
4 (A, B)

=


1

3n(2 + t)2

n

∑
i=1

ωi max
i


| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2,

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2,

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2




1/2

(17)

Proposition 9. The distance dH
1 (A, B) defined in Equation (14) for two SVNSs A and B is a valid

distance measure.

Proof. The above measure satisfies the following properties:

(P1) As A and B are SVNSs, so | µA(xi) − µB(xi) |≤ 1, | ρA(xi) − ρB(xi) |≤ 1 and | νA(xi) −
νB(xi) |≤ 1. Thus,

| (tµA(xi)− νA(xi)− ρA(xi))− (tµB(xi)− νB(xi)− ρB(xi)) |≤ (2 + t)

| (tρA(xi) + νA(xi)− µA(xi))− (tρB(xi) + νB(xi)− µB(xi)) |≤ (2 + t)

| (tνA(xi) + ρA(xi)− µA(xi))− (tνB(xi) + ρB(xi)− µB(xi)) |≤ (2 + t)

Hence, by the definition of dH
1 , we obtain 0 ≤ dH

1 (A, B) ≤ 1.
(P2) Similar to the proof of Proposition 1.
(P3) This is clear from Equation (14).
(P4) Let A ⊆ B ⊆ C, which implies µA(xi) ≤ µB(xi) ≤ µC(xi), ρA(xi) ≥ ρB(xi) ≥ ρC(xi) and

νA(xi) ≥ νB(xi) ≥ νC(xi). Therefore, | − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)−
νB(xi))| ≤ | − t(µA(xi) − µc(xi)) + (ρA(xi) − ρC(xi)) + (νA(xi) − νC(xi))|, | − t(ρA(xi) −
ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))| ≤ | − t(ρA(xi)− ρC(xi))− (νA(xi)− νC(xi)) +

(µA(xi) − µC(xi))| and | − t(νA(xi) − νB(xi)) − (ρA(xi) − ρB(xi)) + (µA(xi) − µB(xi))| ≤
| − t(νA(xi) − νC(xi)) − (ρA(xi) − ρC(xi)) + (µA(xi) − µC(xi))|, which implies that max

i

(
| −

t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|, | − t(ρA(xi)− ρB(xi))− (νA(xi)−
νB(xi)) + (µA(xi)− µB(xi))|, | − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

)
≤ max

i

(
| − t(µA(xi)−µc(xi))+ (ρA(xi)− ρC(xi))+ (νA(xi)− νC(xi))|, | − t(ρA(xi)− ρC(xi))−

(νA(xi) − νC(xi)) + (µA(xi) − µC(xi))| and | − t(νA(xi) − νC(xi)) − (ρA(xi) − ρC(xi)) +

(µA(xi)− µC(xi))|
)
. Hence dH

1 (A, B) ≤ dH
1 (A, C). Similarly, we obtain dH

1 (B, C) ≤ dH
1 (A, C).

Proposition 10. For A, B ∈ Φ(X), dH
2 , dH

3 and dH
4 are the distance measures.
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Proof. The proof follows from the above proposition.

Proposition 11. The measures dH
2 and dH

1 satisfy the following inequality: dH
2 ≤ dH

1 .

Proof. Because wi ∈ [0, 1], therefore

dH
2 (A, B) =

1
3n(2 + t)

n

∑
i=1

wi

(
max

i

(
| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|,

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|, | − t(νA(xi)

−νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|
))

≤ 1
3n(2 + t)

n

∑
i=1

max
i

(
| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|,

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|, | − t(νA(xi)

−νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|
)

= dH
1 (A, B)

Hence, dH
2 ≤ dH

1 .

Proposition 12. The measures dH
3 and dH

4 satisfy the inequality dH
4 (A, B) ≤ dH

3 (A, B).

Proof. The proof follows from Proposition 11.

Proposition 13. The measures dH
3 and dH

1 satisfy the inequality dH
3 ≤

√
dH

1 .

Proof. Because for any a ∈ [0, 1], a2 ≤ a ≤ a1/2, the remaining proof follows from Proposition 7.

Proposition 14. The measures dH
4 and dH

2 satisfy the inequality dH
4 ≤

√
dH

2 .

Proof. The proof follows from Proposition 13.

Proposition 15. The measures dH
1 and d2 satisfy the following inequality:

dH
1 ≤ d2

.Proof. For positive numbers ai, i = 1, 2, ..., n, we have max
i
{ai} ≤

n
∑

i=1
ai. Thus, for any two

SVNSs A and B, we have dH
1 (A, B) = 1

3n(2+t) ∑n
i=1 maxi

(
| − t(µA(xi)− µB(xi)) + (ρA(xi) −ρB(xi)) +

(νA(xi) − νB(xi))|, | − t(ρA(xi) − ρB(xi)) −(νA(xi) − νB(xi)) + (µA(xi) − µB(xi))|, | − t(νA(xi) −
νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

)
≤ 1

3n(2+t) ∑n
i=1 | − t(µA(xi)− µB(xi)) + (ρA(xi)−

ρB(xi)) + (νA(xi) − νB(xi)) + | − t(ρA(xi) − ρB(xi)) − (νA(xi) − νB(xi)) + (µA(xi) − µB(xi))| + | −
t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))| = d2(A, B). Hence dH

1 ≤ d2.

Proposition 16. The measures dH
3 and d4 satisfy the following inequality:

dH
3 ≤ d4

Proof. The proof follows from Proposition 15.

Proposition 17. The measures d2, d5 and dH
1 satisfy the following inequalities:
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(i) d2 ≥
d5+dH

1
2 ;

(ii) d2 ≥
√

d5 · dH
1 .

Proof. Because d2 ≥ d5 and d2 ≥ dH
1 , by adding these inequalities, we obtain d2 ≥

d5 + dH
1

2 . On the

other hand, by multiplying these, we obtain d2 ≥
√

d5 · dH
1 .

4. Generalized Distance Measure

The above-defined Hamming and Euclidean distance measures are generalized for the two SVNSs
A and B on the universal set X as follows:

dp(A, B) =

{
1

3n(2 + t)p

n

∑
i=1

(
| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|p

+| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|p (18)

+| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|p
)}1/p

where p ≥ 1 is an Lp norm and t ≥ 3 represents the uncertainty index parameters.
In particular, if p = 1 and p = 2, then the above measure, given in Equation (18), reduces to

measures d2 and d4 defined in Equations (9) and (11), respectively.

Proposition 18. The above-defined distance dp(A, B), between SVNSs A and B, satisfies the following
properties (P1)–(P4):

(P1) 0 ≤ dp(A, B) ≤ 1, ∀A, B ∈ Φ(X);
(P2) dp(A, B) = 0, iff A = B;
(P3) dp(A, B) = dp(B, A);
(P4) If A ⊆ B ⊆ C, then dp(A, C) ≥ dp(A, B) and dp(A, C) ≥ dp(B, C).

Proof. For p ≥ 1 and t ≥ 3, we have the following:

(P1) For SVNSs, | µA(xi)− µB(xi) |≤ 1, | ρA(xi)− ρB(xi) |≤ 1 and | νA(xi)− νB(xi) |≤ 1. Thus, we
obtain

−(2 + t) ≤ t(µA(xi)− µB(xi))− (νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) ≤ (2 + t)

−(2 + t) ≤ −t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi)) ≤ (2 + t)

−(2 + t) ≤ −t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi))− µB(xi) ≤ (2 + t)

which implies that

0 ≤
∣∣t(µA(xi)− µB(xi))− (νA(xi)− νB(xi))− (ρA(xi)− ρB(xi))

∣∣p ≤ (2 + t)p

0 ≤
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣p ≤ (2 + t)p

0 ≤
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi))− µB(xi)

∣∣p ≤ (2 + t)p

Thus, by adding these inequalities, we obtain 0 ≤ dp(A, B) ≤ 1.
(P2) Assuming that A = B ⇔ µA(x) = µB(xi), ρA(xi) = ρB(xi), and νA(x) = νB(xi),

thus, dp(A, B) = 0.
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Conversely, assuming that dp(A, B) = 0 implies that

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))| = 0

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))| = 0

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))| = 0

and hence, after solving, we obtain µA(xi) = µB(xi), ρA(xi) = ρB(xi) and νA(xi) = νB(xi).
Thus, A = B.

(P3) This is straightforward.
(P4) Let A ⊆ B ⊆ C; then µA(xi) ≤ µB(xi) ≤ µC(xi), ρA(xi) ≥ ρB(xi) ≥ ρC(xi) and νA(xi) ≥

νB(xi) ≥ νC(xi). Thus, µA(xi)− µB(xi) ≥ µA(xi)− µC(xi), ρA(xi)− ρB(xi) ≤ ρA(xi)− ρC(xi)

and νA(xi)− νB(xi) ≤ νA(xi)− νC(xi). Hence, we obtain

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|p

≤ | − t(µA(xi)− µc(xi)) + (ρA(xi)− ρC(xi)) + (νA(xi)− νC(xi))|p

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|p

≤ | − t(ρA(xi)− ρC(xi))− (νA(xi)− νC(xi)) + (µA(xi)− µC(xi))|p

and | − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|p

≤ | − t(νA(xi)− νC(xi))− (ρA(xi)− ρC(xi)) + (µA(xi)− µC(xi))|p

Thus, we obtain dp(A, B) ≤ dp(A, C). Similarly, dp(B, C) ≤ dp(A, C).

If the weight vector ωi, (i = 1, 2, . . . , n) of each element is considered such that ωi ∈ [0, 1]
and ∑i ωi = 1, then a generalized parametric distance measure between SVNSs A and B takes the
following form:

dp
w(A, B) =

(
1

3n(2 + t)p

n

∑
i=1

ωi

{(
| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|p

+| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|p

+| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|p
)})1/p

(19)

In particular, if p = 1 and p = 2, Equation (19) reduces to Equations (12) and (13), respectively.

Proposition 19. Let ω = (ω1, ω2, . . . , ωn)T be the weight vector of xi, (i = 1, 2, . . . , n) with ωi ≥ 0

and
n
∑

i=1
ωi = 1; then the generalized parametric distance measure between the SVNSs A and B defined by

Equation (19) satisfies the following:

(P1) 0 ≤ dp
w(A, B) ≤ 1, ∀A, B ∈ Φ(X);

(P2) dp
w(A, B) = 0 iff A = B;

(P3) dp
w(A, B) = dp

w(B, A);
(P4) A ⊆ B ⊆ C then dp

w(A, C) ≥ dp
w(A, B) and dp

w(A, C) ≥ dp
w(B, C).

Proof. The proof follows from Proposition 18.

5. Illustrative Examples

In order to illustrate the performance and validity of the above-proposed distance measures, two
examples from the fields of pattern recognition and medical diagnosis have been taken into account.
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5.1. Example 1: Application of Distance Measure in Pattern Recognition

Consider three known patterns A1, A2 and A3, which are represented by the following SVNSs in
a given universe X = {x1, x2, x3, x4}:

A1 = {〈x1, 0.7, 0.0, 0.1〉, 〈x2, 0.6, 0.1, 0.2〉, 〈x3, 0.8, 0.7, 0.6〉, 〈x4, 0.5, 0.2, 0.3〉}
A2 = {〈x1, 0.4, 0.2, 0.3〉, 〈x2, 0.7, 0.1, 0.0〉, 〈x3, 0.1, 0.1, 0.6〉, 〈x4, 0.5, 0.3, 0.6〉}
A3 = {〈x1, 0.5, 0.2, 0.2〉, 〈x2, 0.4, 0.1, 0.2〉, 〈x3, 0.1, 0.1, 0.4〉, 〈x4, 0.4, 0.1, 0.2〉}

Consider an unknown pattern B ∈ SVNS(X), which will be recognized where

B = {〈x1, 0.4, 0.1, 0.4〉, 〈x2, 0.6, 0.1, 0.1〉, 〈x3, 0.1, 0.0, 0.4〉, 〈x4, 0.4, 0.4, 0.7〉}

Then the target of this problem is to classify the pattern B in one of the classes A1, A2 or A3. For this,
proposed distance measures, d1, d2, d3, d4, dH

1 and dH
3 , have been computed from B to Ak(k = 1, 2, 3)

corresponding to t = 3, and the results are given as follows:

d1(A1, B) = 0.5600; d1(A2, B) = 0.2932; d1(A3, B) = 0.4668

d2(A1, B) = 0.1400; d2(A2, B) = 0.0733; d2(A3, B) = 0.1167

d3(A1, B) = 0.3499; d3(A2, B) = 0.1641; d3(A3, B) = 0.3120

d4(A1, B) = 0.1749; d4(A2, B) = 0.0821; d4(A3, B) = 0.1560

dH
1 (A1, B) = 0.0633; dH

1 (A2, B) = 0.0300; dH
1 (A3, B) = 0.0567

dH
3 (A1, B) = 0.1252; dH

3 (A2, B) = 0.0560; dH
3 (A3, B) = 0.1180

Thus, from these distance measures, we conclude that the pattern B belongs to the pattern
A2. On the other hand, if we assume that the weights of x1, x2, x3 and x4 are 0.3, 0.4, 0.2 and 0.1,
respectively, then we utilize the distance measures d5, d6, dH

2 and dH
4 for obtaining the most suitable

pattern as follows:

d5(A1, B) = 0.0338; d5(A2, B) = 0.0162; d5(A3, B) = 0.0233

d6(A1, B) = 0.0861; d6(A2, B) = 0.0369; d6(A3, B) = 0.0604

dH
2 (A1, B) = 0.0148; dH

2 (A2, B) = 0.0068; dH
2 (A3, B) = 0.0117

dH
4 (A1, B) = 0.0603; dH

4 (A2, B) = 0.0258; dH
4 (A3, B) = 0.0464

Thus, the ranking order of the three patterns is A2, A3 and A1, and hence A2 is the most desirable
pattern to be classified with B. Furthermore, it can be easily verified that these results validate the
above-proposed propositions on the distance measures.

Comparison of Example 1 Results with Existing Measures

The above-mentioned measures have been compared with some existing measures under a NS
environment for showing the validity of the approach whose results are summarized in Table 1.
From these results, it has been shown that the final ordering of the pattern coincides with the proposed
measures, and hence it shows the conservative nature of the measures.
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Table 1. Ordering value of Example 1.

Methods Measure Value of B from Ranking OrderA1 A2 A3

DH (defined in Equation (1)) [19] 0.3250 0.1250 0.2500 A2 � A3 � A1
Correlation coefficient [19] 0.7883 0.9675 0.8615 A2 � A3 � A1
DNE (defined in Equation (3)) [20] 0.5251 0.7674 0.6098 A1 � A3 � A2
SCS1 (defined in Equation (4)) [22] 0.8209 0.9785 0.8992 A2 � A3 � A1
SCS2 (defined in Equation (5)) [22] 0.8949 0.9911 0.9695 A2 � A3 � A1
ST1 (defined in Equation (6)) [42] 0.7275 0.9014 0.7976 A2 � A3 � A1
ST2 (defined in Equation (7)) [42] 0.9143 0.9673 0.9343 A2 � A3 � A1

5.2. Example 2: Application of Distance Measure in Medical Diagnosis

Consider a set of diseases Q = {Q1(Viral fever), Q2(Malaria), Q3(Typhoid), Q4(Stomach Problem),
Q5 (Chest problem)} and a set of symptoms S = {s1 (Temperature), s2 (HeadAche), s3 (Stomach Pain),
s4 (Cough), s5 (Chest pain)}. Suppose a patient, with respect to all the symptoms, can be represented
by the following SVNS:

P(Patient) = {(s1, 0.8, 0.2, 0.1), (s2, 0.6, 0.3, 0.1), (s3, 0.2, 0.1, 0.8), (s4, 0.6, 0.5, 0.1), (s5, 0.1, 0.4, 0.6)}

and each diseases Qk(k = 1, 2, 3, 4, 5) is as follows:

Q1(Viral fever) = {(s1, 0.4, 0.6, 0.0), (s2, 0.3, 0.2, 0.5), (s3, 0.1, 0.3, 0.7), (s4, 0.4, 0.3, 0.3), (s5, 0.1, 0.2, 0.7)}

Q2(Malaria) = {(s1, 0.7, 0.3, 0.0), (s2, 0.2, 0.2, 0.6), (s3, 0.0, 0.1, 0.9), (s4, 0.7, 0.3, 0.0), (s5, 0.1, 0.1, 0.8)}

Q3(Typhoid) = {(s1, 0.3, 0.4, 0.3), (s2, 0.6, 0.3, 0.1), (s3, 0.2, 0.1, 0.7), (s4, 0.2, 0.2, 0.6), (s5, 0.1, 0.0, 0.9)}

Q4(Stomach problem) = {(s1, 0.1, 0.2, 0.7), (s2, 0.2, 0.4, 0.4), (s3, 0.8, 0.2, 0.0), (s4, 0.2, 0.1, 0.7), (s5, 0.2, 0.1, 0.7)}

Q5(Chest problem) = {(s1, 0.1, 0.1, 0.8), (s2, 0.0, 0.2, 0.8), (s3, 0.2, 0.0, 0.8), (s4, 0.2, 0.0, 0.8), (s5, 0.8, 0.1, 0.1)}

Now, the target is to diagnose the disease of patient P among Q1, Q2, Q3, Q4 and Q5. For this,
proposed distance measures, d1, d2, d3, d4, dH

1 and dH
3 , have been computed from P to Qk(k = 1, 2, . . . , 5)

and are given as follows:

d1(Q1, P) = 0.6400; d1(Q2, P) = 0.9067; d1(Q3, P) = 0.6333; d1(Q4, P) = 1.4600; d1(Q5, P) = 1.6200

d2(Q1, P) = 0.1280; d2(Q2, P) = 0.1813; d2(Q3, P) = 0.1267; d2(Q4, P) = 0.2920; d2(Q5, P) = 0.3240

d3(Q1, P) = 0.3626; d3(Q2, P) = 0.4977; d3(Q3, P) = 0.4113; d3(Q4, P) = 0.7566; d3(Q5, P) = 0.8533

d4(Q1, P) = 0.1622; d4(Q2, P) = 0.2226; d4(Q3, P) = 0.1840; d4(Q4, P) = 0.3383; d4(Q5, P) = 0.3816

dH
1 (Q1, P) = 0.0613; dH

1 (Q2, P) = 0.0880; dH
1 (Q3, P) = 0.0627; dH

1 (Q4, P) = 0.1320; dH
1 (Q5, P) = 0.1400

dH
3 (Q1, P) = 0.1175; dH

3 (Q2, P) = 0.1760; dH
3 (Q3, P) = 0.1373; dH

3 (Q4, P) = 0.2439; dH
3 (Q5, P) = 0.2661

Thus, from these distance measures, we conclude that the patient P suffers from the disease Q3.
On the other hand, if we assign weights 0.3, 0.2, 0.2, 0.1 and 0.2 corresponding to

Qk(k = 1, 2, . . . , 5), respectively, then we utilize the distance measures d5, d6, dH
2 and dH

4 for obtaining
the most suitable pattern as

d5(Q1, P) = 0.0284; d5(Q2, P) = 0.0403; d5(Q3, P) = 0.0273; d5(Q4, P) = 0.0625; d5(Q5, P) = 0.0684

d6(Q1, P) = 0.0795; d6(Q2, P) = 0.1101; d6(Q3, P) = 0.0862; d6(Q4, P) = 0.1599; d6(Q5, P) = 0.1781

dH
2 (Q1, P) = 0.0135; dH

2 (Q2, P) = 0.0200; dH
2 (Q3, P) = 0.0129; dH

2 (Q4, P) = 0.0276; dH
2 (Q5, P) = 0.0289

dH
4 (Q1, P) = 0.0572; dH

4 (Q2, P) = 0.0885; dH
4 (Q3, P) = 0.0636; dH

4 (Q4, P) = 0.1139; dH
4 (Q5, P) = 0.1226

Thus, on the basis of the ranking order, we conclude that the patient P suffers from the disease Q3.
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Comparison of Example 2 Results with Existing Approaches

In order to verify the feasibility of the proposed decision-making approach based on the distance
measure, we conducted a comparison analysis based on the same illustrative example. For this,
various measures as presented in Equations (1)–(7) were taken, and their corresponding results are
summarized in Table 2, which shows that the patient P suffers from the disease Q1.

Table 2. Comparison of diagnosis result using existing measures.

Approach Ranking Order

DH (defined in Equation (1)) [19] Q1 � Q3 � Q2 � Q4 � Q5
Correlation [19] Q1 � Q2 � Q3 � Q4 � Q5

Distance measure [27]
p = 1 Q3 � Q1 � Q2 � Q4 � Q5
p = 2 Q1 � Q3 � Q2 � Q4 � Q5
p = 3 Q1 � Q3 � Q2 � Q4 � Q5
p = 5 Q1 � Q3 � Q2 � Q4 � Q5

DNH (defined in Equation (2)) [20] Q3 � Q1 � Q2 � Q4 � Q5
DNH (defined in Equation (3)) [20] Q1 � Q3 � Q2 � Q4 � Q5

SCS1 (defined in Equation (4)) [22] Q1 � Q3 � Q2 � Q4 � Q5
SCS1 (defined in Equation (5)) [22] Q1 � Q2 � Q3 � Q4 � Q5
ST1 (defined in Equation (6)) [42] Q1 � Q3 � Q2 � Q4 � Q5
ST1 (defined in Equation (7)) [42] Q1 � Q3 � Q2 � Q4 � Q5

5.3. Effect of the Parameters p and t on the Ordering

However, in order to analyze the effect of the parameters t and p on the measure values, an
experiment was performed by taking different values of p (p = 1, 1.5, 2, 3, 5, 10) corresponding to a
different value of the uncertainty parameter t (t = 3, 5, 7). On the basis of these different pairs of
parameters, distance measures were computed, and their results are summarized in Tables 3 and 4,
respectively, for Examples 1 and 2 corresponding to different criterion weights.

From these, the following have been computed:

(i) For a fixed value of p, it has been observed that the measure values corresponding to each
alternative increase with the increase in the value of t. On the other hand, by varying the value of
t from 3 to 7, corresponding to a fixed value of p, this implies that values of the distance measures
of each diagnosis from the patient P increase.

(ii) It has also been observed from this table that when the weight vector has been assigned to each
criterion weight, then the measure values are less than that of an equal weighting case.

(iii) Finally, it is seen from the table that the measured values corresponding to each alternative
Qk(k = 1, 2, 3, 4, 5) are conservative in nature.

For each pair, the measure values lie between 0 and 1, and hence, on the basis of this, we
conclude that the patient P suffers from the Q1 disease. The ranking order for the decision-maker is
shown in the table as (13245), which indicates that the order of the different attributes is of the form
Q1 � Q3 � Q2 � Q4 � Q5. Hence Q1 is the most desirable, while Q5 is the least desirable for different
values of t and p.
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Table 3. Results of classification of given sample using proposed distance measure.

When Equal Importance Is given to Each Criteria When Weight Vector (0.3, 0.4, 0.2, 0.1)T Is Taken

p t dp(A1, B) dp(A2, B) dp(A3, B) Ranking dp
w(A1, B) dp

w(A2, B) dp
w(A3, B) Ranking

1
3 0.1400 0.0733 0.1167 A2 � A3 � A1 0.0338 0.0162 0.0233 A2 � A3 � A1
5 0.1667 0.0762 0.1214 A2 � A3 � A1 0.0387 0.0170 0.0248 A2 � A3 � A1
7 0.1815 0.0778 0.1241 A2 � A3 � A1 0.0414 0.0175 0.0256 A2 � A3 � A1

1.5
3 0.1598 0.0783 0.1374 A2 � A3 � A1 0.0620 0.0277 0.0426 A2 � A3 � A1
5 0.1924 0.0817 0.1437 A2 � A3 � A1 0.0723 0.0293 0.0452 A2 � A3 � A1
7 0.2116 0.0838 0.1480 A2 � A3 � A1 0.0784 0.0304 0.0469 A2 � A3 � A1

2
3 0.1749 0.0821 0.1560 A2 � A3 � A1 0.0861 0.0369 0.0604 A2 � A3 � A1
5 0.2137 0.0859 0.1646 A2 � A3 � A1 0.1021 0.0392 0.0644 A2 � A3 � A1
7 0.2374 0.0885 0.1705 A2 � A3 � A1 0.1120 0.0408 0.0671 A2 � A3 � A1

3
3 0.1970 0.0880 0.1875 A2 � A3 � A1 0.1229 0.0507 0.0927 A2 � A3 � A1
5 0.2469 0.0929 0.02012 A2 � A3 � A1 0.1497 0.0543 0.1000 A2 � A3 � A1
7 0.2785 0.0962 0.2098 A2 � A3 � A1 0.1672 0.0566 0.1046 A2 � A3 � A1

5
3 0.2240 0.0967 0.2314 A2 � A1 � A3 0.1680 0.0689 0.1469 A2 � A3 � A1
5 0.2902 0.1041 0.2526 A2 � A3 � A1 0.2128 0.0749 0.1605 A2 � A3 � A1
7 0.3326 0.1087 0.2650 A2 � A3 � A1 0.2426 0.0786 0.1685 A2 � A3 � A1

10
3 0.2564 0.1107 0.2830 A2 � A1 � A3 0.2203 0.0939 0.2248 A2 � A1 � A3
5 0.3421 0.1231 0.3131 A2 � A3 � A1 0.2915 0.1047 0.2487 A2 � A3 � A1
7 0.3942 0.1304 0.3301 A2 � A3 � A1 0.3356 0.1109 0.2622 A2 � A3 � A1

Table 4. Diagnosis result on basis of proposed distance measure.

When Equal Importance Is Given to Each Criteria When Weight Vector (0.3, 0.2, 0.2, 0.1, 0.2)T is Taken

p t dp(Q1, P) dp(Q2, P) dp(Q3, P) dp(Q4, P) dp(Q5, P) dp
w(Q1, P) dp

w(Q2, P) dp
w(Q3, P) dp

w(Q4, P) dp
w(Q5, P)

1
3 0.1280 0.1813 0.1267 0.2920 0.3240 0.0284 0.0403 0.0273 0.0625 0.0684
5 0.1410 0.1867 0.1457 0.3076 0.3400 0.0304 0.0413 0.0300 0.0643 0.0700
7 0.1481 0.1896 0.1563 0.3178 0.3489 0.0315 0.0419 0.0315 0.0656 0.070

1.5
3 0.1465 0.2023 0.1600 0.3175 0.3574 0.0553 0.0768 0.0579 0.1154 0.1282
5 0.1612 0.2131 0.1794 0.3364 0.3778 0.0598 0.0808 0.0628 0.1202 0.1334
7 0.1711 0.2205 0.1916 0.3492 0.3913 0.0630 0.0836 0.0658 0.1237 0.1369

2
3 0.1622 0.2226 0.1840 0.3383 0.3816 0.0795 0.1101 0.0862 0.1599 0.1781
5 0.1787 0.2391 0.2038 0.3609 0.4052 0.0867 0.1183 0.0928 0.1686 0.1872
7 0.1895 0.2501 0.2168 0.3760 0.4211 0.0914 0.1238 0.0972 0.1744 0.1933

3
3 0.1870 0.2601 0.2163 0.3715 0.4142 0.1182 0.1662 0.1312 0.2276 0.2509
5 0.2061 0.2876 0.2376 0.4004 0.4421 0.1297 0.1842 0.1409 0.2436 0.2666
7 0.2175 0.3047 0.2516 0.4185 0.4601 0.1365 0.1954 0.1475 0.2535 0.2765

5
3 0.2185 0.3187 0.2531 0.4170 0.4504 0.1675 0.2471 0.1892 0.3127 0.3354
5 0.2405 0.3625 0.2782 0.4531 0.4826 0.1841 0.2817 0.2045 0.3384 0.3588
7 0.2529 0.3877 0.2940 0.4740 0.5023 0.1934 0.3016 0.2145 0.3532 0.3729

10
3 0.2519 0.3980 0.2969 0.4731 0.4896 0.2215 0.3524 0.2599 0.4095 0.4235
5 0.2771 0.4586 0.3271 0.5170 0.5252 0.2434 0.4063 0.2840 0.4464 0.4547
7 0.2912 0.4624 0.3451 0.5420 0.5466 0.2556 0.4363 0.2981 0.4675 0.4730

5.4. Advantages of the Proposed Method

According to the above comparison analysis, the proposed method for addressing
decision-making problems has the following advantages:

(i) The distance measure under the IFS environment can only handle situations in which the
degree of membership and non-membership is provided to the decision-maker. This kind of
measure is unable to deal with indeterminacy, which commonly occurs in real-life applications.
Because SVNSs are a successful tool in handling indeterminacy, the proposed distance measure in
the neutrosophic domain can effectively be used in many real applications in decision-making.

(ii) The proposed distance measure depends upon two parameters p and t, which help in adjusting
the hesitation margin in computing data. The effect of hesitation will be diminished or almost
neglected if the value of t is taken very large, and for smaller values of t, the effect of hesitation
will rise. Thus, according to requirements, the decision-maker can adjust the parameter to handle
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incomplete as well as indeterminate information. Therefore, this proposed approach is more
suitable for engineering, industrial and scientific applications.

(iii) As has been observed from existing studies, various existing measures under NS environments
have been proposed by researchers, but there are some situations that cannot be distinguished by
these existing measures; hence their corresponding algorithm may give an irrelevant result. The
proposed measure has the ability to overcome these flaws; thus it is a more suitable measure to
tackle problems.

6. Conclusions

SVNSs are applied to problems with imprecise, uncertain, incomplete and inconsistent
information existing in the real world. Although several measures already exist to deal with such kinds
of information systems, they have several flaws, as described in the manuscript. Here in this article,
we overcome these flaws by proposing an alternative way to define new generalized distance measures
between the two SVNNs. Further, a family of normalized and weighted normalized Hamming and
Euclidean distance measures have been proposed for the SVNSs. Some desirable properties and their
relations have been studied in detail. Finally, a decision-making method has been proposed on the
basis of these distance measures. To demonstrate the efficiency of the proposed coefficients, numerical
examples of pattern recognition as well as medical diagnosis have been taken. A comparative study,
as well as the effect of the parameters on the ranking of the alternative, will support the theory and
hence demonstrate that the proposed measures are an alternative way to solve the decision-making
problems. In the future, we will extend the proposed approach to the soft set environment [43–45], the
multiplicative environment [46–48], and other uncertain and fuzzy environments [7,49–53].
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1. Introduction

Fuzzy graph models are advantageous mathematical tools for dealing with combinatorial problems
of various domains including operations research, optimization, social science, algebra, computer
science, environmental science and topology. Fuzzy graphical models are obviously better than
graphical models due to natural existence of vagueness and ambiguity. Initially, we needed fuzzy set
theory to cope with many complex phenomenons having incomplete information. Fuzzy set theory
[1] is a very strong mathematical tool for solving approximate reasoning related problems. These
notions describe complex phenomenons very well, which are not properly described using classical
mathematics. Atanassov [2] generalized the fuzzy set theory by introducing the notion of intuitionistic
fuzzy sets. The intuitionistic fuzzy sets have more describing possibilities as compared to fuzzy sets.
An intuitionistic fuzzy set is inventive and more useful due to the existence of non-membership degree.
In many situations like information fusion, indeterminacy is explicitly quantified. Smarandache [3]
introduced the concept of neutrosophic sets, and he combined the tricomponent logic, non-standard
analysis, and philosophy. It is a branch of philosophy which studies the origin, nature and scope
of neutralities as well as their interactions with different ideational spectra. Three independent
components of neutrosophic set are: truth value, indeterminacy value and falsity value [3]. For
convenient use of neutrosophic sets in real-life phenomena, Wang et al. [4] proposed single valued
neutrosophic sets, which is a generalization of intuitionistic fuzzy sets [2] and has three independent
components having values in a standard unit interval [0, 1]. Ye [5–8] proposed several multi criteria
decision-making methods based on neutrosophic sets. Bhowmik and Pal [9,10] introduced the notion of
intuitionistic neutrosophic sets.

Kauffman [11] introduced fuzzy graphs on the basis of Zadeh’s fuzzy relations [12]. Rosenfeld [13]
discussed fuzzy analogue of many graph-theoretic notions. Later on, Bhattacharya [14] gave
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some remarks on fuzzy graphs. The complement of a fuzzy graph was defined by Sunitha and
Vijayakumar [15]. Bhutani and Rosenfeld studied the notion of M-strong fuzzy graphs and their
properties in [16]. Parvathi et al. defined operations on intuitionistic fuzzy graphs in [17]. Akram and
Shahzadi [18] introduced neutrosophic soft graphs with applications. Dinesh and Ramakrishnan [19]
introduced the notion of fuzzy graph structures and discussed some related properties. Akram and
Akmal [20] introduced the concept of bipolar fuzzy graph structures. Recently, Akram and Sitara [21]
introduced the concept of intuitionistic neutrosophic graph structures. Several notions’ graph structures
have been studied by the same authors in [22–27]. In this research paper, we introduce certain notions
of intuitionistic neutrosophic graph structures and illustrate these notions by examples. We also present
an application of intuitionistic neutrosophic graph structures in decision-making. For other notations
and applications, readers are referred to [28–45] .

2. Intuitionistic Neutrosophic Graph Structures

Sampathkumar [46] introduced the graph structure, which is a generalization of an undirected
graph and is quite useful in studying some structures like graphs, signed graphs, labeled graphs and
edge colored graphs.

Definition 1. [46] A graph structure G = (V, R1, . . . , Rr) consists of a non-empty set V together with relations
R1, R2, . . . , Rr on V, which are mutually disjoint such that each Rh, 1 ≤ h ≤ r is symmetric and irreflexive.

One can represent a graph structure G = (V, R1, ..., Rr) in the plane, just like a graph where each
edge is labeled as Rh, 1 ≤ h ≤ r.

Definition 2. [3] An ordered triple < TN , IN , FN > in ]0−, 1+[ in the universe of discourse V is called
neutrosophic set, where TN , IN , FN : V → ]0−, 1+[, and their sum is without any restriction.

Definition 3. [4] An ordered triple < TN , IN , FN > in [0, 1] in a universe of discourse V is called single-valued
neutrosophic set, where TN , IN , FN : V → [0, 1], and their sum is restricted between 0 and 3.

Definition 4. [47] Let V be a fixed set. A generalized intuitionistic fuzzy set I of V is an object having the
form I={(u, µI(u), νI(u))|u ∈ V}, where the functions µI(u) :→ [0, 1] and νI(u) :→ [0, 1] define the degree of
membership and degree of nonmembership of an element u ∈ V, respectively, such that

min{µI(u), νI(u)} ≤ 0.5, for all u ∈ V.

Definition 5. [9,10] An intuitionistic neutrosophic set can be stated as a set having the form I =

{TI(u), II(u), FI(u) : u ∈ V}, where

min{TI(u), II(u)} ≤ 0.5,
min{FI(u), II(u)} ≤ 0.5,
min{TI(u), FI(u)} ≤ 0.5,

and 0 ≤ TI(u) + II(u) + FI(u) ≤ 2.

Definition 6. Let Ǧ = (P, P1, P2, . . . , Pr) be a graph structure(GS), and then Ǧi = (O, O1, O2and . . . , Or)

is called an intuitionistic neutrosophic graph structure (INGS), if O = < k, T(k), I(k), F(k) > and Oh =
< (k, l), Th(k, l), Ih(k, l), Fh(k, l) > are intuitionistic neutrosophic sets on P and Ph, respectively, such that

1. Th(k, l) ≤ T(k) ∧ T(l), Ih(k, l) ≤ I(k) ∧ I(l), Fh(k, l) ≤ F(k) ∨ F(l);
2. Th(k, l) ∧ Ih(k, l) ≤ 0.5, Th(k, l) ∧ Fh(k, l) ≤ 0.5, Ih(k, l) ∧ Fh(k, l) ≤ 0.5;
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3. 0 ≤ Th(k, l) + Ih(k, l) + Fh(k, l) ≤ 2, ∀ (k, l) ∈ Oh, h = 1, 2, . . . , r,

where O is an underlying vertex set of Ǧi and Oh (h = 1, 2, . . . , r ) are underlying h-edge sets of Ǧi.

Example 1. Consider a GS Ǧ = (P, P1, P2) such that O, O1,O2 are IN subsets of P, P1, P2, respectively, where

P = {k1, k2, k3, k4, k5, k6, k7, k8},
P1 = {k1k2, k3k4, k5k6, k3k7, k6k8},
P2 = {k2k3, k4k5, k1k6, k5k7, k2k8}.

Through direct calculations, it is easy to show that Ǧi = (O, O1, O2) is an INGS of Ǧ as represented in Figure 1.

k8(0.3, 0.4, 0.3)

k7(0.3, 0.4, 0.3)

k 5(
0.3

, 0
.1,

0.3
)

k3 (0.1, 0.4, 0.2)

k 2(
0.2

, 0
.3,

0.4
)

k6 (0.3, 0.4, 0.3)

k4(0.2, 0.1, 0.3)

k1(0.3, 0.4, 0.3)
b

b

b

b

bb

bb

O
2 (0.3, 0.1, 0.3)O 1(

0.1, 0.4, 0.3)
O 1(

0.3, 0.4, 0.3)
O

2 (0.2, 0.3, 0.4)

O
2 (0.3, 0.4, 0.3)

O
1 (0.3,0.1,0.3)

O 2(
0.2

, 0
.1,

0.3
)O

1 (0.1, 0.1, 0.3)

O
2(

0.
1,

0.
3,

0.
4)

O 1(
0.2, 0.3, 0.4)

Figure 1. An intuitionistic neutrosophic graph structure.

Definition 7. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS of Ǧ. If Ȟi = (O′, O′
1, O′

2, . . . , O′
r) is an INGS of Ǧ

such that

T′(k) ≤ T(k), I′(k) ≤ I(k), F′(k) ≥ F(k) ∀k ∈ P,

T′
h(k, l) ≤ Th(k, l), I′h(k, l) ≤ Ih(k, l), F′

h(k, l) ≥ Fh(k, l), ∀(k, l) ∈ Ph, h = 1, 2, ..., r.

Then, Ȟi is said to be an intuitionistic neutrosophic (IN) subgraph structure of INGS Ǧi.

Example 2. Consider an INGS Ȟi = (O′, O′
1, O′

2) of GS Ǧ = (P, P1, P2) as represented in Figure 2. Through
routine calculations, it can be easily shown that Ȟi is an IN subgraph structure of INGS Ǧi.
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k8(0.2, 0.3, 0.4)

k7(0.2, 0.4, 0.4)

k 5(
0.2

, 0
.1,

0.4
)

k3 (0.1, 0.3, 0.3)

k 2(
0.1

, 0
.1,

0.5
)

k6 (0.2, 0.3, 0.4)

k4(0.1, 0.1, 0.4)

k1(0.2, 0.3, 0.4)
b

b

b

b

bb

bb

O
2 (0.2, 0.1, 0.4)O 1(

0.1, 0.3, 0.4)
O 1(

0.3, 0.4, 0.3)
O

2 (0.2, 0.3, 0.4)

O
2 (0.2, 0.3, 0.4)

O
1 (0.2,0.0,0.4)

O 2(
0.1

, 0
.1,

0.4
)O

1 (0.1, 0.1, 0.4)
O

2(
0.

1,
0.

3,
0.

4)

O 1(
0.1, 0.2, 0.5)

Figure 2. IN subgraph structure.

Definition 8. An INGS Ȟi = (O′, O′
1, O′

2, . . . , O′
r) is called an IN induced-subgraph structure of Ǧi by Q ⊆ P if

T′(k) = T(k), I′(k) = I(k), F′(k) = F(k), ∀k ∈ Q,

T′
h(k, l) = Th(k, l), I′h(k, l) = Ih(k, l), F′

h(k, l) = Fh(k, l), ∀k, l ∈ Q, h = 1, 2, . . . , r.

Example 3. The INGS in the given Figure 3 is an IN induced-subgraph structure of an INGS in Figure 1.

k8(0.3, 0.4, 0.3)

k7(0.3, 0.4, 0.3)

k 5(
0.3

, 0
.1,

0.3
)k3 (0.1, 0.4, 0.2)

k 2(
0.2

, 0
.3,

0.4
)

k6 (0.3, 0.4, 0.3)

O
2 (0.3, 0.1, 0.3)

O 1
(0

.1,
0.4

, 0
.3
)

O 1(
0.3

, 0
.4,

0.3
)O

2 (0.2, 0.3, 0.4)

O
1 (0.3, 0.1, 0.3)

O
2(

0.
1,

0.
3,

0.
4)

b

b

b

b

b

b

Figure 3. An IN induced-subgraph structure.

Definition 9. An INGS Ȟi = (O′, O′
1, O′

2, . . . , O′
r) is said to be a IN spanning-subgraph structure of Ǧi if O′ =

O and

T′
h(k, l) ≤ Th(k, l), I′h(k, l) ≤ Ih(k, l), F′

h(k, l) ≥ Fh(k, l), h = 1, 2, . . . , r.

Example 4. An INGS shown in Figure 4 is an IN spanning-subgraph structure of an INGS in Figure 1.
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k8(0.3, 0.4, 0.3)

k7(0.3, 0.4, 0.3)

k 5(
0.3

, 0
.1,

0.3
)

k3 (0.1, 0.4, 0.2)

k 2(
0.2

, 0
.3,

0.4
)

k6 (0.3, 0.4, 0.3)

k4(0.2, 0.1, 0.3)

k1(0.3, 0.4, 0.3)
b

b

b

b

bb

bb

O
2 (0.2, 0.1, 0.3)O 1(

0.1, 0.3, 0.3)
O 1(

0.2, 0.4, 0.4)
O

2 (0.1, 0.3, 0.4)

O
2 (0.2, 0.4, 0.4)

O
1 (0.2,0.1,0.4)

O 2(
0.1

, 0
.1,

0.4
)O

1 (0.1, 0.1, 0.5)
O

2(
0.

1,
0.

2,
0.

5)

O 1(
0.1, 0.1, 0.5)

Figure 4. An IN spanning-subgraph structure.

Definition 10. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS. Then, kl ∈ Ph is named as a IN Oh-edge or shortly
Oh-edge, if Th(k, l) > 0 or Ih(k, l) > 0 or Fh(k, l) > 0 or all these conditions are satisfied. As a result, support of
Oh is:

supp(Oh) = {kl ∈ Oh : Th(k, l) > 0} ∪ {kl ∈ Oh : Ih(k, l) > 0} ∪ {kl ∈ Oh : Fh(k, l) > 0},

h = 1, 2, ..., r.

Definition 11. Oh-path in an INGS Ǧi = (O, O1, O2, . . . , Or) is a sequence k1, k2, ..., kr of distinct vertices
(except kr = k1) in P, such that kh−1kh is an IN Oh-edge ∀h = 2, ..., r.

Definition 12. An INGS Ǧi = (O, O1, O2, . . . , Or) is Oh-strong for any h ∈ {1, 2, ..., r} if

Th(k, l) = min{T(k), T(l)}, Ih(k, l) = min{I(k), I(l)}, Fh(k, l) = max{F(k), F(l)},

∀kl ∈ supp(Oh). If Ǧi is Oh-strong for all h ∈ {1, 2, . . . , r}, then Ǧi is a strong INGS.

Example 5. Consider an INGS Ǧi = (O, O1, O2) as represented in Figure 5. Then, Ǧi is strong INGS, as it is
O1− and O2 − strong.

b b

b

b

b

b

k6(0.1, 0.2, 0.4)

k 5
(0

.2
, 0

.4
, 0

.3
)

k4(0.3, 0.3, 0.4)

k
3 (0.2, 0.4, 0.5)

k2(0.3, 0.3, 0.3) k1(0.4, 0.3, 0.4)

O
2(

0.
1,

0.
2,

0.
4)

O 2
(0

.3,
0.3

, 0
.4
)

O
1(

0.
2,

0.
3,

0.
4)

O 2
(0

.1,
0.2

, 0
.4
)

O
1 (0.1, 0.2, 0.5)

O
1 (0.2, 0.3, 0.3)

O
2
(0

.2
, 0

.3
, 0

.5
)

O1(0.2, 0.3, 0.5)

O1(0.3, 0.3, 0.4)

Figure 5. A strong INGS.

Definition 13. An INGS Ǧi = (O, O1, O2, . . . , Or) is a complete INGS, if

1. Ǧi is strong INGS.
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2. supp(Oh) ̸= ∅, for all h = 1, 2, . . . , r.
3. For all k, l ∈ P, kl is a Oh − edge for some h.

Example 6. Let Ǧi = (O, O1, O2) be an INGS of GS Ǧ = (P, P1, P2), such that

P = {k1, k2, k3, k4, k5, k6},
P1 = {k1k6, k1k2, k2k4, k2k5, k2k6, k1k6},

P2 = {k2k6, k4k3, k5k6, k1k4},
P3 = {k1k5, k5k3, k2k3, k1k3, k4k6}.

By means of direct calculations, it is easy to show that Ǧi is strong INGS.
Moreover, supp(O1) ̸= ∅, supp(O2) ̸= ∅, supp(O3) ̸= ∅, and every pair khkq of vertices of P, is O1-edge or
O2-edge or an O3-edge. Hence, Ǧi is a complete INGS, that is, O1O2O3-complete INGS.

Definition 14. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS. The truth strength T.POh , falsity strength F.POH , and
indeterminacy strength I.POh of an Oh-path, POh = k1, k2, . . . , kn is defined as:

T.POh =
n∧

i=2
[TP

Oh
(ki−1ki)],

I.POh =
n∧

i=2
[IP

Oh
(ki−1ki)],

F.POh =
n∨

i=2
[FP

Oh
(ki−1ki)].

Example 7. Consider an INGS Ǧi = (O, O1, O2, O3) as in Figure 6. We found an O1-path PO1 = k2, k1, k6. So,
T.PO1= 0.2, I.PO1= 0.1 and F.PO2= 0.5.

b b

b

b

b b

k5(0.2, 0.2, 0.3)

k6(0.3, 0.1, 0.3)

k4 (0.2, 0.3, 0.4)

k 3
(0

.2
, 0

.4
, 0

.4
)

k2(0.3, 0.3, 0.5)k1(0.2, 0.3, 0.5)
O

1 (0.2, 0.1, 0.5)

O 1
(0

.2
, 0

.3
, 0

.5
)

O
3 (0.2,0.3,0.5)

O
2
(0

.2
, 0

.3
, 0

.5
)

O
1 (0.2, 0.3, 0.5)

O3(0.2, 0.1, 0.4)

O1(0.2, 0.3, 0.5)

O
3 (0.2, 0.3, 0.5)

O1(0.2, 0.3, 0.5)

O
1
(0

.2
, 0

.2
, 0

.5
)

O
2(

0.
2,

0.
1,

0.
3)

O 3
(0

.2
, 0

.2
, 0

.4
)

O2(0.2, 0.3, 0.4)

O
3 (0.2, 0.2, 0.5)

Figure 6. A complete INGS.

Definition 15. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS. Then,

• Oh-strength of connectedness of truth between k and l is defined as: T∞
Oh
(kl) =

∨
i≥1

{Ti
Oh
(kl)}, such that

Ti
Oh
(kl) = (Ti−1

Oh
◦ T1

Oh
)(kl) for i ≥ 2 and T2

Oh
(kl) = (T1

Oh
◦ T1

Oh
)(kl) =

∨
y
(T1

Oh
(ky) ∧ T1

Oh
)(yl).

• Oh-strength of connectedness of indeterminacy between k and l is defined as: I∞
Oh
(kl) =

∨
i≥1

{Ii
Oh
(kl)}, such

that Ii
Oh
(kl) = (Ii−1

Oh
◦ I1

Oh
)(kl) for i ≥ 2 and I2

Oh
(kl) = (I1

Oh
◦ I1

Oh
)(kl) =

∨
y
(I1

Oh
(ky) ∧ I1

Oi
)(yl).
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• Oh-strength of connectedness of falsity between k and l is defined as: F∞
Oh
(kl) =

∧
i≥1

{Fi
Oh
(kl)}, such that

Fi
Oh
(kl) = (Fi−1

Oh
◦ F1

Oh
)(kl) for i ≥ 2 and F2

Qh
(kl) = (F1

Oh
◦ F1

Oh
)(kl) =

∧
y
(F1

Oh
(ky) ∨ F1

Oh
)(yl).

Definition 16. An INGS Ǧi = (O, O1, O2, . . . , Or) is called an Oh-cycle if (supp(O), supp(O1),
supp(O2), . . . , supp(Or)) is an Oh − cycle.

Definition 17. An INGS Ǧi = (O, O1, O2, . . . , Or) is an IN fuzzy Oh-cycle (for any h) if

1. Ǧi is an Oh-cycle.
2. There exists no unique Oh-edge kl in Ǧi such that

TOh(kl) = min{TOh(yz) : yz ∈ Ph = supp(Oh)} or IOh(kl) = min{IOh(yz) : yz ∈ Ph = supp(Oh)}
or FOh(kl) = max{FOh(yz) : yz ∈ Ph = supp(Oh)}.

Example 8. Consider an INGS Ǧi = (O, O1, O2) as in Figure 6. Then, Ǧi is an O1-cycle and IN fuzzy O1 −
cycle, since (supp(O), supp(O1), supp(O2)) is an O1-cycle and no unique O1-edge kl satisfies the condition:
TOh(kl) = min{TOh(yz) : yz ∈ Ph = supp(Oh)} or IOh(kl) = min{IOh(yz) : yz ∈ Ph = supp(Oh)} or
FOh(kl) = max{FOh(yz) : yz ∈ Ph = supp(Oh)}.

Definition 18. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS and k a vertex in Ǧi. Let (O′, O′
1, O′

2, . . . , O′
r) be an

IN subgraph structure of Ǧi induced by P \ {k} such that ∀y ̸= k, z ̸= k.

TO′(k) = 0 = IO′(k) = FO′(k), TO′
h
(ky) = 0 = IO′

h
(ky) = FO′

h
(ky) ∀ edges ky ∈ Ǧi; TO′(y) = TO(y),

IO′(y) = IO(y), FO′(y) = FO(y), ∀y ̸= k;TO′
h
(yz) = TOh(yz), IO′

h
(yz) = IOh(yz), FO′

h
(yz) = FOh(yz).

Then, k is IN fuzzy Oh cut-vertex, for some h, if

T∞
Oh
(yz) > T∞

O′
h
(yz), I∞

Oh
(yz) > I∞

O′
h
(yz)

and

F∞
Oh
(yz) > F∞

O′
h
(yz), for some y, z ∈ P \ {k}.

Note that k is an IN fuzzy Oh − T cut-vertex, if T∞
Oh
(yz) > T∞

O′
h
(yz), IN fuzzy Oh − I cut-vertex, if I∞

Oh
(yz) >

I∞
O′

h
(yz) and IN fuzzy Oh − F cut-vertex, if F∞

Oh
(yz) > F∞

O′
h
(yz).

Example 9. Consider an INGS Ǧi = (O, O1, O2) as represented in Figure 7 and Ǧ′
h = (O′, O′

1, O′
2) is an IN

subgraph structure of an INGS Ǧi, and we found it by deleting the vertex k2. The vertex k2 is an IN fuzzy O1-I
cut-vertex, since I∞

O′
1
(k2k5) = 0 < 0.5 = I∞

O1
(k2k5), I∞

O′
1
(k4k3) = 0.7 = I∞

O1
(k4k3) and I∞

O′
1
(k3k5) = 0.3 <

0.4 = I∞
O1
(k3k5).

b

b

b b

bb

k5(0.4, 0.5, 0.6)

k2(0.4, 0.7, 0.5)

k6(
0.3, 0.4, 0.4)

k4 (0.5, 0.5, 0.7)

k 3(
0.5

, 0
.7,

0.5
)

k1 (0.3, 0.6, 0.4)

O2(0.1, 0.4, 0.2)

O
1(

0.
4,

0.
4,

0.
5)

O
1(

0.
3,

0.
2,

0.
4)

O1(0.3, 0.5, 0.4)

O
1(

0.
5,

0.
7,

0.
5)

O1 (0.3, 0.3, 0.4)

O2(0.1, 0.4, 0.2)

O2(0.2, 0.4, 0.3)

O2 (0.3, 0.6, 0.4)

Figure 7. An INGS Ǧi = (O, O1, O2).
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Definition 19. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS and kl an Oh − edge.

Let (O′, O′
1, O′

2, . . . , O′
r) be an IN fuzzy spanning-subgraph structure of Ǧi, such that

TO′
h
(kl) = 0 = IO′

h
(kl) = FO′

h
(kl), TO′

h
(qt) = TOh(qt), IO′

h
(qt) = IOh(qt), FO′

h
(qt) = FOh(qt),

∀ edges qt ̸= kl.

Then, kl is an IN fuzzy Oh-bridge if

T∞
Oh
(yz) > T∞

O′
h
(yz), I∞

Oh
(yz) > I∞

O′
h
(yz) and F∞

Oh
(yz) > F∞

O′
h
(yz), for some y, z ∈ P.

Note that kl is an IN fuzzy Oh − T bridge if T∞
Oh
(yz) > T∞

O′
h
(yz), IN fuzzy Oh − I bridge if I∞

Oh
(yz) > I∞

O′
h
(yz)

and IN fuzzy Oh − F bridge if F∞
Oh
(yz) > F∞

O′
h
(yz).

Example 10. Consider an INGS Ǧi = (O, O1, O2) as shown in Figure 7 and Ǧ′
H = (O′′, O′′

1 , O′′
2 ) is IN

spanning-subgraph structure of an INGS Ǧi found by the deletion of O1-edge (k2k5). Edge (k2k5) is
an IN fuzzy O1-bridge. As T∞

O′′
1
(k2k5)= 0.3 < 0.4 = T∞

O1
(k2k5), I∞

O′′
1
(k2k5)= 0.3 < 0.4= I∞

O1
(k2k5),

F∞
O′′

1
(k2k5)= 0.4 < 0.5 = F∞

O1
(k2k5).

Definition 20. An INGS Ǧi = (O, O1, O2, . . . , Or) is an Oh-tree, if (supp(O), supp(O1),
supp(O2), . . . , supp(Or)) is an Oh − tree. Alternatively, Ǧi is an Oh-tree, if there is a subgraph of Ǧi induced
by supp(Oh), which forms a tree.

Definition 21. An INGS Ǧi = (O, O1, O2, . . . , Or) is an IN fuzzy Oh-tree if Ǧi has an IN fuzzy
spanning-subgraph structure Ȟi = (O′′, O′′

1 , O′′
2 , . . . , O′′

r ), such that, for all Oh-edges kl not in Ȟi,
Ȟi is an O′′

h -tree, and TOh(kl) < T∞
O′′

h
(kl), IOh(kl) < I∞

O′′
h
(kl), FOh(kl) < F∞

O′′
h
(kl).

In particular, Ǧi is an IN fuzzy Oh-T tree if TOh(kl) < T∞
O′′

h
(kl), an IN fuzzy Oh-I tree if

IOh(kl) < I∞
O′′

h
(kl), and an IN fuzzy Oh-F tree if FOh(kl) > F∞

O′′
h
(kl).

Example 11. Consider an INGS Ǧi = (O, O1, O2) as shown in Figure 8. It is an O2-tree, not an O1-tree but it
is IN fuzzy O1-tree because it has an IN fuzzy-spanning subgraph (O′, O′

1, O′
2) as an O′

1-tree, which is found by
the deletion of O1-edge k2k5 from Ǧi. Moreover, T∞

O′
1
(k2k5) = 0.3 > 0.2 = TO1(k2k5), I∞

O′
1
(k2k5) = 0.3 > 0.1 =

IO1(k2k5) and F∞
O′

1
(k2k5) = 0.4 < 0.5 = FO1(k2k5).

b

b b

b b

k1(0.3, 0.6, 0.5)

k2 (0.4, 0.7, 0.5)k3(
0.5, 0.7, 0.5)

k4 (0.6, 0.5, 0.5) k 5(
0.4, 0.5, 0.4

k6(0.3, 0.4, 0.3)

O
1
(0

.5
, 0

.5
, 0

.4
)

O1(0.3, 0.3, 0.4)

O
1(

0.
2,

0.
1,

0.
5)O1(0.3, 0.5, 0.5)

O2(0
.2, 0.4, 0.4)

O2(0.3, 0.2, 0.3)

O2(
0.1, 0.4, 0.4)

O
2 (0.2, 0.6, 0.2)

O
2 (0.1, 0.4, 0.1)

b

Figure 8. An IN fuzzy O1-tree.
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Definition 22. An INGS Ǧi1 = (O1, O11, O12, . . . , O1r) of graph structure Ǧ1 = (P1, P11, P12, . . . , P1r) is said
to be isomorphic to an INGS Ǧi2 = (O2, O21, O22, . . . , O2r) of the graph structure Ǧ2 = (P2, P21, P22, ..., P2r),
if there is a pair (g, ψ), where g : P1 → P2 is a bijective mapping and ψ is any permutation on this set {1, 2, . . . , r}
such that;

TO1(k) = TO2(g(k)), IO1(k) = IO2(g(k)), FO1(k) = FO2(g(k)), ∀k ∈ P1,

TO1h(kl) = TO2ϕ(h)
(g(k)g(l)), IO1h(kl) = IO2ϕ(h)

(g(k)g(l), FQ1h(kl) = FO2ϕ(h)
(g(k)g(l)),

∀kl ∈ P1h, h = 1,2,. . . ,r.

Example 12. Let Ǧi1 = (O, O1, O2) and Ǧi2 = (O′, O′
1, O′

2) be two INGSs as shown in the Figure 9.
Ǧi1 and Ǧi2 are isomorphic under (g, ψ), where g : P → P′ is a bijective mapping and ψ is the permutation on
{1, 2}, which is defined as ψ(1) = 2, ψ(2) = 1, and the following conditions hold:

TO(kh) = TO′(g(kh)),
IO(kh) = IO′(g(kh)),
FO(kh) = FO′(g(kh)),

∀kh ∈ P and

TOh(khkq) = TO′
ψ(h)

(g(kh)g(kq)),

IOh(khkq) = IO′
ψ(h)

(g(kh)g(kq)),

FOh(khkq) = FO′
ψ(h)

(g(kh)g(kq)),

∀khkq ∈ Ph, h = 1, 2.

b

b

b bk1(0.3, 0.4, 0.4)

k2(0.5, 0.5, 0.5)

k3(0.2, 0.7, 0.5)

k4(0.2, 0.2, 0.5)

O 1
(0

.1
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Figure 9. Two isomorphic INGSs.

Definition 23. An INGS Ǧi1 = (O1, O11, O12, . . . , O1r) of the graph structure Ǧ1 = (P1, P11, P12, ..., P1r) is
identical with an INGS Ǧi2 = (O2, O21, O22, ..., O2r) of the graph structure Ǧ2 = (P2, P21, P22, ..., P2r) if g : P1 →
P2 is a bijective mapping such that

TO1(k) = TO2(g(k)), IO1(k) = IO2(g(k)), FO1(k) = FO2(g(k)), ∀k ∈ P1,

TO1h(kl) = TO2h(g(k)g(l)), IO1h(kl) = IO2h(g(k)g(l)), FO1h(kl) = FO2(h)
(g(k)g(l)),
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∀kl ∈ P1h, h = 1, 2, . . . , r.

Example 13. Let Ǧi1 = (O, O1, O2) and Ǧi2 = (O′, O′
1, O′

2) be two INGSs of the GSs Ǧ1 = (P, P1, P2), Ǧ2 =
(P′, P′

1, P′
2), respectively, as they are shown in Figures 10 and 11.

SVINGSs Ǧi1 and Ǧi2 are identical under g : P → P′ is defined as :

g(k1) = l2, g(k2) = l1, g(k3) = l4, g(k4) = l3, g(k5) = l5, g(k6) = l8, g(k7) = l7, g(k8) = l6.

Moreover, TO(kh) = TO′((kh)), IO(kh) = IO′(g(kh)), FO(kh) = FO′(g(kh)), ∀kh ∈ P and TOh(khkq) =
TO′

h
(g(kh)g(kq)), IOh(khkq) = IO′

h
(g(kh)g(kq)), FOh(khkq) = FO′

h
(g(kh)g(kq)), ∀khkq ∈ Ph, h = 1, 2.
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Figure 10. An INGS Ǧi1.
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Figure 11. An INGS Ǧi2.

Definition 24. Let Ǧi = (O, O1, O2, ..., Or) be an INGS and ψ is any permutation on {O1, O2, ..., Or} and on
set {1, 2, ..., r}, that is, ψ(Oh) = Oq if and only if ψ(h) = q ∀h. If kl ∈ Oh, for any h and

TOψ
h
(kl) = TO(k) ∧ TO(l)−

∨
q ̸=h

Tψ(Oq)(kl), IOψ
h
(kl) = IO(k) ∧ IO(l)−

∨
q ̸=h

Iψ(Oq)(kl),

FOψ
h
(kl) = FO(k) ∨ FO(l)−

∧
q ̸=h

Tψ(Oq)(kl), h = 1, 2, ..., r, then, kl ∈ Oψ
t , where t is chosen such that

TOψ
t
(kl) ≥ TOψ

h
(kl), IOψ

t
(kl) ≥ IOψ

h
(kl), FOψ

t
(kl) ≥ FOψ

h
(kl) ∀h. In addition, INGS (O, Oψ

1 , Oψ
2 , . . . , Oψ

r ) is

called a ψ-complement of an INGS Ǧi, and it is symbolized as Ǧψc
i .

Example 14. Let O = {(k1, 0.3, 0.4, 0.7), (k2, 0.5, 0.6, 0.4), (k3, 0.7, 0.5, 0.3)}, O1 = {(k1k3, 0.3, 0.4, 0.3)},
O2 = {(k2k3, 0.5, 0.4, 0.3)}, O3 = {(k1k2, 0.3, 0.3, 0.4)} be IN subsets of P, P1, P2, P3, respectively.
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Thus, Ǧi = (O, O1, O2, O3) is an INGS of GS Ǧ = (P, P1, P2, P3). Let ψ(O1) = O2, ψ(O2) = O3, ψ(O3) = O1,
where ψ is permutation on {O1, O2, O3}. Now, for k1k3, k2k3, k1k2 ∈ O1, O2, O3, respectively:

TOψ
1
(k1k3) = 0, IOψ

1
(k1k3) = 0, FOψ

1
(k1k3) = 0.7, TOψ

2
(k1k3) = 0, IOψ

2
(k1k3) = 0, FOψ

2
(k1k3) = 0.7,

TOψ
3
(k1k3) = 0.3, IOψ

3
(k1k3) = 0.4, FOψ

3
(k1k3) = 0.7. So k1k3 ∈ Oψ

3 ,

TOψ
1
(k2k3) = 0.5, IOψ

1
(k2k3) = 0.5, FOψ

1
(k2k3) = 0.4, TOψ

2
(k2k3) = 0, IOψ

2
(k2k3) = 0.1, FOψ

2
(k2k3) = 0.4,

TOψ
3
(k2k3) = 0, IOψ

3
(k2k3) = 0.1, FOψ

3
(k2k3) = 0.4. So k2k3 ∈ Oψ

1 ,

TOψ
1
(k1k2) = 0, IOψ

1
(k1k2) = 0.1, FOψ

1
(k1k2) = 0.7, TOψ

2
(k1k2) = 0.3, IOψ

2
(k1k2) = 0.4, FOψ

2
(k1k2) = 0.7,

TOψ
3
(k1k2) = 0, IOψ

3
(k1k2) = 0.1, FOψ

3
(k1k2) = 0.7. This shows k1k2 ∈ Oψ

2 .

Hence, Ǧψc
i =(O, Oψ

1 , Oψ
2 , Oψ

3 ) is a ψ-complement of an INGS Ǧi as presented in Figure 12.
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O
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O
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O
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O
ψ 3
(0

.3
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b

b

b

b

b b

Figure 12. INGSs Ǧi, Ǧψc
i .

Proposition 1. A ψ-complement of an INGS Ǧi = (O, O1, O2, . . . , Or) is a strong INGS. Moreover,
if ψ(h) = t, where h, t ∈ {1, 2, ..., r}; then, all Ot-edges in an INGS (O, O1, O2, . . . , Or) become Oψ

h -edges in
(O, Oψ

1 , Oψ
2 , ..., Oψ

r ).

Proof. By definition of ψ-complement,

TOψ
h
(kl) = TO(k) ∧ TO(l)−

∨
q ̸=h

Tψ(Oq)(kl), (1)

IOψ
h
(kl) = IO(k) ∧ IO(l)−

∨
q ̸=h

Iψ(Oq)(kl), (2)

FOψ
h
(kl) = FO(k) ∨ FO(l)−

∧
q ̸=h

Fψ(Oq)(kl), (3)

for h ∈ {1, 2, ..., r}. For Expression 1.
As TO(k) ∧ TO(l) ≥ 0,

∨
q ̸=h

Tψ(Oq)(kl) ≥ 0 and TOh(kl) ≤ TO(k) ∧ TO(l) ∀Oh.

⇒ ∨
q ̸=h

Tψ(Oq)(kl) ≤ TO(k) ∧ TO(l) ⇒ TO(k) ∧ TO(l)−
∨

q ̸=h
Tψ(Oq)(kl) ≥ 0.

Hence, TOψ
h
(kl) ≥ 0 ∀h.

Furthermore, TOψ
h
(kl) gets a maximum value, when

∨
q ̸=h

Tψ(Oq)(kl) is zero. Clearly, when ψ(Oh) = Ot

and kl is an Ot-edge, then
∨

q ̸=h
Tψ(Oq)(kl) attains zero value. Hence,

TOψ
h
(kl) = TO(k) ∧ TO(l), f or (kl) ∈ Ot, ψ(Oh) = Ot. (4)
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Similarly, for I, the results are:
Since IO(k) ∧ IO(l) ≥ 0,

∨
q ̸=h

Iψ(Oq)(kl) ≥ 0 and IOh(kl) ≤ IO(k) ∧ IO(l) ∀Oh.

⇒ ∨
q ̸=h

Iψ(Oq)(kl) ≤ IO(k) ∧ IO(l) ⇒ IO(k) ∧ IO(l)−
∨

q ̸=h
Iψ(Oq)(kl) ≥ 0.

Therefore, IOψ
h
(kl) ≥ 0 ∀ i.

Value of the IOψ
h
(kl) is maximum when

∨
q ̸=h

Iψ(Oq)(kl) gets zero value. Clearly, when ψ(Oh) = Ot and kl

is an Ot-edge, then
∨

q ̸=h
Iψ(Oq)(kl) is zero. Thus,

IOψ
h
(kl) = IO(k) ∧ IO(l), f or (kl) ∈ Ot, ψ(Oh) = Ot. (5)

On a similar basis for F in ψ-complement, the results are:

Since FO(k) ∨ FO(l) ≥ 0,
∧

q ̸=h
Fψ(Oq)(kl) ≥ 0 and FOh(kl) ≤ FO(k) ∨ FO(l) ∀Oh.

⇒ ∧
q ̸=h

Fψ(Oq)(kl) ≤ FO(k) ∨ FO(l) ⇒ FO(k) ∨ FO(l)−
∧

q ̸=h
Fψ(Oq)(kl) ≥ 0.

Hence, FOψ
h
(kl) ≥ 0 ∀h.

Furthermore, FOψ
h
(kl) is maximum, when

∧
q ̸=h

Fψ(Oq)(kl) is zero. Definitely, when ψ(Oh) = Ot and kl is

an Ot-edge, then
∧

q ̸=h
Fψ(Oq)(kl) is zero. Hence,

FOψ
h
(kl) = FO(k) ∨ FO(l), f or (kl) ∈ Ot, ψ(Oh) = Ot. (6)

Expressions (4)–(6) give the required proof.

Definition 25. Let Ǧi = (O, O1, O2, ..., Or) be an INGS and ψ be any permutation on {1, 2, ..., r}. Then,

(i) Ǧi is a self-complementary INGS if Ǧi is isomorphic to Ǧψc
i ;

(ii) Ǧi is a strong self-complementary INGS if Ǧi is identical to Ǧψc
i .

Definition 26. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS. Then,

(i) Ǧi is a totally self-complementary INGS if Ǧi is isomorphic to Ǧψc
i , ∀ permutations ψ on {1, 2, . . . , r};

(ii) Ǧi is a totally-strong self-complementary INGS if Ǧi is identical to Ǧψc
i , ∀ permutations ψ on {1, 2, . . . , r}.

Example 15. INGS Ǧi = (O, O1, O2, O3) in Figure 13 is totally-strong self-complementary INGS.

b

b bk 7(
0.2, 0.3, 0.4)

k6(0.4, 0.5, 0.6) k5(0.2, 0.3, 0.3) k4(0.4, 0.5, 0.5)

k3 (0.2, 0.3, 0.4)
k2(0.4, 0.5, 0.6)

k1(0.7, 0.4, 0.5)

O 3(
0.2, 0.3, 0.5)

O 3(
0.

4,
0.

4,
0.

6)
O

2
(0

.2
, 0

.3
, 0

.5
)

O
2 (0.4, 0.4, 0.5)

O
1 (0.2, 0.3, 0.5)

O
1 (0.4, 0.4, 0.6)

b b b
b

Figure 13. Totally-strong self-complementary INGS.

Theorem 1. A strong INGS is a totally self-complementary INGS and vice versa.
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Proof. Consider any strong INGS Ǧi and Permutation ψ on {1,2, . . . , r}. By proposition 1, ψ-complement
of an INGS Ǧi = (O, O1, O2, . . . , Or) is a strong INGS. Moreover, if ψ−1(t) = h, where h, t ∈ {1, 2, ..., r},
then all Ot-edges in an INGS (O, O1, O2, ..., Or) become Oψ

h -edges in (O, Oψ
1 , Oψ

2 , ..., Oψ
r ), this leads

TOt(kl) = TO(k) ∧ TO(l) = TOψ
h
(kl), IOt(kl) = IO(k) ∧ IO(l) = IOψ

h
(kl),

FOt(kl) = FO(k) ∨ FO(l) = FOψ
h
(kl).

Therefore, under g : P → P (identity mapping), Ǧi and Ǧψ
i are isomorphic, such that

TO(k) = TO(g(k)), IO(k) = IO(g(k)), FO(k) = FO(g(k))

and

TOt(kl) = TOψ
h
(g(k)g(l)) = TOψ

h
(kl),

IOt(kl) = IOψ
h
(g(k)g(l)) = IOψ

h
(kl) ,

FOt(kl) = FOψ
h
(g(k)g(l)) = FOψ

h
(kl),

∀kl ∈ Pt, for ψ−1(t) = h; h,t = 1, 2, . . . , r.
For each permutation ψ on {1, 2, ..., r}, this holds. Hence, Ǧi is a totally self-complementary INGS.
Conversely, let Ǧi is isomorphic to Ǧψ

i for each permutation ψ on {1, 2, ..., r}. Then, by definitions of
ψ-complement of INGS and isomorphism of INGS, we have

TOt(kl) = TOψ
h
(g(k)g(l)) = TO(g(k)) ∧ TO(g(l)) = TO(k) ∧ TO(l),

IOt(kl) = IOψ
h
(g(k)g(l)) = IO(g(k)) ∧ IO(g(l)) = TO(k) ∧ IO(l),

FOt(kl) = FOψ
h
(g(k)g(l)) = FO(g(k)) ∨ FO(g(l)) = FO(k) ∨ FO(l),

∀kl ∈ Pt, t = 1,2,...,r. Hence, Ǧi is strong INGS.

Remark 1. Each self-complementary INGS is a totally self-complementary INGS.

Theorem 2. If Ǧ = (P, P1, P2, . . . , Pr) is a totally strong self-complementary GS and O = (TO, IO, FO) is an
IN subset of P, where TO, IO, FO are the constant functions, then any strong INGS of Ǧ with IN vertex set O is
necessarily totally-strong self-complementary INGS.

Proof. Let u ∈ [0, 1], v ∈ [0, 1] and w ∈ [0, 1] be three constants, and

TO(k) = u, IO(k) = v, FO(k) = w ∀k ∈ P.

Since Ǧ is a totally strong self-complementary GS, so, for each permutation ψ−1 on {1, 2, . . . , r}, there
exists a bijective mapping g : P → P, such that, for each Pt-edge (kl), (g(k)g(l)) [a Ph-edge in Ǧ ] is a

Pt-edge in Ǧψ−1c. Thus, for every Ot-edge (kl), (g(k)g(l)) [an Oh-edge in Ǧi ] is an Oψ
t -edge in Ǧi

ψ−1c.
Moreover, Ǧi is a strong INGS, so

TO(k) = u = TO(g(k)), IO(k) = v = IO(g(k)), FO(k) = w = FO(g(k)) ∀k ∈ P

and
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TOt(kl) = TO(k) ∧ TO(l) = TO(g(k)) ∧ TO(g(l)) = TOψ
h
(g(k)g(l)),

IOt(kl) = IO(k) ∧ IO(l) = IO(g(k)) ∧ IO(g(l)) = IOψ
h
(g(k)g(l)),

FOt(kl) = FO(k) ∨ IO(l) = FO(g(k)) ∨ FO(g(l)) = FOψ
h
(g(k)g(l)),

∀kl ∈ Ph, h = 1, 2, . . . , r.
This shows that Ǧi is a strong self-complementary INGS. This exists for each permutation ψ and ψ−1

on set {1, 2, . . . , r}, thus Ǧi is a totally strong self-complementary INGS. Hence, required proof is
obtained.

Remark 2. Converse of the Theorem 2 may or may not true, as an INGS shown in Figure 2 is totally strong
self-complementary INGS, and it is also a strong INGS with a totally strong self-complementary underlying GS
but TO, IO, FO are not the constant-valued functions.

3. Application

First, we explain the general procedure of this application by the following algorithm.
Algorithm: Crucial interdependence relations

Step 1. Input vertex set P = {B1, B2, . . . , Bn} and IN set O defined on P.
Step 2. Input IN set of interdependence relations of any vertex with all other vertices and calculate

T, F, and I of every pair of vertices by using, T(BiBj) ≤ min(T(Bi), T(Bj)), F(BiBj) ≤
max(F(Bi), F(Bj)), I(BiBj) ≤ min(I(Bi), I(Bj)).

Step 3. Repeat the Step 2 for every vertex in P.
Step 4. Define relations P1, P2, . . . , Pn on set P such that (P, P1, P2, . . . , Pn) is a GS.
Step 5. Consider an element of that relation, for which its value of T is comparatively high, and its

values of F and I are lower than other relations.
Step 6. Write down all elements in relations with T, F and I values, corresponding relations

O1, O2, . . . , On are IN sets on P1, P2, P3, . . . , Pn, respectively, and (O, O1, O2, . . . , On) is an INGS.

Human beings, the main creatures in the world, depend on many things for their survival.
Interdependence is a very important relationship in the world. It is a natural phenomenon that nobody
can be 100% independent, and the whole world is relying on interdependent relationships. Provinces
or states of any country, especially of a progressive country, can not be totally independent, more or
less they have to depend on each other. They depend on each other for many things, that is, there are
many interdependent relationships among provinces or states of a progressive country—for example,
education, natural energy resources, agricultural items, industrial products, and water resources, etc.
However, all of these interdependent relationships are not of equal importance. Some are very important
to run the system of a progressive country. Between any two provinces, all interdependent relationships
do not have the same strength. Some interdependent relationships are like the backbone for the
country. We can make an INGS of provinces or states of a progressive country, and can highlight those
interdependent relationships, due to which the system of the country is running properly. This INGS
can guide the government as to which interdependent relationships are very crucial, and they must try
to make them strong and overcome the factors destroying or weakening them.

We consider a set P of provinces and states of Pakistan:
P = {Punjab, Sindh, Khyber Pakhtunkhawa(KPK), Balochistan, Gilgit-Baltistan, Azad Jammu and

Kashmir(AJK) }. Let O be the IN set on P, as defined in Table 1.
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Table 1. IN set O of provinces of Pakistan.

Provinces or States T I F

Punjab 0.5 0.3 0.3
Sindh 0.5 0.4 0.4

Khyber Pakhtunkhawa(KPK) 0.4 0.4 0.4
Balochistan 0.3 0.4 0.4

Gilgit-Baltistan 0.3 0.4 0.4
Azad Jammu and Kashmir 0.3 0.4 0.3

In Table 1, symbol T demonstrates the positive role of that province or state for the strength of
the Federal Government, and symbol F indicates its negative role, whereas I denotes the percentage of
ambiguity of its role for the strength of the Federal Government. Let us use the following alphabets for
the provinces’ names:

PU = Punjab, SI = Sindh, KPK = Khyber Pakhtunkhwa, BA = Balochistan, GB = Gilgit-Baltistan, AJK
= Azad Jammu and Kashmir. For every pair of provinces of Pakistan in set P, different interdependent
relationships with their T, I and F values are demonstrated in Tables 2–6.

Table 2. IN set of interdependent relations between Punjab and other provinces.

Type of Interdependent Relationships (PU, SI) (PU, KPK) (PU, BA)

Education (0.5, 0.1, 0.1) (0.4, 0.3, 0.2) (0.3, 0.2, 0.2)
Natural energy resources (0.3, 0.2, 0.3) (0.4, 0.2, 0.2) (0.3, 0.2, 0.1)

Agricultural items (0.3, 0.2, 0.2) (0.4, 0.2, 0.1) (0.3, 0.2, 0.1)
Industrial products (0.4, 0.2, 0.1) (0.4, 0.1, 0.1) (0.3, 0.1, 0.1)

Water resources (0.3, 0.1, 0.1) (0.4, 0.3, 0.2) (0.2, 0.2, 0.2)

Table 3. IN set of interdependent relationships between Sindh and other provinces.

Type of Interdependent Relationships (SI, KPK) (SI, BA) (SI, GB)

Education (0.3, 0.2, 0.1) (0.3, 0.2, 0.3) (0.3, 0.2, 0.4)
Natural energy resources (0.3, 0.2, 0.3) (0.3, 0.1, 0.0) (0.2, 0.2, 0.4)

Agricultural items (0.4, 0.1, 0.1) (0.3, 0.1, 0.2) (0.3, 0.1, 0.1)
Industrial products (0.4, 0.2, 0.1) (0.3, 0.2, 0.2) (0.3, 0.2, 0.2)

Water resources (0.3, 0.2, 0.2) (0.2, 0.3, 0.2) (0.2, 0.2, 0.3)

Table 4. IN set of interdependent relationships between KPK and other provinces.

Type of Interdependent Relationships (KPK, BA) (KPK, GB) (KPK, AJK)

Education (0.1, 0.4, 0.3) (0.1, 0.4, 0.3) (0.1, 0.4, 0.4)
Natural energy resources (0.3, 0.2, 0.1) (0.3, 0.2, 0.2) (0.3, 0.3, 0.2)

Agricultural items (0.1, 0.2, 0.4) (0.1, 0.4, 0.4) (0.1, 0.3, 0.3)
Industrial products (0.1, 0.3, 0.4) (0.1, 0.4, 0.3) (0.1, 0.2, 0.2)

Water resources (0.3, 0.2, 0.2) (0.3, 0.3, 0.2) (0.3, 0.2, 0.2)
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Table 5. IN set of interdependent relationships between AJK and other provinces.

Type of Interdependent Relationships (AJK, PU) (AJK, SI) (AJK, BA)

Education (0.3, 0.1, 0.1) (0.1, 0.4, 0.3) (0.1, 0.3, 0.4)
Natural energy resources (0.1, 0.2, 0.3) (0.2, 0.4, 0.3) (0.3, 0.3, 0.3)

Agricultural items (0.3, 0.2, 0.1) (0.3, 0.3, 0.2) (0.3, 0.2, 0.2)
Industrial products (0.3, 0.2, 0.2) (0.3, 0.2, 0.2) (0.3, 0.2, 0.3)

Water resources (0.3, 0.2, 0.1) (0.3, 0.3, 0.2) (0.3, 0.0, 0.1)

Table 6. IN set of interdependent relationships of Gilgit-Baltistan with other provinces.

Type of Interdependent Relationships (GB, PU) (GB, BA) (GB, AJK)

Education (0.3, 0.2, 0.1) (0.1, 0.4, 0.4) (0.2, 0.1, 0.4)
Natural energy resources (0.1, 0.3, 0.4) (0.3, 0.1, 0.0) (0.2, 0.2, 0.4)

Agricultural items (0.3, 0.2, 0.2) (0.1, 0.3, 0.3) (0.1, 0.4, 0.4)
Industrial products (0.3, 0.3, 0.2) (0.2, 0.4, 0.4) (0.1, 0.4, 0.2)

Water resources (0.2, 0.3, 0.3) (0.2, 0.3, 0.2) (0.3, 0.1, 0.1)

Many relations can be defined on the set P, we define following relations on set P as:
P1 = Education, P2 = Natural energy resources , P3 = Agricultural items, P4 = Industrial products,

P5 = Water resources, such that (P, P1, P2, P3, P4, P5) is a GS. Any element of a relation demonstrates
a particular interdependent relationship between these two provinces. As (P, P1, P2, P3, P4, P5) is GS;
this is why any element can appear in only one relation. Therefore, any element will be considered in
that relationship, whose value of T is high, and values of I, F are comparatively low, using the data of
above tables.

Write down T, I and F values of the elements in relations according to the above data, such that O1,
O2, O3, O4, O5 are IN sets on relations P1, P2, P3, P4, P5, respectively.

Let P1 = {(Punjab, Sindh), (Gilgit − Baltistan, Punjab), (AzadJammuandKashmir, Punjab)};
P2 = {(Sindh, Balochistan), (Khyber Pakhtunkhawa, Balochistan), (Balochistan, Gilgit-Baltistan), (Khyber
Pakhtunkhawa, Gilgit-Baltistan)};
P3 = {(Sindh, Khyber Pakhtunkhwa), (Gilgit-Baltistan, Sindh) };
P4 = {(Punjab, KhyberPakhtunkhwa), (Sindh, AzadJammuandKashmir), (Balochistan, Punjab)};
P5 = {(KheberPakhtunkhwa, AzadJammuandKashmir), (Balochistan, AzadJammuandKashmir),
(Gilgit − Baltistan, Azad Jammu and Kashmir)}.

Let O1 = {((PU, SI), 0.5, 0.1, 0.1), ((GB, PU), 0.3, 0.2, 0.1), ((AJK, PU), 0.3, 0.1, 0.1)},
O2 = {((SI, BA), 0.3, 0.1, 0.0), ((KPK, BA), 0.3, 0.2, 0.1), ((BA, GB), 0.3, 0.1, 0.0),
((KPK, GB), 0.3, 0.2, 0.2)},
O3 = {((SI, KPK), 0.4, 0.1, 0.1), ((GB, SI), 0.3, 0.1, 0.1), },
O4 = {((PU, KPK), 0.4, 0.1, 0.1), ((SI, AJK), 0.3, 0.2, 0.2), ((BA, PU), 0.3, 0.1, 0.1)},
O5 = {((KPK, AJK), 0.3, 0.2, 0.2), ((BA, AJK), 0.3, 0.0, 0.1), ((GB, AJK), 0.3, 0.1, 0.1)}.

Obviously, (O, O1, O2, O3, O4, O5) is an INGS as shown in Figure 14.
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Figure 14. INGS identifying crucial interdependence relation between any two provinces.

Every edge of this INGS demonstrates the most dominating interdependent relationship between
those two provinces—for example, the most dominating interdependent relationship between Punjab
and Gilgit-Baltistan is education, and its T, F and I values are 0.3, 0.2 and 0.1, respectively. It shows
that education is the strongest connection bond between Punjab and Gilgit-Baltistan; it is 30% stable,
10% unstable, and 20% unpredictable or uncertain. Using INGS, we can also elaborate the strength of
any province, e.g., Punjab has the highest vertex degree for interdependent relationship education, and
Balochistan has the highest vertex degree for the interdependent relationship natural energy resources.
This shows that the strength of Punjab is education, and the strength of Balochistan is the natural energy
resources. This INGS can be very helpful for Provincial Governments, and they can easily estimate
which kind of interdependent relationships they have with other provinces, and what is the percentage
of its stability and instability. It can also guide the Federal Government in regards to, between any two
provinces, which relationships are crucial and what is their status. The Federal Government should be
conscious of making decisions such that the most crucial interdependent relationships of its provinces
are not disturbed and need to overcome the counter forces that are trying to destroy them.

4. Conclusions

Graph theory is a useful tool for solving combinatorial problems of different fields, including
optimization, algebra, computer science, topology and operations research. An intuitionistic
neutrosophic set constitutes a generalization of an intuitionistic fuzzy set. In this research paper, we have
introduced the notion of intuitionistic neutrosophic graph structure. We have discussed a real-life
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application of intuitionistic neutrosophic graph structure in decision-making. Our aim is to extend
our research work to (1) fuzzy rough graph structures; (2) rough fuzzy graph structures; (3) soft rough
graph structures; and (4) roughness in graph structures.
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Abstract: A neutrosophic cubic set is the hybridization of the concept of a neutrosophic set and an
interval neutrosophic set. A neutrosophic cubic set has the capacity to express the hybrid information
of both the interval neutrosophic set and the single valued neutrosophic set simultaneously. As newly
defined, little research on the operations and applications of neutrosophic cubic sets has been
reported in the current literature. In the present paper, we propose the score and accuracy functions
for neutrosophic cubic sets and prove their basic properties. We also develop a strategy for ranking of
neutrosophic cubic numbers based on the score and accuracy functions. We firstly develop a TODIM
(Tomada de decisao interativa e multicritévio) in the neutrosophic cubic set (NC) environment,
which we call the NC-TODIM. We establish a new NC-TODIM strategy for solving multi attribute
group decision making (MAGDM) in neutrosophic cubic set environment. We illustrate the proposed
NC-TODIM strategy for solving a multi attribute group decision making problem to show the
applicability and effectiveness of the developed strategy. We also conduct sensitivity analysis to show
the impact of ranking order of the alternatives for different values of the attenuation factor of losses
for multi-attribute group decision making strategies.

Keywords: neutrosophic cubic set; single valued neutrosophic set; interval neutrosophic set; multi
attribute group decision making; TODIM strategy; NC-TODIM

1. Introduction

While modelling multi attribute decision making (MADM) and multi attribute group decision
making (MAGDM), it is often observed that the parameters of the problem are not precisely known.
The parameters often involve uncertainty. To deal with uncertainty, Zadeh [1] left an important mark
to represent and compute with imperfect information by introducing the fuzzy set. The fuzzy set
fostered a broad research community, and its impact has also been clearly felt at the application level
in MADM [2–4] and MAGDM [5–9].

Atanassov [10] incorporated the non-membership function as an independent component and
defined the intuitionistic fuzzy set (IFS) at first to express uncertainty in a more meaningful way.
IFSs have been applied in many MADM problems [11–13]. Smarandache [14] proposed the notion of
the neutrosophic set (NS) by introducing indeterminacy as an independent component. Wang et al. [15]
grounded the concept of the single valued neutrosophic set (SVNS), an instance of the neutrosophic set,
to deal with incomplete, inconsistent, and indeterminate information in a realistic way. Wang et al. [16]
proposed the interval neutrosophic set (INS) as a subclass of neutrosophic sets in which the values of
truth, indeterminacy, and falsity membership degrees are interval numbers. Theoretical development
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and applications of SVNSs and INSs are found in [17–37] for MADM or MAGDM. Some studies on
MADM in single valued neutrosophic hesitant fuzzy set environments are found in [38–41].

NS and INS are both capable of handling uncertainty and incomplete information. By fusing NS
and INS, Ali et al. [42] proposed the neutrosophic cubic set (NCS) and defined external and internal
neutrosophic cubic sets, and established some of their properties. In the same study, Ali et al. [42]
proposed an adjustable strategy to NCS-based decision making. Jun et al. [43] also defined NCS
by combining NS and INS. In decision making process, the advantage of NCSs is that the decision
makers can employ the hybrid information comprising of INSs and SVNSs for evaluating and rating
of the alternatives with respect to their predefined attributes. However, there are only a few studies
in the literature to deal with MADM and MAGDM in the NCS environment. Banerjee et al. [44]
established grey relational analysis (GRA) [45–47] based on the new MADM strategy in the NCS
environment. In the same study, Banerjee et al. [44] proposed the Hamming distances for weighted
grey relational coefficients and ideal grey relational coefficients, and offered the concept of relative
closeness coefficients for presenting the ranking order of the alternatives based on the descending
order of their relative closeness coefficients.

Similarity measure is an important mathematical tool in decision-making problems.
Pramanik et al. [48] at first defined similarity measure for NCSs and proved its basic properties.
In the same study, Pramanik et al. [48] developed a new MAGDM strategy in the NCS environment.
Lu and Ye [49] proposed cosine measures between NCSs and established their basic properties. In
the same study, Lu and Ye [49] proposed three new cosine measures-based MADM strategies under a
NCS environment.

Due to little research on the operations and application of NCSs, Pramanik et al. [50] proposed
several operational rules on NCSs, and defined Euclidean distances and arithmetic average operators
of NCSs. In the same study, Pramanik et al. [50] also employed the information entropy scheme to
calculate the unknown weights of the attributes, and developed a new extended TOPSIS strategy for
MADM under the NCS environment. Zhan et al. [51] proposed a new algorithm for multi-criteria
decision making (MCDM) in an NCS environment based on a weighted average operator and a
weighted geometric operator. Ye [52] established the concept of a linguistic neutrosophic cubic number
(LNCN). In the same study, Ye [52] developed a new MADM strategy based on a LNCN weighted
arithmetic averaging (LNCNWAA) operator and a LNCN weighted geometric averaging (LNCNWGA)
operator under a linguistic NCS environment.

In the literature, there are only six strategies [44,48–52] for MADM and MAGDM in NCS
environment. However, we say that none of them is generally superior to all others. So, new strategies
for MADM and MAGDM should be explored under the NCS environment for the development of
neutrosophic studies.

TODIM (an acronym in Portuguese for interactive multi-criteria decision making strategy named
Tomada de decisao interativa e multicritévio) is an important MADM strategy, since it considers the
decision makers’ bounded rationality. Firstly, Gomes and Lima [53] introduced the TODIM strategy
based on prospect theory [54]. Krohling and Souza [55] defined the fuzzy TODIM strategy to solve
MCDM problems. Several researchers applied the TODIM strategy in various fuzzy MADM or
MAGDM problems [56–58]. Fan et al. [59] introduced the extended TODIM strategy to deal with the
hybrid MADM problems. Krohling et al. [60] extended the TODIM strategy from fuzzy environment to
intuitionistic fuzzy environment to process the intuitionistic fuzzy information. Wang [61] introduced
TODIM strategy into multi-valued neutrosophic set environment. Zhang et al. [62] proposed the
TODIM strategy for MAGDM problems under a neutrosophic number environment. Ji et al. [63]
proposed the TODIM strategy under a multi-valued neutrosophic environment and employed it
to solve personal selection problems. In 2017, Xu et al. [64] developed the TODIM strategy in a
single valued neutrosophic setting and extended it into interval neutrosophic setting. Neutrosophic
TODIM [64] is capable of dealing with only single-valued neutrosophic information or interval
neutrosophic information.
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NCS can be used to express the interval neutrosophic information and neutrosophic information
in the process of MADGM. It seems that TODIM in NCSs has an enormous chance of success to
deal with group decision making problems. In the NCS environment, the TODIM strategy is yet to
appear. Motivated by these, we initiated the study of TODIM in the NCS environment, which we
call NC-TODIM.

However, NCSs comprise of hybrid information of INSs and SVNSs simultaneously, which are
more flexible and elegant for expressing neutrosophic cubic information. To apply NCSs to MADGM
problems, we introduce some basic operations of neutrosophic cubic (NC) numbers and the score,
and accuracy functions of NC numbers, and the ranking strategy of NC numbers.

In this paper we develop a TODIM strategy (for short, NC-TODIM strategy) for MAGDM in
the NCS environment. The proposed NC-TODIM strategy was proven to be capable of successfully
dealing with MAGDM problems by solving an illustrative example. What is more, a comparative
analysis ensured the feasibility of the proposed NC-TODIM strategy.

The remainder of the paper is divided into seven sections that are organized as follows: Section 2
presents some basic definitions of NS, SVNS, INS, and NCS. Section 3 presents comparison strategy
of two NC-numbers. Section 4 is devoted to present the proposed NC-TODIM strategy. Section 5
presents an illustrative numerical example of MAGDM in the NCS environment. Section 6 is devoted
to analyzing the ranking order with different values of attenuation factors of losses. Section 7 presents
a comparative analysis between the developed strategy and other existing strategies in the NCS
environment. Section 8 presents the conclusion and the future scope of research.

2. Preliminaries

In this section, we review some basic definitions which are important to develop the paper.

Definition 1. [14] NS. Let U be a space of points (objects) with a generic element in U denoted by u, i.e.,
u ∈ U. A neutrosophic set R in U is characterized by truth-membership function tR, indeterminacy-membership
function iR, and falsity-membership function fR, where tR, iR, fR are the functions from U to ]−0, 1+[ i.e., tR,
iR, fR: U→]−0, 1+[ that means tR(u), iR(u), fR(u) are the real standard or non-standard subset of ]−0,
1+ [. The neutrosophic set can be expressed as R = {<u; (tR(u), iR(u), fR(u))>: ∀u∈U}. Since tR(u), iR(u),
fR(u) are the subset of ]−0, 1+[, there the sum (tR(u) + iR(u) + fR(u)) lies between −0 and 3+, where −0 = 0 − ε
and 3+ = 3 + ε, ε > 0.

Example 1. Suppose that U = {u1, u2, u3, . . .} is the universal set. Let R1 be any neutrosophic set in U.
Then R1 expressed as R1 = {<u1; (0.6, 0.3, 0.4)>: u1∈U}.

Definition 2. [15] SVNS. Let U be a space of points (objects) with a generic element in U denoted by u. A single
valued neutrosophic set H in U is expressed by H = {<u, (tH(u), iH(u), fH(u))>; u∈U}, where tH(u), iH(u),
fH(u)∈[0, 1]. Therefore for each u∈U, tH(u), iH(u), fH(u)∈[0, 1] and 0 ≤ tH(u) + iH(u) + fH(u) ≤ 3.

Definition 3. [16] INS. Let G be a non-empty set. An interval neutrosophic set G̃ in G is characterized by
truth-membership function tG̃, the indeterminacy membership function iG̃ and falsity membership function fG̃.
For each g∈G, tG̃(g), iG̃(g), fG̃(g) ⊆ [0, 1] and G̃ defined as

G̃ = {< g; [t−
G̃
(g), t+

G̃
(g)], [i−

G̃
(g), i+

G̃
(g), ], [f−

G̃
(g), f+

G̃
(g)] : ∀g ∈ G}.

Here,
t−
G̃
(g), t+

G̃
(g), i−

G̃
(g), i+

G̃
(g), f−

G̃
(g), f+

G̃
(g) : G→]−0, 1+[,

and
−0 ≤ sup t+

G̃
(g) + sup i+

G̃
(g) + sup f+

G̃
(g) ≤ 3+.
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In real problems it is difficult to express the truth-memberships function, indeterminacy-membership
function and falsity-membership function in the form of

t−
G̃
(g), t+

G̃
(g), i−

G̃
(g), i+

G̃
(g), f−

G̃
(g), f+

G̃
(g) : G→]−0, 1+[.

Here,
t−
G̃
(g), t+

G̃
(g), i−

G̃
(g), i+

G̃
(g), f−

G̃
(g), f+

G̃
(g) : G→ [0, 1].

Example 2. Suppose that G = {g1, g2, g3, . . ., gn} is a non-empty set. Let G̃1 be an INS. Then G̃1 is
expressed as

G̃1 = {< g1; [0.39, 0.47], [0.17, 0.43], [0.18, 0.36] : g1 ∈ G}.

Definition 4. [42,43] NCS. A NCS in a non-empty set G is defined as © = {<g; G̃(g), R(g)>: ∀g∈G}, where G̃
and R are the INS and NS in G respectively. NCS can be presented as an order pair © = <G̃, R>, then we call it
as a neutrosophic cubic (NC) number.

Example 3. Suppose that G = {g1, g2, g3, . . ., gn} is a non-empty set. Let ©1 be any NC-number. Then ©1

can be expressed as ©1 = {<g1; [0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3, 0.4)>: g1∈G}.

Some operations of NC-numbers:

i. Union of any two NC-numbers
Let ©1 =< G̃1, R1 > and ©2 =< G̃2, R2 > be any two NC-numbers in a non-empty set G.

Then the union of ©1 and ©2denoted by ©1 ∪©2 and defined as

©1 ∪ ©2 =< G̃1(g) ∪ G̃1(g), R1(g) ∪ R2(g) ∀g ∈ G >,

where G̃1(g) ∪ G̃1(g) = {<g, [max {t−
G̃1

(g), t−
G̃2

(g)},max {t+
G̃1

(g), t+
G̃2

(g)}], [max {i−
G̃1

(g), i−
G̃2

(g)}, max {i+
G̃1

(g),

i+
G̃2

(g)}], [min {f−
G̃1

(g), f−
G̃2

(g)}, min {f+
G̃1

(g), f+
G̃2

(g)}]>: g∈G} and R1(g) ∪ R2(g) = {<g, max {tR1 (g), tR2 (g)},
max {iR1 (g), iR2 (g)}, min {fR1 (g), fR2 (g)}>:∀g∈U}.

Example 4. Let ©1 and ©2 be two NC-numbers in G presented as follows:

©1 =< [0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3, 0.4) >

and
©2 =< [0.56, 0.70], [0.27, 0.42], [0.15, 0.26], (0.7, 0.3, 0.6) > .

Then
©1 ∪ ©2 =< [0.56, 0.70], [0.27, 0.43], [0.15, 0.26], (0.7, 0.3, 0.4) > .

ii. Intersection of any two NC-numbers
Intersection of two NC-numbers denoted and defined as follows:

©1 ∩ ©2 =<G̃1(g) ∩ G̃1(g), R1(g) ∩ R2(g) ∀g ∈ G >,

where G̃1(g) ∩ G̃1(g) = {<g, [min {t−
G̃1

(g), t−
G̃2

(g)},min {t+
G̃1

(g), t+
G̃2

(g)}], [min {i−
G̃1

(g), i−
G̃2

(g)}, min {i+
G̃1

(g),

i+
G̃2

(g)}], [max {f−
G̃1

(g), f−
G̃2

(g)}, max {f+
G̃1

(g), f+
G̃2

(g)}]>: g∈G} and R1(g) ∩ R2(g)= {<g, min {tR1 (g), tR2 (g)},
min {iR1 (g),iR2 (g)}, max {fR1 (g), fR2 (g)}>:∀g∈U}.
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Example 5. Let ©1 and ©2 be any two NC-numbers in G presented as follows:

©1 =< [0.45, 0.57], [0.27, 0.33], [0.18, 0.46], (0.7, 0.3, 0.5) >

and
©2 =< [0.67, 0.75], [0.22, 0.44], [0.17, 0.21], (0.8, 0.4, 0.4) > .

Then
©1 ∩ ©2 =< [0.45, 0.57], [0.22, 0.33], [0.18, 0.46], (0.7, 0.3, 0.4) > .

iii. Compliment of a NC-number
Let ©1 =< G̃1, R1 > be a NCS in G. Then, the compliment of ©1 =< G̃1, R1 > denoted by

©c
1 = {<g, G̃

c
1(g), Rc

1(g)>: ∀g∈G}.
Here, G̃1

c = {<g, [t−
G̃1

c(g), t+
G̃1

c(g)], [i−
G̃1

c(g), i+
G̃1

c(g)], [f−
G̃1

c(g), f+
G̃1

c(g)]>: ∀g∈G}, where,

t−
G̃1

c (g) = f−
G̃1

(g), t+
G̃1

c(g) = f+
G̃1

(g), i−
G̃1

c(g) = {1} − i−
G̃1

(g), i+
G̃1

c(g) = {1} − i+
G̃1

(g), f−
G̃1

c(g) = t−
G̃1

(g),

f+
G̃1

c (g) = f+
G̃1

(g) and tRc
1
(g) = fR1(g), iR´

c
1(g) = {1+} − iR1 (g), fRc

1
(g) = tR1 (g).

Example 6. Assume that ©1 be any NC-number in G in the form:

©1 =< [0.45, 0.57], [0.27, 0.33], [0.18, 0.46], (0.7, 0.3, 0.5) >

Then compliment of ©1 is obtained as

©c
1 =< [0.18, 0.46], [0.73, 0.67], [0.45, 0.57], (0.5, 0.7, 0.7) > .

Definition 5. Score function. Let ©1 be a NC-number in a non-empty set G. Then, a score function of ©1,
denoted by Sc (© 1) is defined as:

Sc (© 1) =
1
2
[(

2 + a1 + a2 − 2b1 − 2b2 − c1 − c2

4
) + (

1 + a− 2b− c
2

)] (1)

where, ©1 = <[a1, a2], [b1, b2], [c1, c2], (a, b, c) > and Sc (© 1)∈[–1, 1].

Proposition 1. Score function of two NC-numbers lies between −1 to 1.

Proof. Using the definition of INS and NS, we have all a1, a2, b1, b2, c1, c2, a, b, and c [0, 1].
Since,

0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 1

0 ≤ a1 + a2 ≤ 2,

⇒ 2 ≤ 2 + a1 + a2 ≤ 4

(2)

0 ≤ b1 ≤ 1⇒ 0 ≤ 2b1 ≤ 2 and 0 ≤ b2 ≤ 1⇒ 0 ≤ 2b2 ≤ 2

⇒ − 2 ≤ −2b1 ≤ 0

⇒ − 2 ≤ −2b2 ≤ 0

⇒ − 4 ≤ −2b1 − 2b2 ≤ 0

(3)

0 ≤ c1 ≤ 1⇒ − 1 ≤ − c1 ≤ 0
0 ≤ c2 ≤ 1⇒ − 1 ≤ − c2 ≤ 0
⇒ − 2 ≤ − c1 − c2 ≤ 0

(4)
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Adding Equations (2)–(4), we obtain

⇒ − 4 ≤ 2 + a1 + a2 − 2b1 − 2b2 − c1 − c2 ≤ 4,

⇒ − 1 ≤ 2+ a1 + a2 − 2b1 − 2b2 − c1 − c2
4 ≤ 1

(5)

Again,
0 ≤ a ≤ 1⇒ 1 ≤ 1 + a ≤ 2 , (6)

0 ≤ b ≤ 1⇒ 0 ≤ 2b ≤ 2,

0 ≤ c ≤ 1,

⇒ 0 ≤ 2b + c ≤ 3,

⇒ − 3 ≤ − 2b − c ≤ 0

(7)

Adding (6) and (7), we obtain

− 2 ≤ 1 + a− 2b − c ≤ 2,

⇒ − 1 ≤ 1+ a− 2b− c
2 ≤ 1

(8)

Adding (5) and (8) and dividing by 2, we obtain

− 1 ≤ 1
2
[(

2 + a1 + a2 − 2b1 − 2b2 − c1 − c2

4
) + (

1 + a− 2b− c
2

)] ≤ 1

Sc (© 1) ∈ [−1, 1].

Hence the proof is complete. �

Example 7. Let ©1 and ©2 be two NC-numbers in G, presented as follows:

©1 =< [0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3, 0.4) >

and
©2 =< [0.56, 0.70], [0.27, 0.42], [0.15, 0.26], (0.7, 0.3, 0.6) > .

Then, by applying Definition 5, we obtain Sc (© 1) = −0.01 and Sc (© 2) = 0.07, In this case, we can say
that ©2 > ©1.

Definition 6. Accuracy function. Let ©1 be a NC-number in a non-empty set G, an accuracy function of ©1 is
defined as:

Ac(©1) = 1/2 [1/2(a1 + a2 − b2(1 − a2) − b1(1 − a1) − c2(1 − b1) − c1(1 − b2) + a − b(1 − a) − c(1 − b)] (9)

Here, Ac (© 1)∈[–1, 1].
When the value of Ac (© 1) increases, we say that the degree of accuracy of the NC-number ©1 increases.

Proposition 2. Accuracy function of two NC-numbers lies between −1 to 1.

Proof. The values of accuracy function depend upon

{1
2
(a1 + a2 − b2(1− a2)− b1(1− a1)− c2(1− b1)− c1(1− b2)) and { a− b(1− a)− c(1− b)}

The values of

{1
2
(a1 + a2 − b2(1− a2)− b1(1− a1)− c2(1− b1)− c1(1− b2))}
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and
{ a− b(1− a)− c(1− b)}

lie between −1 to 1 from [37].
Thus, −1 ≤ Ac (© 1) ≤ 1.
Hence the proof is completed. �

Example 8. Let ©1 and ©2 be two NC-numbers in G presented as follows:

©1 =< [0.41, 0.52], [0.10, 0.18], [0.06, 0.17], (0.48, 0.11, 0.11) >

and
©2 =< [0.40, 0.51], [0.10, 0.20], [0.10, 0.19], (0.50, 0.11, 0.11) > .

Then, by applying Definition 6, we obtain Ac (© 1) = 0.14 and Ac (© 2) = 0.30. In this case, we can say
that alternative ©2 is better than ©1.

With respect to the score function Sc and the accuracy function Ac, a strategy for comparing
NC-numbers can be defined as follows:

3. Comparison Strategy of Two NC-Numbers

Let ©1 and ©2 be any two NC-numbers. Then we define comparison strategy as follows:

i. If
Sc(©1) > Sc(©2), then ©1 > ©2. (10)

ii. If
Sc(©1) = Sc(©2) and Ac(©1) > Ac(©2), then ©1 > ©2. (11)

iii. If
Sc(©1) = Sc(©2) and Ac(©1) = Ac(©2), then ©1 = ©2. (12)

Example 9. Let ©1 and ©2 be two NC-numbers in G, presented as follows:

©1 =< [0.23, 0.29], [0.37, 0.46], [0.34, 0.42], (0.26, 0.26, 0.26) >

and
©2 =< [0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28) > .

Then, applying Definition 5, we obtain Sc (© 1) = 0.13 and Sc (© 2) = 0.13. Applying Definition 6,
we obtain Ac(© 1) =−0.20 and Ac (© 2) =−0.18. In this case, we say that alternative ©2 > ©1. (Score values
and Accuracy values taking correct up to two decimal places).

Definition 7. Let ©1 and ©2 be any two NC-numbers, then the distance between them is defined by

∂(©1, ©2) =
1
9 [|a1 − d1|+ |a2 − d2|+ |b1 − e1|+ |b2 − e2|+ |c1 − f1|+ |c2 − f2|+ |a− d|+ |b− e|+ |c− f|] (13)

where, ©1 = <[a1, a2], [b1, b2], [c1, c2], (a, b, c)> and ©2 = <[d1, d2], [e1, e2], [f1, f2], (d, e, f)>.

Example 10. Let ©1 and ©2 be two NC-numbers in G presented as follows:

©1 =< [0.66, 0.75], [0.25, 0.32], [0.17, 0.34], (0.53, 0.17, 0.22) >
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and
©2 =< [0.35, 0.55], [0.12, 0.25], [0.12, 0.20], (0.60, 0.23, 0.43) >

Then, applying Definition 7, we obtain ∂ (©1, ©2) = 0.12.

Definition 8. Let ©ij = {< [t−ij , t+ij ], [i−ij , i+ij ], [f−ij , f+ij ], (t, i, f) >} be any neutrosophic cubic value.
©ij used to evaluate i-th alternative with respect to j-th criterion. The normalized form of ©ij is defined as follows:

©⊗ij = {< [
t−ij

(
m
Σ

i=1
(t−ij )

2
+(t+ij )

2
)

1
2

,
t+ij

(
m
Σ

i=1
(t−ij )

2
+(t+ij )

2
)

1
2
],

[
i−ij

(
m
Σ

i=1
(i−ij )

2
+(i+ij )

2
)

1
2

,
i+ij

(
m
Σ

i=1
(i−ij )

2
+(i+ij )

2
)

1
2
],

[
f−ij

(
m
Σ

i=1
(f−ij )

2
+(f+ij )

2
)

1
2

,
f+ij

(
m
Σ

i=1
(f−ij )

2
+(f+ij )

2
)

1
2
]

[
tij

(
m
Σ

i=1
(tij)

2+(iij)
2+(fij)

2)
1
2

,
iij

(
m
Σ

i=1
(tij)

2+(iij)
2+(fij)

2)
1
2

,
fij

(
m
Σ

i=1
(tij)

2+(iij)
2+(fij)

2)
1
2
] >}.

(14)

A conceptual model of the evolution of the neutrosophic cubic set is shown in Figure 1.
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4. NC-TODIM Based MAGDM under a NCS Environment 

Figure 1. Evolution of the neutrosophic cubic set.

4. NC-TODIM Based MAGDM under a NCS Environment

Assume that A = {A1, A2, . . . , Am} (m ≥ 2) and C = {C1, C2, . . . , Cn} (n ≥ 2) are the discrete set
of alternatives and attributes respectively. W = {W1, W2, . . . , Wn} is the weight vector of attributes

Cj (j = 1, 2, . . . , n), where Wj > 0 and
n
Σ

j=1
Wj = 1. Let E = {E1, E2, . . . , Er} be the set of decision makers

and γ = {γ1, γ2, . . . , γr} be the weight vector of decision makers, where γk > 0 and
r
Σ

k=1
γk = 1.

NC-TODIM Strategy

Now, we describe the NC-TODIM strategy to solve the MAGDM problems with NC-numbers.
The NC-TODIM strategy consists of the following steps:
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Step 1. Formulate the decision matrix

Assume that Mk = (©k
ij)m× n

be the decision matrix, where ©k
ij = <G̃

k
ij, Rk

ij> is the rating value
provided by the k-th (Ek) decision maker for alternative Ai, with respect to attribute Cj. The matrix
form of Mk is presented as:

Mk =


C1 C2 . . . Cn

A1 ©k
11 ©k

12 . . . ©k
1n

A2 ©k
21 ©k

22 ©k
2n

. . . . . .
Am ©k

m1 ©k
m2 . . . ©k

mnj

 (15)

Step 2. Normalize the decision matrix
The MAGDM problem generally consists of cost criteria and benefit criteria. So, the decision

matrix needs to be normalized. For cost criterion Cj, we use the Definition 8 to normalize the decision
matrix (Equation (15)) provided by the decision makers. For benefit criterion Cj we don’t need to
normalize the decision matrix. When Cj is a cost criterion, the normalized form of decision matrix
(see Equation (15)) is presented below.

M⊗k =


C1 C2 . . . Cn

A1 ©⊗k
11 ©⊗k

12 . . . ©⊗k
1n

A2 ©⊗k
21 ©⊗k

22 ©⊗k
2n

. . . . . .
Am ©⊗k

m1 ©⊗k
m2 . . . ©⊗k

mnj

 (16)

Here ©⊗k
ij is the normalized form of the NC-number.

Step 3. Determine the relative weight of each criterion
The relative weight Wch of each criterion is obtained by the following equation.

Wch =
WC

Wh
(17)

where, Wh = max {W1, W2, . . . , Wn}.

Step 4. Calculate score values
Using Equation (1), calculate the score value Sc (©⊗k

ij ) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) of ©⊗k
ij if Cj

is a cost criterion. Using Equation (1), calculate the score value Sc ((c)k
ij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n)

of ©k
ij if Cj is a benefit criterion.

Step 5. Calculate accuracy values
Using Equation (9), calculate the accuracy value Ac (©⊗k

ij ) (I = 1, 2, . . . , m; j= 1, 2, . . . , n) of

©⊗k
ij if Cj is a cost criterion. Using Equation (9), calculate the accuracy value Ac (©k

ij) (I = 1, 2, . . . , m;

j = 1, 2, . . . , n) of ©k
ij if Cj is a benefit criterion.

Step 6. Formulate the dominance matrix
Calculate the dominance of each alternative Ai over each alternative Aj with respect to the criteria

C (C1, C2, . . . , Cn), of the k-th decision maker Ek by the following Equations (18) and (19).
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(For cost criteria)

Ψk
c (Ai, Aj) =

√
( WCh

n
Σ

c=1
Wch

∂(©⊗k
ic , ©⊗k

jc ) , if ©⊗k
ic > ©⊗k

jc

= 0, if ©⊗k
ic = ©⊗k

jc

= − 1
α

√
(

n
Σ

c=1
Wch

WCh
∂(©⊗k

ic , ©⊗k
jc ) , if ©⊗k

ic < ©⊗k
jc


(18)

(For benefit criteria)

Ψk
c (Ai, Aj) =

√
( WCh

n
Σ

c=1
Wch

∂(©k
ic, ©k

jc ) , if ©k
ic > ©k

jc

= 0, if ©k
ic = ©k

jc

= − 1
α

√
(

n
Σ

c=1
Wch

WCh
∂(©k

ic, , ©k
jc ) , if ©k

ic < ©k
jc


(19)

where, parameter α represents the attenuation factor of losses and αmust be positive.

Step 7. Formulate the individual overall dominance matrix
Using Equation (20), calculate the individual total dominance matrix of each alternative Ai over

each alternative Aj under the criterion Cj.

φk = (Ai, Aj) =
n
Σ

c=1
Ψk

c (Ai, Aj) (20)

Step 8. Aggregate the dominance matrix
Using Equation (21), calculate the collective overall dominance of alternative Ai over each

alternative Aj.

φ(Ai, Aj ) =
m
Σ

k=1
γk λ

k(Ai, Aj) (21)

Step 9. Calculate global values
We present the global value of each alternative as follows:

Ωi =

n
Σ

j=1
φ (Ai, Aj )− min

1≤ i≤m
(

n
Σ

j=1
φ (Ai, Aj ))

max
1≤ i≤m

(
n
Σ

j=1
φ (Ai, Aj ))− min

1≤ i≤m
(

n
Σ

j=1
φ (Ai, Aj ))

(22)

Step 10. Rank the priority
Sorting the values of Ωi provides the rank of each alternative. A set of alternatives can be

preference-ranked according to the descending order of Ωi. The highest global value corresponds to
the best alternative.

A conceptual model of the NC-TODIM strategy is shown in Figure 2.
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5. Illustrative Example

In this section, a MAGDM problem is adapted from the study [18] under the NCS environment.
An investment company wants to select the best alternative among the set of feasible alternatives.
The feasible alternatives are

1. Car company (A1)
2. Food company (A2)
3. Computer company (A3)
4. Arms company (A4).

The best alternative is selected based on the following criteria:

1. Risk analysis (C1)
2. Growth analysis (C2)
3. Environmental impact analysis (C3).

An investment company forms a panel of three decision makers {E1, E2, E3} who evaluate four
alternatives in decision making process. The weight vector of attributes and decision makers are
considered as W = (0.4, 0.35, 0.25)T γ = (0.32, 0.33, 0.35)T respectively.

The proposed strategy is presented using the following steps:

Step 1. Formulate the decision matrix
Formulate the decision matrices Mk (k = 1, 2, 3) using the rating values of alternatives with

respect to three criteria provided by the three decision makers in terms of NC-numbers. Assume

that the NC-numbers ©k
ij = <G̃

k
ij, Rk

ij> present the rating value provided by the decision maker Ek for

alternative Ai with respect to attribute Cj. Using these rating values ©k
ij (k = 1, 2, 3; i = 1, 2, 3, 4; j = 1,

2, 3), three decision matrices Mk = (©k
ij)4×3

(k = 1, 2, 3) are constructed (see Equations (23)–(25)).
Decision matrix for E1

M1 =


C1 C2 C3

A1 < [0.41, 0.52], [0.10, 0.18], [0.06, 0.17], (0.48, 0.11, 0.11) > < [0.40, 0.51], [0.10, 0.20], [0.10, 0.19], (0.50, 0.11, 0.11) > < [0.22, 0.27], [0.41, 0.52], [0.41, 0.52], (0.31, 0.31, 0.31) >
A2 < [0.35, 0.46], [0.18, 0.27], [0.17, 0.34], (0.43, 0.16, 0.21) > < [0.22, 0.28], [0.40, 0.50], [0.39, 0.48], (0.28, 0.28, 0.28) > < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.57, 0.12, 0.12) >
A3 < [0.23, 0.29], [0.36, 0.45], [0.34, 0.42], (0.26, 0.26, 0.26) > < [0.34, 0.45], [0.20, 0.30], [0.19, 0.39], (0.44, 0.16, 0.22) > < [0.22, 0.27], [0.41, 0.52], [0.41, 0.52], (0.31, 0.31, 0.31) >
A4 < [0.17, 0.23], [0.45, 0.55], [0.42, 0.59], (0.21, 0.32, 0.37) > < [0.22, 0.28], [0.40, 0.50], [0.39, 0.48], (0.28, 0.28, 0.28) > < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.57, 0.12, 0.12) >

 (23)

Decision matrix for E2

M2 =


C1 C2 C3

A1 < [0.17, 0.23], [0.46, 0.55], [0.42, 0.59], (0.21, 0.32, 0.37) > < [0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28) > < [0.34, 0.43], [0.13, 0.27], [0.13, 0.27], (0.49, 0.11, 0.11) >
A2 < [0.23, 0.29], [0.37, 0.46], [0.34, 0.42], (0.26, 0.26, 0.26) > < [0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28) > < [0.34, 0.43], [0.13, 0.27], [0.13, 0.27], (0.49, 0.11, 0.11) >
A3 < [0.41, 0.52], [0.10, 0.18], [0.10, 0.17], (0.48, 0.11, 0.11) > < [0.44, 0.57], [0.10, 0.17], [0.10, 0.17], (0.51, 0.11, 0.11) > < [0.19, 0.24], [0.53, 0.67], [0.53, 0.67], (0.27, 0.27, 0.27) >
A4 < [0.35, 0.46], [0.20, 0.28], [0.17, 0.34], (0.42, 0.16, 0.21) > < [0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28) > < [0.34, 0.43], [0.13, 0.27], [0.13, 0.27], (0.49, 0.11, 0.11) >

 (24)
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Decision matrix for E3

M3 =


C1 C2 C3

A1 < [0.22, 0.27], [0.42, 0.52], [0.42, 0.52], (0.28, 0.28, 0.28) > < [0.22, 0.28], [0.40, 0.50], [0.39, 0.48], (0.28, 0.28, 0.28) > < [0.41, 0.52], [0.10, 0.18], [0.10, 0.17], (0.48, 0.11, 0.11) >
A2 < [0.22, 0.27], [0.42, 0.52], [0.42, 0.52], (0.28, 0.28, 0.28) > < [0.40, 0.51], [0.10, 0.20], [0.10, 0.19], (0.50, 0.11, 0.11) > < [0.23, 0.29], [0.36, 0.45], [0.34, 0.42], (0.26, 0.26, 0.26) >
A3 < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.50, 0.11, 0.11) > < [0.34, 0.45], [0.20, 0.30], [0.19, 0.39], (0.44, 0.16, 0.22) > < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.50, 0.11, 0.11) >
A4 < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.50, 0.11, 0.11) > < [0.22, 0.28], [0.40, 0.50], [0.39, 0.48], (0.28, 0.28, 0.28) > < [0.17, 0.23], [0.45, 0.54], [0.42, 0.59], (0.21, 0.32, 0.37) >

 (25)

Step 2. Normalize the decision matrix
Since all the criteria are benefit type, we do not need to normalize the decision matrix.

Step 3. Determine the relative weight of each criterion
Using Equation (17), we obtain the relative weight vector Wch of criteria as follows:

Wch = (1, 0.875, 0.625)T.

Step 4. Calculate score values
The score values of each alternative relative to each criterion obtained by Equation (1) are

presented in the Tables 1–3.

Table 1. Score values for M1.

C1 C2 C2

A1 0.56 0.54 0.06
A2 0.40 0.09 0.54
A3 0.50 0.38 0.06
A4 −0.03 0.09 0.54

Table 2. Score values for M2.

C1 C2 C2

A1 −0.03 0.13 0.49
A2 0.13 0.13 0.49
A3 0.56 0.60 −0.04
A4 0.39 0.13 0.49

Table 3. Score values for M3.

C1 C2 C2

A1 0.07 0.09 0.56
A2 0.07 0.52 0.13
A3 0.51 0.37 0.39
A4 0.51 0.09 −0.03

Step 5. Calculate accuracy values
The accuracy values of each alternative relative to each criterion obtained by Equation (9) are

presented in Tables 4–6.

Table 4. Accuracy values for M1.

C1 C2 C2

A1 0.14 0.30 −0.24
A2 0.12 −0.23 0.32
A3 −0.20 0.09 −0.24
A4 −0.38 −0.23 0.32
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Table 5. Accuracy values for M2.

C1 C2 C2

A1 −0.38 −0.18 0.21
A2 −0.20 −0.18 0.21
A3 0.14 0.36 −0.21
A4 0.12 −0.18 0.21

Table 6. Accuracy values for M3.

C1 C2 C2

A1 −0.24 −0.23 0.41
A2 −0.24 0.30 −0.20
A3 0.26 0.09 0.12
A4 0.26 −0.23 −0.38

Step 6. Formulate the dominance matrix
Using Equation (19), we construct dominance matrix for α = 1. The dominance matrices are

represented in matrix form (See Equations (26)–(34)).
The dominance matrix Ψ1

1 , the dominance matrix Ψ1
2

Ψ1
1 =


A1 A2 A3 A4

A1 0 0.18 0.30 0.35
A2 −0.46 0 −0.58 0.30
A3 −0.74 0.23 0 0.19
A4 −0.88 −0.74 −0.47 0

 (26)

Ψ1
2 =


A1 A2 A3 A4

A1 0 0.29 0.18 0.28
A2 −0.82 0 −0.69 0
A3 −0.51 0.24 0 0.29
A4 −0.81 0 −0.65 0

 (27)

The dominance matrix Ψ1
3 , the dominance matrix Ψ2

1

Ψ1
3 =


A1 A2 A3 A4

A1 0 −1 0 −1
A2 0.25 0 0.26 0
A3 0 −1 0 −1
A4 0.25 0 0.26 0

 (28)

Ψ2
1 =


A1 A2 A3 A4

A1 0 −0.46 −0.88 −0.74
A2 0.18 0 −0.75 −0.58
A3 0.35 0.09 0 0.04
A4 0.30 0.23 0.19 0

 (29)



Information 2017, 8, 149 14 of 21

The dominance matrix Ψ2
2 , the dominance matrix Ψ2

3

Ψ2
2 =


A1 A2 A3 A4

A1 0 0 −0.84 0
A2 0 0 0.84 0
A3 0.29 0.29 0 0.29
A4 0 0 −0.84 0

 (30)

Ψ2
3 =


A1 A2 A3 A4

A1 0 0 0.26 0
A2 0 0 0.26 0
A3 −1 −1 0 −1
A4 0 0 0.26 0

 (31)

The dominance matrix Ψ3
1, the dominance matrix Ψ3

2

Ψ3
1 =


A1 A2 A3 A4

A1 0 0 0.78 0.78
A2 0 0 0.78 0.78
A3 0.31 0.31 0 0
A4 0.31 0.31 0 0

 (32)

Ψ3
2 =


A1 A2 A3 A4

A1 0 −0.83 0.65 0
A2 0.29 0 0.18 0.29

A30.23 −0.51 0 0.23
A4 0 −0.83 −0.65 0

 (33)

The dominance matrix Ψ3
3

Ψ3
3 =


A1 A2 A3 A4

A1 0 −0.94 0.59 −1.1
A2 0.23 0 −0.73 0.15
A3 0.59 0.18 0 0.23
A4 −1.1 0.58 −0.94 0

 (34)

Step 7. Formulate the individual overall dominance matrix
The individual overall dominance matrix is calculated by the Equation (20) and the dominance

matrices are represented in matrix form (see Equations (35)–(37)).
First decision maker’s overall dominance matrix φ1

φ1=


A1 A2 A3 A4

A1 0 −0.53 0.47 −0.37
A2 −1 0 −1 0.30
A3 −1.3 0.53 0 0.52
A4 −1.5 0.74 −0.86 0

 (35)
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Second decision maker’s overall dominance matrix φ2

φ2=


A1 A2 A3 A4

A1 0 −0.46 −1.5 −0.74
A2 0.18 0 −1.3 −0.58
A3 −0.36 −0.62 0 0.67
A4 0.30 0.23 −0.39 0

 (36)

Third decision maker’s overall dominance matrix φ3

φ3 =


A1 A2 A3 A4

A1 0 −1.8 −2 1.9
A2 0.52 0 −1.3 −0.34
A3 −0.05 −0.02 0 0.46
A4 −0.79 −1.1 −1.6 0

 (37)

Step 8. Aggregate the dominance matrix
Using Equation (21), the aggregate dominance matrix φ is constructed (see Equation (38))

as follows:

φ =


A1 A2 A3 A4

A1 0 −0.94 −1.1 −0.53
A2 −0.10 0 −1.23 −0.22
A3 −0.54 −0.38 0 −0.23
A4 −0.64 −0.55 −0.96 0

 (38)

Step 9. Calculate global values
Using Equation (22), we calculate the values of Ωi (i = 1, 2, 3, 4) and represented in Table 7.

Table 7. Global values of alternatives.

Ai A1 A2 A3 A4

Ωi 0.49 0.61 1 0

Step 10. Rank the priority
Since Ω3 > Ω2 > Ω1 > Ω4, alternatives are then preference ranked as follows: A3 > A2 > A1 > A4.
Hence A3 is the best alternative.
From the illustrative example, we see that the proposed NC-TODIM strategy is more suitable for

real scientific and engineering applications because it can handle hybrid information consisting of INS
and SVNS information simultaneously to cope with indeterminate and inconsistent information. Thus,
NC-TODIM extends the existing decision-making strategies and provides a sophisticated mathematical
tool for decision makers.

6. Rank of Alternatives with Different Values of α

Table 8 shows that the ranking order of alternatives depends on the values of the attenuation
factor, which reflects the importance of the attenuation factor in the NC-TODIM strategy.
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Table 8. Global values and ranking of alternatives for different values of α.

Values of α Global Values of Alternative (Ωi) Rank Order of Ai

0.5 Ω1 = 0, Ω2 = 0.89, Ω3 = 1, Ω4 = 0.46
Ω3 > Ω2 > Ω4 > Ω1

A3 > A2 > A4 > A1

1 Ω1 = 0.49, Ω2 = 0.61, Ω3 = 1, Ω4 = 0
Ω3 > Ω2 > Ω1 > Ω4

A3 > A2 > A1 > A4

1.5 Ω1 = 0, Ω2 = 0.72, Ω3 = 1, Ω4 = 0.44
Ω3 > Ω2 > Ω4 > Ω1

A3 > A2 > A4 > A1

2 Ω1 = 0, Ω2 = 1, Ω3 = 0.81, Ω4 = 0.38
Ω2 > Ω3 >Ω4 > Ω1

A2 > A3 > A4 > A1

3 Ω1 = 0, Ω2 = 0.56, Ω3 = 1, Ω4 = 0.45
Ω3 > Ω2 > Ω4 > Ω1

A3 > A2 > A4 > A1

Analysis on Influence of the Parameter α to Ranking Order

The impact of parameter α on ranking order is examined by comparing the ranking orders taken
with varying the different values of α. When α = 0.5, 1, 1.5, 2, 3, ranking order are presented in
Table 8. We draw Figures 3 and 4 to compare the ranking order for different values of α. When α = 0.5,
α = 1.5 and α = 3, the ranking order is unchanged and A3 is the best alternative, while A1 is the worst
alternative. When α = 1, the ranking order is changed and A3 is the best alternative and A4 is the worst
alternative. For α = 2, the ranking order is changed and A2 is the best alternative and A1 is the worst
alternative. From Table 8, we see that A3 is the best alternative in four cases and A1 is the worst for
four cases. We can say that ranking order depends on parameter α.
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7. Comparative Analysis and Discussion

On comparing with the existing neutrosophic decision making strategies [26–29,33–35,64–69],
we see that the decision information used in the proposed NC-TODIM strategy is NC numbers,
which comprises of interval neutrosophic information and single-valued neutrosophic information
simultaneously; whereas the decision information in the existing literature is either SVNSs or INSs.
Since NC numbers comprises of much more information, the NC numbers based on the TODIM
strategy proposed in this paper is more elegant, typical and more general in applications, while the
existing neutrosophic decision-making strategies cannot deal with the NC number decision-making
problem developed in this paper.

The first decision making paper in NCS environment was studied by Banerjee et al. [44].
On comparison with existing GRA-based NCS decision making strategies [44], we observe that
the proposed NC-TODIM strategy uses the score, and accuracy functions, while the decision
making-strategy in [44] uses Hamming distances for weighted grey relational coefficients and standard
(ideal) grey relational coefficients, and ranks the alternatives based on the relative closeness coefficients.
Hence, the proposed NC-TODIM strategy is relatively simple in the decision making process.

On comparing with cosine measures of NCSs [49], we observe that the proposed NC-TODIM
involves multiple decision makers, while in [49] only a single decision maker is involved. This shows
that [49] cannot deal with group decision making, while the proposed NC-TODIM strategy is more
sophisticated as it can deal with single as well as group decision making in the NCS environment.

On comparison with extended TOPSIS [50] with neutrosophic cubic information, we observe
that nine components are present in NCSs. Therefore, by calculation of a weighted decision matrix,
a neutrosophic cubic positive ideal solution (NCPIS), and a neutrosophic cubic negative ideal solution,
the distance measures of alternatives from NCPIS and NCNIS (NCNIS,) and entropy weight, and use of
an aggregation operator are lengthy, time consuming, and hence expensive. The proposed NC-TODIM
strategy is free from different kinds of typical aggregation operators. The calculations required for
the proposed strategy are relatively straightforward and time-saving. Therefore, the final ranking
obtained by the proposed strategy is more conclusive than those produced by the other strategies,
and it is evident that the proposed strategy is accurate and reliable.

On comparison with the strategy proposed by Zhan et al. [51], we see that they employ score,
accuracy, and certainty functions, and a weighted average operator and weighted geometric operator
of NCSs for decision making problem involving only a single decision maker. This reflects that the
strategy introduced by Zhan et al. [51] is only applicable for decision making problems involving
single decision maker. However, our proposed NC-TODIM strategy is more general as it is capable of
dealing with group decision-making problems.
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A comparative study is conducted with the existing strategy [48] for group decision making under
a NCS environment (See Table 9). Since the philosophy of two strategies are different, the obtained
results (ranking order) are different. At a glance, it cannot be said which strategy is superior
to the other. However, on comparison with similarity measure-based strategies studied in [48],
we observed that ideal solutions are needed for ranking of alternatives but in a real world ideal
solution, this is an imaginary case, which means that an indeterminacy arises automatically, whereas in
our proposed NC-TODIM strategy we can calculate the rank of the alternatives based on global values
of alternatives. So, the proposed NC-TODIM strategy is relatively easy to implement and apply for
solving MAGDM problems.

Table 9. Ranking order of alternatives using three different decision making strategies in the
neutrosophic cubic set (NCS) environment.

Proposed NC-TODIM Strategy Similarity Measure [48]

Ω1 = 0, Ω2 = 0.89, Ω3 = 1, Ω4 = 0.46 ρ1 = 0.20, ρ2 = 0.80, ρ3 = 0.22, ρ4 = 0.19
Ranking order: A3 > A2 > A4 > A1 Ranking order: A2 > A3 > A1 > A4

8. Conclusions

NCSs can better describe hybrid information comprising of INSs and NSs. In this study,
we proposed a score function and an accuracy function, and established their properties. We developed
a NC-TODIM strategy, which is capable for tackling MAGDM problems affected by uncertainty and
indeterminacy represented by NC numbers. The standard TODIM, in its original formulation, is only
applicable to a crisp environment. Existing neutrosophic TODIM strategies deal with single valued
neutrosophic information or interval neutrosophic information. Therefore, proposed NC-TODIM
strategy demonstrates the advantages of presenting and manipulating MAGDM problems with
NCSs comprising of the hybrid information of INSs and NSs. Furthermore, NC-TODIM strategy
that considers the risk preferences of decision makers, is significant to solve MAGDM problems.
The proposed NC-TODIM strategy was verified to be applicable, feasible, and effective by solving
an illustrative example regarding the selection problem of investment alternatives. In addition,
we investigated the influence of attenuation factor of losses α on ranking the order of alternatives.

The contribution of this study can be concluded as follows. First, this study utilized NCSs
to present the interval neutrosophic information and neutrosophic information in the MAGDM
process. Second, the NC-TODIM strategy established in this paper is simpler and easier than the
existing strategy proposed by Pramanik et al. [48] for group decision making with neutrosophic cubic
information based on similarity measure and demonstrates the main advantage of its simple and
easy group decision making process. Third, TODIM strategy was extended to the NCS environment.
Fourth, we defined the NC number. Fifth, we defined the score and accuracy functions and proved
their basic properties. Sixth, we developed the ranking of NC numbers using score and accuracy
functions. Therefore, two functions namely, score function, accuracy function, and proofs of their basic
properties, ranking of NC numbers, and NC-TODIM strategy for MAGDM are the main contributions
of the paper.

Several directions for future research are generated from this study. First, this study employs
the NC-TODIM strategy to deal with MAGDM. In addition to MAGDM, MAGDM problems in a
variety of other fields can be solved using the NC-TODIM strategy, including logistics center selection,
personnel selection, teacher selection, renewable energy selection, medical diagnosis, image processing,
fault diagnosis, etc. Second, this study considers the risk preferences of decision makers i.e., the essence
of TODIM, while the interrelationship between criteria are ignored. In future research, the NC-TODIM
strategy will be improved to address this deficiency. Third, the proposed strategy can only deal
with crisp weights of attributes and decision makers, rather than NCS, which reflects its main
limitation. This limitation will be effectively addressed in our future research. Fourth, in our illustrative
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example, three criteria are considered as an example. However, in real world group decision making
problems, many other criteria should be included. A comprehensive framework for MAGDM problem
comprising of all relevant criteria should be designed based on prior studies and the proposed
NC-TODIM strategy in future research. Finally, we conclude that the developed NC-TODIM strategy
offers a novel and effective strategy for decision makers under the NCS environment, and will open
up a new avenue of research into the neutrosophic hybrid environment.
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Abstract: In this paper, we will extend the VIKOR (VIsekriterijumska optimizacija i KOmpromisno
Resenje) method to multiple attribute group decision-making (MAGDM) with interval neutrosophic
numbers (INNs). Firstly, the basic concepts of INNs are briefly presented. The method first
aggregates all individual decision-makers’ assessment information based on an interval neutrosophic
weighted averaging (INWA) operator, and then employs the extended classical VIKOR method
to solve MAGDM problems with INNs. The validity and stability of this method are verified by
example analysis and sensitivity analysis, and its superiority is illustrated by a comparison with the
existing methods.

Keywords: MAGDM; INNs; VIKOR method

1. Introduction

Multiple attribute group decision-making (MAGDM), which has been increasingly investigated
and considered by all kinds of researchers and scholars, is one of the most influential parts of decision
theory. It aims to provide a comprehensive solution by evaluating and ranking alternatives based
on conflicting attributes with respect to decision-makers’ (DMs) preferences, and has widely been
utilized in engineering, economics, and management. Several traditional MAGDM methods have been
developed by scholars in literature, such as the TOPSIS (Technique for Order Preference by Similarity
to an Ideal Solution) method [1,2], the VIKOR (VIsekriterijumska optimizacija i KOmpromisno
Resenje) method [3–5], the PROMETHEE (Preference Ranking Organization Method for Enrichment
Evaluations) method [6], the ELECTRE (ELimination Et Choix Traduisant la Realité) method [7], the
GRA (Grey Relational Analysis) method [8–10], and the MULTIMOORA (Multiobjective Optimization
by Ratio Analysis plus Full Multiplicative Form) method [11,12].

Due to the fuzziness and uncertainty of the alternatives in different attributes, attribute values in
MAGDM are not always represented as real numbers, and they can be described as fuzzy numbers
in more suitable occasions [13–15]. Since fuzzy set (FS) was first defined by Zadeh [16], is has been
used as a better tool to solve MAGDM [17,18]. Smarandache [19,20] proposed a neutrosophic set (NS).
Furthermore, the concepts of single-valued neutrosophic sets (SVNSs) [21] and interval neutrosophic
sets(INSs) [22] were presented for actual applications. Ye [23] proposed a simplified neutrosophic
set (SNS). Broumi and Smarandache [24] defined the correlation coefficient of INS. Zhang et al. [25]
gave the correlation coefficient of interval neutrosophic numbers (INNs) in MAGDM. Zhang et al. [26]
gave an outranking approach for INN MAGDM. Tian et al. [27] defined a cross-entropy in INN
MAGDM. Zhang et al. [28] proposed some INN aggregating. Some other INN operators are proposed
in References [29–32]. Ye [33] proposed two similarity measures between INNs. The SVNS and INS
have received more and more attention since their appearance [34–42].
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Opricovic [3] proposed the VIKOR method for a MAGDM problem with conflicting
attributes [43–45]. Some scholars proposed fuzzy VIKOR models [46], intuitionistic fuzzy VIKOR
models [47–49], the linguistic VIKOR method [50], the interval type-2 fuzzy VIKOR model [51], the
hesitant fuzzy linguistic VIKOR method [52], the dual hesitant fuzzy VIKOR method [53], the linguistic
intuitionistic fuzzy [54], and the single-valued neutrosophic number (SVNN) VIKOR method [38].
However, there has not yet been an academic investigation of the VIKOR method for MAGDM
problems with INNs. Therefore, it is necessary to pay great attention to this novel and worthy research
issue. The purpose of our paper is to use the VIKOR idea to solve MAGDM with INNs, to fill this
vacancy of knowledge. In Section 2, we give the definition of INNs. We propose the VIKOR method
for INN MAGDM. In Section 3, an example is provided, and the comparative analysis is proposed in
Section 4. We finish with our conclusions in Section 5.

2. Preliminaries

The concepts of SVNSs and INSs are introduced.

SVNSs and INSs

NSs [19,20] are not easy to apply to real applications. Wang et al. [21] developed SNSs.
Furthermore, Wang et al. [22] defined INSs.

Definition 1 [21]. Let X be a space of points (objects), a SVNSs A in X is characterized as following:

A = {(x, ξA(x), ψA(x), ζA(x))|x ∈ X } (1)

where the truth-membership function ξA(x), indeterminacy-membership ψA(x) and falsity-membership function
ζA(x), ξA(x)→ [0, 1], ψA(x)→ [0, 1] and ζA(x)→ [0, 1] , with the condition 0 ≤ ξA(x) + ψA(x) +
ζA(x) ≤ 3.

Definition 2 [22]. Let X be a space of points (objects) with a generic element in fixed set X, denoted by x, where
an INS Ã in X is characterized as follows:

Ã =
{(

x, ξ Ã(x), ψÃ(x), ζ Ã(x)
)
|x ∈ X

}
(2)

where truth-membership function ξ Ã(x), indeterminacy-membership ψÃ(x), and falsity-membership function
ζ Ã(x) are interval values, ξ Ã(x) ⊆ [0, 1], ψÃ(x) ⊆ [0, 1] and ζ Ã(x) ⊆ [0, 1], and 0 ≤ sup

(
ξ Ã(x)

)
+

sup
(
ψÃ(x)

)
+ sup

(
ζ Ã(x)

)
≤ 3.

An INN can be expressed as Ã =
(
ξ Ã, ψÃ, ζ Ã

)
=
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
, where

[
ξL

Ã
, ξR

Ã

]
⊆

[0, 1],
[
ψL

Ã
, ψR

Ã

]
⊆ [0, 1],

[
ζL

Ã
, ζR

Ã

]
⊆ [0, 1], and 0 ≤ ξR

Ã
+ ψR

Ã
+ ζR

Ã
≤ 3.

Definition 3 [45]. Let Ã =
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
be an INN, then a score function, SF, is:

SF
(

Ã
)
=

(
2 + ξL

Ã
− ψL

Ã
− ζL

Ã

)
+
(

2 + ξR
Ã
− ψR

Ã
− ζR

Ã

)
6

, SF
(

Ã
)
∈ [0, 1] (3)

Definition 4 [45]. Let Ã =
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
be an INN, then an accuracy function, AF

(
Ã
)

,
is defined as:

AF
(

Ã
)
=

(
ξL

Ã
+ ξR

Ã

)
−
(

ζL
Ã
+ ζR

Ã

)
2

, AF
(

Ã
)
∈ [−1, 1] (4)
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Definition 5 [45]. Let Ã =
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
and B̃ =

([
ξL

B̃
, ξR

B̃

]
,
[
ψL

B̃
, ψR

B̃

]
,
[
ζL

B̃
, ζR

B̃

])
be two INNs, SF

(
Ã
)
=

(
2+ξL

Ã
−ψL

Ã
−ζL

Ã

)
+
(

2+ξR
Ã
−ψR

Ã
−ζR

Ã

)
6 and SF

(
B̃
)
=

(
2+ξL

B̃
−ψL

B̃
−ζL

B̃

)
+
(

2+ξR
B̃
−ψR

B̃
−ζR

B̃

)
6 be

the score functions, and AF
(

Ã
)
=

(
ξL

Ã
+ξR

Ã

)
−
(

ζL
Ã
+ζR

Ã

)
2 and AF

(
B̃
)
=

(
ξL

B̃
+ξR

B̃

)
−
(

ζL
B̃
+ζR

B̃

)
2 be the accuracy

functions, then if SF
(

Ã
)
< SF

(
B̃
)

, then Ã < B̃; if SF
(

Ã
)
= SF

(
B̃
)

, then (1) if AF
(

Ã
)
= AF

(
B̃
)

, then

Ã = B̃; (2) if AF
(

Ã
)
< AF

(
B̃
)

, then Ã < B̃.

Definition 6 [22,33]. Let Ã =
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
and B̃ =

([
ξL

B̃
, ξR

B̃

]
,
[
ψL

B̃
, ψR

B̃

]
,
[
ζL

B̃
, ζR

B̃

])
be two INNs, then:

(1) Ã⊕ B̃ =
([

ξL
A + ξL

B − ξL
AξL

B, ξR
A + ξR

B − ξR
AξR

B
]
,
[
ψL

AψL
B, ψR

AψR
B
]
,
[
ζL

AζL
B, ζR

AζR
B
])

;

(2) Ã⊗ B̃ =

( [
ξL

AξL
B, ξR

AξR
B
]
,
[
ψL

A + ψL
B − ψL

AψL
B, ψR

A + ψR
B − ψR

AψR
B
]
,[

ζL
A + ζL

B − ζL
AζL

B, ζR
A + ζR

B − ζR
AζR

B
] )

;

(3) λÃ =
([

1−
(
1− ξL

A
)λ, 1−

(
1− ξR

A
)λ
]
,
[(

ψL
A
)λ,
(
ψR

A
)λ
]
,
[(

ζL
A
)λ,
(
ζR

A
)λ
])

, λ > 0;

(4)
(

Ã
)λ

=
([(

ξL
A
)λ,
(
ξR

A
)λ
]
,
[(

ψL
A
)λ,
(
ψR

A
)λ
]
,
[
1−

(
1− ζL

A
)λ, 1−

(
1− ζR

A
)λ
])

, λ > 0.

Definition 7 [45]. Let Ã and B̃ be two INNs, then the normalized Hamming distance between Ã and B̃ is
defined as follows:

d
(

Ã, B̃
)
=

1
6

( ∣∣ξL
A − ξL

B
∣∣+ ∣∣ξR

A − ξR
B
∣∣+ ∣∣ψL

A − IL
B
∣∣

+
∣∣ψR

A − ψR
B
∣∣+ ∣∣ζL

A − ζL
B
∣∣+ ∣∣ζR

A − ζR
B
∣∣
)

(5)

3. VIKOR Method for INN MAGDM Problems

Let φ = {φ1, φ2, · · · , φm} be alternatives and ϕ = {ϕ1, ϕ2, · · · , ϕn} be attributes. Let τ =

(τ1, τ2, · · · , τn) be the weight of ϕj, 0 ≤ τj ≤ 1,
n
∑

j=1
τj = 1. Let D = {D1, D2, · · · , Dt} be the set

of DMs, σ = (σ1, σ2, · · · , σt) be the weighting of DMs, with 0 ≤ σk ≤ 1,
t

∑
k=1

σk = 1. Suppose

that R̃k =
(

r̃(k)ij

)
m×n

=
([

ξ
L(k)
ij , ξ

R(k)
ij

]
,
[
ψ

L(k)
ij , ψ

R(k)
ij

]
,
[
ζ

L(k)
ij , ζ

R(k)
ij

])
m×n

is the INN decision matrix[
ξ

L(k)
ij , ξ

R(k)
ij

]
⊆ [0, 1],

[
ψ

L(k)
ij , ψ

R(k)
ij

]
⊆ [0, 1],

[
ζ

L(k)
ij , ζ

R(k)
ij

]
⊆ [0, 1], 0 ≤ ξ

R(k)
ij + ψ

R(k)
ij + ζ

R(k)
ij ≤ 3,

i = 1, 2, · · · , m, j = 1, 2, · · · , n, k = 1, 2, · · · , t.
To cope with the MAGDM with INNs, we develop the INN VIKOR model.

Step 1. Utilize the R̃k and the interval neutrosophic number weighted averaging
(INNWA) operator

r̃ij =
([

ξL
ij, ξR

ij

]
,
[
ψL

ij, ψR
ij

]
,
[
ζL

ij, ζR
ij

])
= INNWAσ

(
r̃(1)ij , r̃(2)ij , · · · , r̃(t)ij

)
i = 1, 2, · · · , m, j = 1, 2, · · · , n

(6)

to get R̃ =
(
r̃ij
)

m×n.

Step 2. Define the positive ideal solutions R̃+ and negative ideal solutions R̃−.

R̃+ =
([

ξL+
j , ξR+

j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
(7)

R̃− =
([

ξL−
j , ξR−

j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

])
(8)
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For the benefit attribute:([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
=

([
max

i
ξL

ij, max
i

ξR
ij

]
,
[

min
i

ψL
ij, min

i
ψR

ij

]
,
[

min
i

ζL
ij, min

i
ζR

ij

]) (9)

([
ξL−

j , ξR−
j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

])
=

([
min

i
ξL

ij, min
i

ξR
ij

]
,
[

max
i

ψL
ij, max

i
ψR

ij

]
,
[

max
i

ζL
ij, max

i
ζR

ij

]) (10)

For the cost attribute:([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
=

([
min

i
ξL

ij, min
i

ξR
ij

]
,
[

max
i

ψL
ij, max

i
ψR

ij

]
,
[

max
i

ζL
ij, max

i
ζR

ij

]) (11)

([
ξL−

j , ξR−
j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

])
=

([
max

i
ξL

ij, max
i

ξR
ij

]
,
[

min
i

ψL
ij, min

i
ψR

ij

]
,
[

min
i

ζL
ij, min

i
ζR

ij

]) (12)

Step 3. Compute the Γi and Zi.

Γi =
n

∑
j=1

τj × d

 ([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
,([

ξL
ij, ξR

ij

]
,
[
ψL

ij, ψR
ij

]
,
[
ζL

ij, ζR
ij

]) 
d

 ([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
,([

ξL−
j , ξR−

j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

])  (13)

Zi = max
j


τj × d

 ([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
,([

ξL
ij, ξR

ij

]
,
[
ψL

ij, ψR
ij

]
,
[
ζL

ij, ζR
ij

]) 
d

 ([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
,([

ξL−
j , ξR−

j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

]) 


(14)

where τj is weight of ϕj.
Step 4. Compute the Θi by the following formula:

Θi = θ
(Γi − Γ∗i )(
Γ−i − Γ∗i

) + (1− θ)
(Zi − Z∗i )(
Z−i − Z∗i

) (15)

where
Γ∗i = min

i
Γi, Γ−i = max

i
Γi (16)

Z∗i = min
i

Zi, Z−i = max
i

Γi (17)

where θ depicts the decision-making mechanism coefficient. If θ > 0.5, it is for “the maximum group
utility”; If θ < 0.5, it is “the minimum regret”; and it is both if θ = 0.5.

Step 5. Rank the alternatives by Θi, Γi and Zi according to the selection rule of the traditional
VIKOR method.
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4. Numerical Example

4.1. Numerical Example

In this section, a numerical example is given with INNs. Five possible emerging technology
enterprises (ETEs) φi(i = 1, 2, 3, 4, 5) are selected. Four attributes are selected to evaluate the five
possible ETEs: 1© ϕ1 is the employment creation; 2© ϕ2 is the development of science and technology;

3© ϕ3 is the technical advancement; 4© ϕ4 is the industrialization infrastructure. The five ETEs are to be
evaluated by using INNs under the attributes (τ = (0.2, 0.1, 0.3, 0.4)T) by the DMs (σ = (0.2, 0.5, 0.3)T),
as listed in Tables 1–3.

Table 1. The decision matrix R̃1.

ϕ1 ϕ2

φ1 ([0.3, 0.4], [0.6, 0.7], [0.3, 0.5]) ([0.4, 0.5], [0.2, 0.3], [0.1, 0.2])
φ2 ([0.5, 0.7], [0.6, 0.8], [0.2, 0.4]) ([0.5, 0.6], [0.3, 0.5], [0.2, 0.3])
φ3 ([0.4, 0.5], [0.5, 0.6], [0.2, 0.3]) ([0.3, 0.4], [0.5, 0.6], [0.1, 0.2])
φ4 ([0.6, 0.7], [0.2, 0.3], [0.1, 0.2]) ([0.4, 0.5], [0.1, 0.2], [0.2, 0.3])
φ5 ([0.4, 0.5], [0.2, 0.3], [0.2, 0.3]) ([0.2, 0.3], [0.6, 0.7], [0.2, 0.3])

ϕ3 ϕ4

φ1 ([0.1, 0.2], [0.4, 0.5], [0.1, 0.2]) ([0.3, 0.4], [0.5, 0.6], [0.2, 0.3])
φ2 ([0.5, 0.7], [0.4, 0.6], [0.2, 0.3]) ([0.6, 0.7], [0.3, 0.4], [0.2, 0.3])
φ3 ([0.3, 0.4], [0.1, 0.2], [0.2, 0.3]) ([0.4, 0.5], [0.1, 0.2], [0.3, 0.4])
φ4 ([0.4, 0.5], [0.2, 0.3], [0.1, 0.2]) ([0.3, 0.4], [0.4, 0.5], [0.2, 0.3])
φ5 ([0.5, 0.6], [0.4, 0.5], [0.2, 0.3]) ([0.3, 0.4], [0.6, 0.7], [0.3, 0.4])

Table 2. The decision matrix R̃2.

ϕ1 ϕ2

φ1 ([0.4, 0.6], [0.5, 0.7], [0.3, 0.4]) ([0.6, 0.7], [0.5, 0.6], [0.5, 0.6])
φ2 ([0.6, 0.9], [0.4, 0.5], [0.3, 0.4]) ([0.7, 0.8], [0.6, 0.7], [0.4, 0.5])
φ3 ([0.8, 0.9], [0.8, 0.9], [0.4, 0.5]) ([0.7, 0.8], [0.5, 0.6], [0.5, 0.6])
φ4 ([0.6, 0.7], [0.3, 0.4], [0.5, 0.6]) ([0.8, 0.9], [0.5, 0.6], [0.6, 0.7])
φ5 ([0.4, 0.5], [0.6, 0.7], [0.6, 0.7]) ([0.6, 0.7], [0.3, 0.4], [0.3, 0.4])

ϕ3 ϕ4

φ1 ([0.5, 0.6], [0.4, 0.5], [0.3, 0.4]) ([0.6, 0.7], [0.4, 0.5], [0.3, 0.4])
φ2 ([0.7, 0.8], [0.3, 0.4], [0.3, 0.4]) ([0.8, 0.9], [0.4, 0.5], [0.3, 0.4])
φ3 ([0.7, 0.8], [0.1, 0.2], [0.3, 0.4]) ([0.8, 0.9], [0.5, 0.6], [0.2, 0.3])
φ4 ([0.5, 0.6], [0.2, 0.3], [0.4, 0.5]) ([0.5, 0.6], [0.7, 0.9], [0.3, 0.4])
φ5 ([0.9, 1.0], [0.4, 0.5], [0.3, 0.4]) ([0.7, 0.8], [0.8, 0.9], [0.1, 0.2])

Table 3. The decision matrix R̃3.

ϕ1 ϕ2

φ1 ([0.7, 0.8], [0.4, 0.5], [0.4, 0.5]) ([0.7, 0.8], [0.3, 0.4], [0.6, 0.7])
φ2 ([0.6, 0.7], [0.5, 0.6], [0.4, 0.5]) ([0.7, 0.8], [0.6, 0.7], [0.5, 0.6])
φ3 ([0.7, 0.8], [0.3, 0.4], [0.5, 0.6]) ([0.8, 0.9], [0.2, 0.4], [0.6, 0.7])
φ4 ([0.7, 0.8], [0.4, 0.5], [0.6, 0.7]) ([0.6, 0.9], [0.1, 0.2], [0.7, 0.8])
φ5 ([0.6, 0.7], [0.7, 0.8], [0.2, 0.3]) ([0.7, 0.8], [0.3, 0.5], [0.4, 0.5])

ϕ3 ϕ4

φ1 ([0.6, 0.7], [0.3, 0.4], [0.4, 0.5]) ([0.5, 0.6], [0.4, 0.5], [0.4, 0.5])
φ2 ([0.8, 0.9], [0.2, 0.3], [0.7, 0.8]) ([0.6, 0.7], [0.3, 0.4], [0.4, 0.6])
φ3 ([0.8, 0.9], [0.2, 0.4], [0.4, 0.5]) ([0.9, 1.0], [0.1, 0.2], [0.5, 0.6])
φ4 ([0.6, 0.7], [0.1, 0.2], [0.5, 0.6]) ([0.6, 0.7], [0.3, 0.4], [0.4, 0.5])
φ5 ([0.7, 0.9], [0.3, 0.4], [0.4 0.5]) ([0.8, 0.9], [0.5, 0.6], [0.5, 0.6])
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Then, we use the proposed model to select the best ETE.

Step 1. Utilize R̃k(k = 1, 2, 3) and the INNWA operator, in order to obtain matrix R̃ =
(
r̃ij
)

5×4 by
Equation (6) which is listed in Table 4.

Table 4. The decision matrix R̃.

ϕ1 ϕ2

φ1 ([0.4974, 0.6477], [0.4850, 0.6328], [0.3270, 0.4472]) ([0.6021, 0.7058], [0.3571, 0.4625], [0.3828, 0.5044])
φ2 ([0.5817, 0.8268], [0.4638, 0.5802], [0.3016, 0.4277]) ([0.6677, 0.7703], [0.5223, 0.6544], [0.3723, 0.4768])
φ3 ([0.7186, 0.8301], [0.5426, 0.6507], [0.3723, 0.4768]) ([0.6853, 0.7976], [0.3798, 0.5313], [0.3828, 0.5044])
φ4 ([0.6331, 0.7344], [0.3016, 0.4038], [0.3828, 0.5044]) ([0.6933, 0.8620], [0.2236, 0.3464], [0.5044, 0.6150])
φ5 ([0.4687, 0.5710], [0.5044, 0.6150], [0.3464, 0.4583]) ([0.5785, 0.6853], [0.3446, 0.4783], [0.3016, 0.4083])

ϕ3 ϕ4

φ1 ([0.4740, 0.5785], [0.3669, 0.4676], [0.2625, 0.3723]) ([0.5127, 0.6243], [0.4183, 0.5186], [0.3016, 0.4038])
φ2 ([0.7058, 0.8238], [0.2814, 0.3979], [0.3567, 0.4649]) ([0.7172, 0.8268], [0.3464, 0.4472], [0.3016, 0.4265])
φ3 ([0.6853, 0.7976], [0.1231, 0.2462], [0.3016, 0.4038]) ([0.7976, 1.0000], [0.2236, 0.3464], [0.2855, 0.3912])
φ4 ([0.5150, 0.6163], [0.1625, 0.2656], [0.3241, 0.4397]) ([0.4998, 0.6021], [0.4854, 0.6274], [0.3016, 0.4038])
φ5 ([0.8082, 1.0000], [0.3669, 0.4676], [0.3016, 0.4038]) ([0.6853, 0.7976], [0.6559, 0.7579], [0.2019, 0.3194])

Step 2. Define the R̃+ and R̃− by Equations (7) and (8).

R̃+ =


([0.7186, 0.8301], [0.3016, 0.4038], [0.3016, 0.4277]),
([0.6933, 0.8620], [0.2236, 0.3464], [0.3016, 0.4038]),
([0.8082, 1.0000], [0.1231, 0.2462], [0.2625, 0.3723]),
([0.7976, 1.1000], [0.2236, 0.3464], [0.2019, 0.3194])


R̃− =


([0.4687, 0.5710], [0.5426, 0.6507], [0.3828, 0.5044]),
([0.5785, 0.6853], [0.5223, 0.6544], [0.5044, 0.6150]),
([0.4740, 0.5785], [0.3669, 0.4676], [0.3567, 0.4649]),
([0.4998, 0.6021], [0.6559, 0.7579], [0.3016, 0.4265])


Step 3. Compute the Γi and Zi by Equation (14).

Γ1 = 0.6507, Γ2 = 0.4182, Γ3 = 0.2416, Γ4 = 0.5261, Γ5 = 0.5195
Z1 = 0.2386, Z2 = 0.1515, Z3 = 0.0921, Z4 = 0.2765, Z5 = 0.2252

Step 4. Compute the Θi (let θ = 0.5) by Equation (15).

Θ1 = 0.8974, Θ2 = 0.3772, Θ3 = 0.0000, Θ4 = 0.8477, Θ5 = 0.7006

Step 5. The order of ETEs is determined by Θi (i = 1, 2, 3, 4, 5): φ3 � φ2 � φ5 � φ4 � φ1, and
thus the most desirable ETE is φ3.

4.2. Comparative Analysis

In what follows, we compare with the interval neutrosophic number weighted averaging
(INNWA) operator and interval neutrosophic number weighted geometric (INNWG) operator [28],
INN similarity [33], and INN VIKOR [55]. The results are shown in Table 5.

From the above analysis, it can be seen that the five methods have the same best emerging
technology enterprise φ3, and the ranking results of Method 1 and Method 2 are slightly different. The
proposed INN VIKOR method can reasonably focus a MAGDM problem with INNs. At the same time,
compared with Method 5 based on the INN VIKOR method in Reference [55], our proposed method
avoids the interval numbers’ comparison.
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Table 5. The orders by utilizing five methods.

Methods Ranking Orders Best Alternatives

Method 1 with INNWA operator in [28] φ3 � φ5 � φ2 � φ4 � φ1 φ3
Method 2 with INNWG operator in [28] φ3 � φ2 � φ5 � φ4 � φ1 φ3

Method 3 based on similarity in [33] φ3 � φ2 � φ5 � φ4 � φ1 φ3
Method 4 based on similarity in [33] φ3 � φ2 � φ5 � φ4 � φ1 φ3

Method 5 based on INN VIKOR in [55] φ3 � φ2 � φ5 � φ4 � φ1 φ3
The proposed method φ3 � φ2 � φ5 � φ4 � φ1 φ3

5. Conclusions

The VIKOR method for a MAGDM presents some conflicting attributes. We extended the VIKOR
method to MAGDM with INNs. Firstly, the basic concepts of INNs were briefly presented. The method
first aggregates all individual decision-makers’ assessment information based on an INNWA operator,
and then employs the extended classical VIKOR method for MAGDM problems with INNs. The
validity and stability of this method were verified by example analysis and comparative analysis, and
its superiority was illustrated by a comparison with the existing methods. In the future, many other
methods of INSs need to be explored in for MAGDM, risk analysis, and many other uncertain and
fuzzy environments [56–78].
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1. Introduction

Euler [1] introduced the concept of graph theory in 1736, which has applications in various fields,
including image capturing, data mining, clustering and computer science [2–5]. A graph is also used to
develop an interconnection between objects in a known set of objects. Every object can be illustrated by
a vertex, and interconnection between them can be illustrated by an edge. The notion of competition
graphs was developed by Cohen [6] in 1968, depending on a problem in ecology. The competition
graphs have many utilizations in solving daily life problems, including channel assignment, modeling of
complex economic, phytogenetic tree reconstruction, coding and energy systems.

Fuzzy set theory and intuitionistic fuzzy sets theory are useful models for dealing with uncertainty
and incomplete information. However, they may not be sufficient in modeling of indeterminate and
inconsistent information encountered in the real world. In order to cope with this issue, neutrosophic
set theory was proposed by Smarandache [7] as a generalization of fuzzy sets and intuitionistic fuzzy
sets. However, since neutrosophic sets are identified by three functions called truth-membership (t),
indeterminacy-membership (i) and falsity-membership ( f ), whose values are the real standard or
non-standard subset of unit interval ]0−, 1+[. There are some difficulties in modeling of some problems
in engineering and sciences. To overcome these difficulties, Smarandache in 1998 [8] and Wang et al. [9]
in 2010 defined the concept of single-valued neutrosophic sets and their operations as a generalization of
intuitionistic fuzzy sets. Yang et al. [10] introduced the concept of the single-valued neutrosophic relation
based on the single-valued neutrosophic set. They also developed kernels and closures of a single-valued
neutrosophic set. The concept of the single-valued intuitionistic neutrosophic set was proposed by
Bhowmik and Pal [11,12].
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The valuable contribution of fuzzy graph and generalized structures has been studied by several
researchers [13–22]. Smarandache [23] proposed the notion of the neutrosophic graph and separated them
into four main categories. Wu [24] discussed fuzzy digraphs. Fuzzy m-competition and p-competition
graphs were introduced by Samanta and Pal [25]. Samanta et al. [26] introduced m-step fuzzy competition
graphs. Dhavaseelan et al. [27] defined strong neutrosophic graphs. Akram and Shahzadi [28] introduced
the notion of a single-valued neutrosophic graph and studied some of its operations. They also discussed
the properties of single-valued neutrosophic graphs by level graphs. Akram and Shahzadi [29] introduced
the concept of neutrosophic soft graphs with applications. Broumi et al. [30] proposed single-valued
neutrosophic graphs and discussed some properties. Ye [31–33] has presented several novel concepts
of neutrosophic sets with applications. In this paper, we first introduce the concept of intuitionistic
neutrosophic competition graphs. We then discuss m-step intuitionistic neutrosophic competition graphs.
Further, we describe applications of intuitionistic neutrosophic competition graphs in ecosystem and
career competition. Finally, we present our developed methods by algorithms.

Our paper is divided into the following sections: In Section 2, we introduce certain competition
graphs using the intuitionistic neutrosophic environment. In Section 3, we present applications of
intuitionistic neutrosophic competition graphs in ecosystem and career competition. Finally, Section 4
provides conclusions and future research directions.

2. Intuitionistic Neutrosophic Competition Graphs

We have used standard definitions and terminologies in this paper. For other notations, terminologies
and applications not mentioned in the paper, the readers are referred to [34–44].

Definition 1. [38] Let X be a fixed set. A generalized intuitionistic fuzzy set I of X is an object having the
form I={(u, µI(u), νI(u))|u ∈ U}, where the functions µI(u) :→ [0, 1] and νI(u) :→ [0, 1] define the degree of
membership and degree of non-membership of an element u ∈ X, respectively, such that:

min{µI(u), νI(u)} ≤ 0.5, for all u ∈ X.

This condition is called the generalized intuitionistic condition.

Definition 2. [11] An intuitionistic neutrosophic set (IN-set) is defined as Ă = (w, tĂ(w), iĂ(w), fĂ(w)), where:

tĂ(w) ∧ f Ă(w) ≤ 0.5,

tĂ(w) ∧ iĂ(w) ≤ 0.5,

iĂ(w) ∧ f Ă(w) ≤ 0.5,

for all, w ∈ X, such that:

0 ≤ tĂ(w) + iĂ(w) + f Ă(w) ≤ 2.

Definition 3. [12] An intuitionistic neutrosophic relation (IN-relation) is defined as an intuitionistic neutrosophic
subset of X×Y, which has of the form:

R = {((w, z), tR(w, z), iR(w, z), fR(w, z)) : w ∈ X, z ∈ Y},
where tR, iR and fR are intuitionistic neutrosophic subsets of X×Y satisfying the conditions:

1. one of these tR(w, z), iR(w, z) and fR(w, z) is greater than or equal to 0.5,
2. 0 ≤ tR(w, z) + iR(w, z) + fR(w, z) ≤ 2.

Definition 4. An intuitionistic neutrosophic graph (IN-graph) G = (X, h, k) (in short G) on X (vertex set) is
a triplet such that:
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1. tk(w, z) ≤ th(w) ∧ th(z), ik(w, z) ≤ ih(w) ∧ ih(z), fk(w, z) ≤ fh(w) ∨ fh(z),
2. tk(w, z) ∧ ik(w, z) ≤ 0.5, tk(w, z) ∧ fk(w, z) ≤ 0.5, ik(w, z) ∧ fk(w, z) ≤ 0.5,
3. 0 ≤ tk(w, z) + ik(w, z) + fk(w, z) ≤ 2, for all w, z ∈ X,

where,

th, ih and fh → [0, 1]

denote the truth-membership, indeterminacy-membership and falsity-membership of an element w ∈ X and:

tk, ik and fk → [0, 1]

denote the truth-membership, indeterminacy-membership and falsity-membership of an element (w, z) ∈ E
(edge set).

We now illustrate this with an example.

Example 1. Consider IN-graph G on non-empty set X, as shown in Figure 1.

�

�

� �
a(0.1, 0.4, 0.5)

b(0.6, 0.3, 0.2)

c(0.8, 0.3, 0.4) d(0.7, 0.4, 0.2)

(0
.1,
0.2

, 0
.4)

(0.5, 0.2, 0.1)

(0.1, 0.2, 0.3) (0
.5
, 0
.2
, 0
.2
)

(0.5, 0.2, 0.1)

Figure 1. Intuitionistic neutrosophic graph (IN-graph).

Definition 5. Let
−→
G be an intuitionistic neutrosophic digraph (IN-digraph), then intuitionistic neutrosophic

out-neighborhoods (IN-out-neighborhoods) of a vertex w are an IN-set:

N+(w) = (X+
w , t+w , i+w , f+w ),

where,

X+
w = {z|k1

−−−→
(w, z) > 0, k2

−−−→
(w, z) > 0, k3

−−−→
(w, z) > 0},

such that t+w : X+
w → [0, 1] defined by t+w (z) = k1

−−−→
(w, z), i+w : X+

w → [0, 1] defined by i+w (z) = k2
−−−→
(w, z) and

f+z : X+
z → [0, 1] defined by f+w (z) = k3

−−−→
(w, z).

Definition 6. Let
−→
G be an IN-digraph, then the intuitionistic neutrosophic in-neighborhoods (IN-in-neighborhoods)

of a vertex w are an IN-set:

N−(w) = (X−w , t−w , i−w , f−w ),

where,

X−w = {z|k1
−−−→
(z, w) > 0, k2

−−−→
(z, w) > 0, k3

−−−→
(z, w) > 0},

such that t−w : X−w → [0, 1] defined by t−w (z) = k1
−−−→
(z, w), i−w : X−w → [0, 1] defined by i−w (z) = k2

−−−→
(z, w) and

f−w : X−w → [0, 1] defined by f−w (z) = k3
−−−→
(z, w).
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Example 2. Consider
−→
G = (X, h, k) to be an IN-digraph, such that, X = {a, b, c, d, e}, h = {(a, 0.5, 0.3, 0.1),

(b, 0.6, 0.4, 0.2), (c, 0.8, 0.3, 0.1), (d, 0.1, 0.9, 0.4), (e, 0.4, 0.3, 0.6)} and k = {(−→ab, 0.3, 0.3, 0.1), (−→ae , 0.3, 0.2,
0.4), (

−→
bc , 0.5, 0.2, 0.1), (

−→
ed , 0.1, 0.2, 0.5), (

−→
dc, 0.1, 0.2, 0.3), (

−→
bd, 0.1, 0.3, 0.3)}, as shown in Figure 2.

�

� �

�

�

a(0.5, 0.3, 0.1) b(0.6, 0.4, 0.2)

c(0.8, 0.3, 0.1)

d(0.1, 0.9, 0.4)e(0.4, 0.3, 0.6)

(0
.3
,0
.2
,0
.4
)

(0.3, 0.3, 0.1)

(0.5, 0.2, 0.1)

(0
.1
,0
.3
,0
.3
)

(0.1, 0.2, 0.5)
(0.1

, 0.
2, 0

.3)

Figure 2. IN-digraph.

Then, N+(a) = {(b, 0.3, 0.3, 0.1), (e, 0.3, 0.2, 0.4)}, N+(c) = ∅, N+(d) = {(c, 0.1, 0.2, 0.3)},
and N−(b) = {(a, 0.3, 0.3, 0.1)}, N−(c) = {(b, 0.5, 0.2, 0.1), (d, 0.1, 0.2, 0.3)}. Similarly, we can calculate
IN-out and in-neighborhoods of the remaining vertices.

Definition 7. The height of an IN-set Ă = (w, tĂ, iĂ, f Ă) is defined as:

H(Ă) = (sup
w∈X

tĂ(w), sup
w∈X

iĂ(w), inf
w∈X

f Ă(w)) = (H1(Ă), H2(Ă), H3(Ă)).

For example, the height of an IN-set Ă = {(a, 0.5, 0.7, 0.2), (b, 0.1, 0.2, 1), (c, 0.3, 0.5, 0.3)} in X = {a, b, c}
is H(Ă) = (0.5, 0.7, 0.2).

Definition 8. An intuitionistic neutrosophic competition graph (INC-graph) C(−→G ) of an IN-digraph
−→
G = (X, h, k)

is an undirected IN-graph G = (X, h, k), which has the same intuitionistic neutrosophic set of vertices as in
−→
G and

has an intuitionistic neutrosophic edge between two vertices w, z ∈ X in C(−→G ) if and only if N+(w) ∩N+(z) is
a non-empty IN-set in

−→
G . The truth-membership, indeterminacy-membership and falsity-membership values of edge

(w, z) in C(−→G ) are:

tk(w, z) = (th(w) ∧ th(z))H(N+(w) ∩N+(z)),

ik(w, z) = (ih(w) ∧ ih(z))H(N+(w) ∩N+(z)),

fk(w, z) = ( fh(w) ∨ fh(z))H(N+(w) ∩N+(z)), respectively.

Example 3. Consider
−→
G = (X, h, k) to be an IN-digraph, such that, X = {a, b, c, d}, h = {(a, 0.1, 0.4, 0.5),

(b, 0.6, 0.3, 0.2), (c, 0.8, 0.3, 0.4), (d, 0.7, 0.4, 0.2)} and k = {(−→ab, 0.1, 0.2, 0.4), (−→ac , 0.1, 0.2, 0.3), (
−→
bc , 0.5,

0.2, 0.2), (
−→
bd, 0.5, 0.2, 0.1), (

−→
cd, 0.5, 0.2, 0.1)}, as shown in Figure 3.
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�

� �

a(0.1, 0.4, 0.5)

b(0.6, 0.3, 0.2)

c(0.8, 0.3, 0.4) d(0.7, 0.4, 0.2)

(0
.1
, 0
.2
, 0
.4
) (0.5, 0.2, 0.1)

(0.1, 0.2, 0.3) (0
.5
, 0
.2
, 0
.2
)

(0.5, 0.2, 0.1)

Figure 3. IN-digraph.

By direct calculations, we have Tables 1 and 2 representing IN-out and in-neighborhoods, respectively.

Table 1. IN-out-neighborhoods.

w N+(w)

a {(b, 0.1, 0.2, 0.4), (c, 0.1, 0.2, 0.3)}
b {(d, 0.5, 0.2, 0.1)}
c {(b, 0.5, 0.2, 0.2), (d, 0.5, 0.2, 0.1)}
d ∅

Table 2. IN-in-neighborhoods.

w N−(w)

a ∅
b {(a, 0.1, 0.2, 0.4), (c, 0.1, 0.2, 0.3)}
c {(a, 0.1, 0.2, 0.3)}
d {(b, 0.5, 0.2, 0.1), (c, 0.5, 0.2, 0.1)}

The INC-graph of Figure 3 is shown in Figure 4.

�

�

� �
a(0.1, 0.4, 0.5)

b(0.6, 0.3, 0.2)

c(0.8, 0.3, 0.4) d(0.7, 0.4, 0.2)

(0.3, 0.06, 0.16)

(0.01, 0.06, 0.2)

Figure 4. Intuitionistic neutrosophic competition graph (INC-graph).

Therefore, there is an edge between two vertices in INC-graph C(−→G ), whose truth-membership,
indeterminacy-membership and falsity-membership values are given by the above formula.
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Definition 9. For an IN-graph G = (X, h, k), where h = (h1, h2, h3) and k = (k1, k2, k3), then an edge (w, z),
w, z ∈ X is called independent strong if:

1
2
[h1(w) ∧ h1(z)] < k1(w, z),

1
2
[h2(w) ∧ h2(z)] > k2(w, z),

1
2
[h3(w) ∨ h3(z)] > k3(w, z).

Otherwise, it is called weak.

Theorem 1. Suppose
−→
G is an IN-digraph. If N+(w) ∩N+(z) contains only one element of

−→
G , then the edge

(w, z) of C(−→G ) is independent strong if and only if:

|[N+(w) ∩N+(z)]|t > 0.5,

|[N+(w) ∩N+(z)]|i < 0.5,

|[N+(w) ∩N+(z)]| f < 0.5.

Proof. Suppose,
−→
G is an IN-digraph. Suppose N+(w) ∩N+(z) = (a, p̆, q, r), where p̆, q and r are the

truth-membership, indeterminacy-membership and falsity-membership values of either the edge (w, a)
or the edge (z, a), respectively. Here,

|[N+(w) ∩N+(z)]|t = p̆ = H1(N+(w) ∩N+(z)),

|[N+(w) ∩N+(z)]|i = q = H2(N+(w) ∩N+(z)),

|[N+(w) ∩N+(z)]| f = r = H3(N+(w) ∩N+(z)).

Then,

k1(w, z) = p̆× [h1(w) ∧ h1(z)],

k2(w, z) = q× [h2(w) ∧ h2(z)],

k3(w, z) = r× [h3(w) ∨ h3(z)].

Therefore, the edge (w, z) in C(−→G ) is independent strong if and only if p̆ > 0.5, q < 0.5 and r < 0.5.
Hence, the edge (w, z) of C(−→G ) is independent strong if and only if:

|[N+(w) ∩N+(z)]|t > 0.5,

|[N+(w) ∩N+(z)]|i < 0.5,

|[N+(w) ∩N+(z)]| f < 0.5.

We illustrate the theorem with an example as shown in Figure 5.
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� �
a(0.7, 0.5, 0.4) b(0.8, 0.4, 0.5)

c(0.8, 0.5, 0.4)d(0.3, 0.4, 0.5)

a(0.7, 0.5, 0.4)

d(0.3, 0.4, 0.5) c(0.8, 0.5, 0.4)

b(0.8, 0.4, 0.5)

(0.6, 0.4, 0.4)

(0
.7
, 0
.3
, 0
.3
)

(0.2, 0.3, 0.4)

(0
.2
,0
.3
,0
.3
)

(b)(a)

(0.42, 0.15, 0.12)

Figure 5. INC-graph. (a) IN-digraph; (b) corresponding INC-graph.

Theorem 2. If all the edges of an IN-digraph
−→
G are independent strong, then:

k1(w, z)
(h1(w) ∧ h1(z))2 > 0.5,

k2(w, z)
(h2(w) ∧ h2(z))2 < 0.5,

k3(w, z)
(h3(w) ∨ f3(z))2 < 0.5

for all edges (w, z) in C(−→G ).

Proof. Suppose all the edges of IN-digraph
−→
G are independent strong. Then:

1
2
[h1(w) ∧ h1(z)] < k1

−−−→
(w, z),

1
2
[h2(w) ∧ h2(z)] > k2

−−−→
(w, z),

1
2
[h3(w) ∨ h3(z)] > k3

−−−→
(w, z),

for all the edges (w, z) in
−→
G . Let the corresponding INC-graph be C(−→G ).

Case (1): When N+(w) ∩N+(z) = ∅ for all w, z ∈ X, then there does not exist any edge in C(−→G )

between w and z. Thus, we have nothing to prove in this case.
Case (2): When N+(w) ∩N+(z) 6= ∅, let N+(w) ∩N+(z) = {(a1, m1, n1, p̆1), (a2, m2, n2, p̆2), . . . ,

(al, ml, nl, p̆l)}, where mi, ni and p̆i are the truth-membership, indeterminacy-membership and

falsity-membership values of either
−−−→
(w, ai) or

−−−→
(z, ai) for i = 1, 2, . . ., l, respectively. Therefore,

mi = [k1
−−−→
(w, ai) ∧ k1

−−−→
(z, ai)],

ni = [k2
−−−→
(w, ai) ∧ k2

−−−→
(z, ai)],

p̆i = [k3
−−−→
(w, ai) ∨ k3

−−−→
(z, ai)], f or i = 1, 2, . . . , l.

Suppose,

H1(N+(w) ∩N+(z)) = max{mi, i = 1, 2, . . . , l} = mmax,

H2(N+(w) ∩N+(z)) = max{ni, i = 1, 2, . . . , l} = nmax,

H3(N+(w) ∩N+(z)) = min{ p̆i, i = 1, 2, . . . , l} = p̆min.
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Obviously, mmax > k1
−−−→
(w, z) and nmax < k2

−−−→
(w, z) and p̆min < k3

−−−→
(w, z) for all edges

−−−→
(w, z) show that:

mmax

h1(w) ∧ h1(z)
>

k1
−−−→
(w, z)

h1(w) ∧ h1(z)
> 0.5,

nmax

h2(w) ∧ h2(z)
<

k2
−−−→
(w, z)

h2(w) ∧ h2(z)
< 0.5,

p̆min

h3(w) ∨ h3(z)
<

k3
−−−→
(w, z)

h3(w) ∧ h3(z)
< 0.5,

therefore,

k1(w, z) = (h1(w) ∧ h1(z))H1(N+(w) ∩N+(z)),

k1(w, z) = [h1(w) ∧ h1(z)]×mmax,

k1(w, z)
(h1(w) ∧ h1(z))

= mmax,

k1(w, z)
(h1(w) ∧ h1(z))2 =

mmax

(h1(w) ∧ h1(z))
> 0.5,

k2(w, z) = (h2(w) ∧ h2(z))H2(N+(w) ∩N+(z)),

k2(w, z) = [h2(w) ∧ h2(z)]× nmax,

k2(w, z)
(h2(w) ∧ h2(z))

= nmax,

k2(w, z)
(h2(w) ∧ h2(z))2 =

nmax

(h2(w) ∧ h2(z))
< 0.5,

and:

k3(w, z) = (h3(w) ∨ h3(z))H3(N+(w) ∩N+(z)),

k3(w, z) = [h3(w) ∨ h3(z)]× p̆min,

k3(w, z)
(h3(w) ∨ h3(z))

= p̆min,

k3(w, z)
(h3(w) ∨ h3(z))2 =

p̆min

(h3(w) ∨ h3(z))
< 0.5.

Hence, k1(w,z)
(h1(w)∧h1(z))2 > 0.5, k2(w,z)

(h2(w)∧h2(z))2 < 0.5, and k3(w,z)
(h3(w)∨h3(z))2 < 0.5 for all edges (w, z) in

C(−→G ).

Theorem 3. Let C(−→G1) = (h1, k1) and C(−→G2) = (h2, k2) be two INC-graph of IN-digraphs
−→
G1 = (h1,

−→
l1 ) and−→

G2 = (h2,
−→
l2 ), respectively. Then, C(−→G1�

−→
G2) = GC(−→G1)∗�C(−→G2)∗

∪G� where, GC(−→G1)∗�C(−→G2)∗
is an IN-graph

on the crisp graph (X1 × X2, EC(−→G1)∗
�EC(−→G2)∗

), C(−→G1)
∗ and C(−→G2)

∗ are the crisp competition graphs of
−→
G1 and

−→
G2, respectively. D� is an IN-graph on (X1 × X2, E�) such that:

1. E� = {(w1, w2)(z1, z2) : z1 ∈ N−(w1)
∗, z2 ∈ N+(w2)

∗}
EC(−→G1)∗�

EC(−→G2)∗
= {(w1, w2)(w1, z2) : w1 ∈ X1, w2z2 ∈ EC(−→G2)∗

} ∪ {(w1, w2)(z1, w2) : w2 ∈
X2, w1z1 ∈ EC(−→G1)∗

}.
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2. th1�h2 = th1(w1) ∧ th2(w2), ih1�h2 = ih1(w1) ∧ ih2(w2), fh1�h2 = fh1(w1) ∨ fh2(w2).
3. tk((w1, w2)(w1, z2)) = [th1(w1) ∧ th2(w2) ∧ th2(z2)]×∨x2{th1(w1) ∧ t−→

l2
(w2x2) ∧ t−→

l2
(z2x2)},

(w1, w2)(w1, z2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x2 ∈ (N+(w2) ∩N+(z2))
∗.

4. ik((w1, w2)(w1, z2)) = [ih1(w1) ∧ ih2(w2) ∧ ih2(z2)]×∨x2{ih1(w1) ∧ i−→
l2
(w2x2) ∧ i−→

l2
(z2x2)},

(w1, w2)(w1, z2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x2 ∈ (N+(w2) ∩N+(z2))
∗.

5. fk((w1, w2)(w1, z2)) = [ fh1(w1) ∨ fh2(w2) ∨ fh2(z2)]×∨x2{ fh1(w1) ∨ f−→
l2
(w2x2) ∨ f−→

l2
(z2x2)},

(w1, w2)(w1, z2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x2 ∈ (N+(w2) ∩N+(z2))
∗.

6. tk((w1, w2)(z1, w2)) = [th1(w1) ∧ th1(z1) ∧ th2(w2)]×∨x1{th2(w2) ∧ t−→
l1
(w1x1) ∧ t−→

l1
(z1x1)},

(w1, w2)(z1, w2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x1 ∈ (N+(w1) ∩N+(z1))
∗.

7. ik((w1, w2)(z1, w2)) = [ih1(w1) ∧ ih1(z1) ∧ ih2(w2)]×∨x1{ih2(w2) ∧ i−→
l1
(w1x1) ∧ i−→

l1
(z1x1)},

(w1, w2)(z1, w2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x1 ∈ (N+(w1) ∩N+(z1))
∗.

8. fk((w1, w2)(z1, w2)) = [ fh1(w1) ∨ fh1(z1) ∨ fh2(w2)]×∨x1{ fh2(w2) ∨ f−→
l1
(w1x1) ∨ t−→

l1
(z1x1)},

(w1, w2)(z1, w2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x1 ∈ (N+(w1) ∩N+(z1))
∗.

9. tk((w1, w2)(z1, z2)) = [th1(w1) ∧ th1(z1) ∧ th2(w2) ∧ th2(z2)] × [th1(w1) ∧ t−→
l1
(z1w1) ∧ th2(z2) ∧

t−→
l2
(w2z2)],

(w1, z1)(w2, z2) ∈ E�.
10. ik((w1, w2)(z1, z2)) = [ih1(w1) ∧ ih1(z1) ∧ ih2(w2) ∧ ih2(z2)] × [ih1(w1) ∧ i−→

l1
(z1w1) ∧ ih2(z2) ∧

i−→
l2
(w2z2)],

(w1, z1)(w2, z2) ∈ E�.
11. fk((w1, w2)(z1, z2)) = [ fh1(w1) ∨ fh1(z1) ∨ fh2(w2) ∨ fh2(z2)] × [ fh1(w1) ∨ f−→

l1
(z1w1) ∨ fh2(z2) ∨

f−→
l2
(w2z2)],

(w1, z1)(w2, z2) ∈ E�.

Proof. Using similar arguments as in Theorem 2.1. [39], it can be proven.

Example 4. Consider
−→
G1 = (X1, h1, l1) and

−→
G2 = (X2, h2, l2) to be two IN-digraphs, respectively, as shown

in Figure 6. The intuitionistic neutrosophic out and in-neighborhoods of
−→
G1 and

−→
G2 are given in Tables 3 and 4.

The INC-graphs C(−→G1) and C(−→G2) are given in Figure 7.

Table 3. IN-out and in-neighborhoods of
−→
G1.

w ∈ X1 N+ (w) N− (w)

w1 {w2(0.2, 0.2, 0.3)} ∅
w2 ∅ {w1(0.2, 0.2, 0.3), w3(0.3, 0.1, 0.1)}
w3 {w2(0.3, 0.2, 0.1)} {w4(0.3, 0.1, 0.1)}
w4 {w3(0.3, 0.1, 0.1)} ∅

Table 4. IN-out and in-neighborhoods of
−→
G2.

w ∈ X2 N+ (w) N− (w)

z1 {z3(0.3, 0.2, 0.2)} ∅
z2 {z3(0.3, 0.1, 0.1)} ∅
z3 ∅ {z1(0.3, 0.2, 0.2), z2(0.3, 0.1, 0.1)}
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w3(0.5, 0.2, 0.1)

w4(0.4, 0.3, 0.1)

z1(0.4, 0.3, 0.2)

z2(0.4, 0.3, 0.5)

z3(0.7, 0.2, 0.3)

−→
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−→
G2

(0
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.2
,0
.3
)

(0
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, 0
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)
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)
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Figure 6. IN-digraphs.
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�

�

�

w1(0.3, 0.4, 0.5)

w2(0.4, 0.3, 0.1)

w3(0.5, 0.2, 0.1)

w4(0.4, 0.3, 0.1)

z1(0.4, 0.3, 0.2)

z2(0.4, 0.3, 0.5)

z3(0.7, 0.2, 0.3)

C(
→
G1)

(0
.1
2
, 0
.0
3
, 0
.1
)

(0
.0
6,
0.
04
, 0
.1
5)

C(
→
G2)

Figure 7. INC-graphs of
−→
G1 and

−→
G2.

We now construct the INC-graph GC(−→G1)∗�C(−→G2)∗
∪G� = (w, k), where w = (tw, iw, fw) and k = (tk, ik, fk),

from C(−→G1)
∗ and C(−→G2)

∗ using Theorem 2.14. We obtained two sets of edges by using Condition (1).
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EC(−→G1)∗
�EC(−→G2)∗

={(w1, z1)(w1, z2), (w2, z1)(w2, z2), (w3, z1)(w3, z2),

(w4, z1)(w4, z2), (w1, z1)(w3, z1),

(w1, z2)(w3, z2), (w1, z3)(w3, z3)},
E� ={(w2, z1)(w1, z3), (w2, z1)(w3, z3), (w2, z2)(w1, z3)

(w2, z2)(w3, z3), (w3, z1)(w4, z3), (w3, z2)(w4, z3)}.

The truth-membership, indeterminacy-membership and falsity-membership of edges can be calculated by using
Conditions (3) to (11) as,

k((w1, z1)(w1, z2)) = (th1(w1) ∧ th2(z1) ∧ th2(z2), ih1(w1) ∧ ih2(z1) ∧ ih2(z2), fh1(w1) ∨ fh2(z1) ∨ fh2(z2))

×(th1(w1) ∧ tl2(z1z3) ∧ tl2(z2z3), ih1(w1) ∧ il2(z1z3) ∧ il2(z2z3),

fh1(w1) ∨ fl2(z1z3) ∨ fl2(z2z3)

= (0.3, 0.3, 0.5)× (0.3, 0.1, 0.5)

= (0.09, 0.03, 0.25),

k((w2, z1)(w1, z3)) = (th1(w2) ∧ th2(z1) ∧ th1(w1) ∧ th2(z3), ih1(w2) ∧ ih2(z1) ∧ ih1(w1) ∧ ih2(z3),

fh1(w2) ∨ fh2(z1) ∨ fh1(w1) ∨ fh2(z3))

×(th1(w2) ∧ tl1(w1w2) ∧ tl2(z3) ∧ tl2(z1z3), ih1(w2) ∧ il1(w1w2) ∧ il2(z3) ∧ il2(z1z3),

fh1(w2) ∨ fl1(w1w2) ∨ fl2(z3) ∨ fl2(z1z3))

= (0.3, 0.2, 0.5)× (0.2, 0.2, 0.3)

= (0.06, 0.04, 0.15).

All the truth-membership, indeterminacy-membership and falsity-membership degrees of adjacent edges of
GC(−→G1)∗�C(−→G2)∗

and G� are given in Table 5.

Table 5. Adjacent edges of GC(−→G1)∗�C(−→G2)∗
∪ G�.

(w, ẃ) (z, ź) k (w, ẃ) (z, ź)

(w1, z1)(w1, z2) (0.09, 0.03, 0.25)
(w2, z1)(w2, z2) (0.12, 0.03, 0.1)
(w3, z1)(w3, z2) (0.12, 0.02, 0.1)
(w4, z1)(w4, z2) (0.12, 0.03, 0.1)
(w1, z1)(w3, z1) (0.06, 0.04, 0.15)
(w1, z3)(w3, z3) (0.06, 0.04, 0.15)
(w2, z1)(w1, z3) (0.06, 0.04, 0.15)
(w2, z1)(w3, z3) (0.12, 0.04, 0.09)
(w2, z2)(w1, z3) (0.06, 0.02, 0.15)
(w2, z2)(w3, z3) (0.12, 0.02, 0.15)
(w3, z1)(w4, z3) (0.12, 0.02, 0.09)
(w3, z2)(w4, z3) (0.12, 0.02, 0.15)
(w1, z2)(w3, z2) (0.06, 0.04, 0.25)

The INC-graph obtained by using this method is given in Figure 8 where solid lines indicate part of INC-graph
obtained from GC(−→G1)∗�C(−→G2)∗

, and the dotted lines indicate the part of G�.

The Cartesian product
−→
G1�

−→
G2 of IN-digraphs

−→
G1 and

−→
G2 is shown in Figure 9. The IN-out-neighborhoods

of
−→
G1�

−→
G2 are calculated in Table 6. The INC-graphs of

−→
G1�

−→
G2 are shown in Figure 10.
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Figure 8. GC(−→G1)∗�C(−→G2)∗
∪ G�.
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−→
G1�
−→
G2.
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Table 6. IN-out-neighborhoods of
−→
G1�
−→
G2.

(w, z) N+(w, z)

(w1, z1) {((w2, z1), 0.2, 0.2, 0.3), ((w1, z3), 0.3, 0.2, 0.5)}
(w1, z2) {((w1, z3), 0.3, 0.1, 0.5), ((w2, z2), 0.2, 0.2, 0.5)}
(w1, z3) {((w2, z3),0.2, 0.2, 0.3)}
(w2, z1) {((w2, z3),0.3, 0.2, 0.2)}
(w2, z2) {((w2, z3),0.3, 0.1, 0.1)}
(w2, z3) ∅
(w3, z1) {((w3, z3), 0.3, 0.2, 0.2), ((w2, z1), 0.3, 0.2, 0.2)}
(w3, z2) {((w2, z2), 0.3, 0.2, 0.5), ((w3, z3), 0.3, 0.1, 0.1)}
(w3, z3) {((w2, z3),0.3, 0.2, 0.3)}
(w4, z1) {((w4, z3), 0.3, 0.2, 0.2), ((w3, z1), 0.3, 0.1, 0.2)}
(w4, z2) {((w4, z3), 0.3, 0.1, 0.1), ((w3, z2), 0.3, 0.1, 0.5)}
(w4, z2) {((w3, z3),0.3, 0.1, 0.3)}
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Figure 10. C(−→G1�
−→
G2).

It can be seen that C(−→G1�
−→
G2) ∼= GC(−→G1)∗�C(−→G2)∗

∪G� from Figures 8 and 10.

Definition 10. The intuitionistic neutrosophic open-neighborhood of a vertex w of an IN-graph G = (X, h, k) is
IN-set N(w) = (Xw, tw, iw, fw), where,

Xw = {z|k1(w, z) > 0, k2(w, z) > 0, k3(w, z) > 0},

and tw : Xw → [0, 1] defined by tw(z) = k1(w, z), iw : Xw → [0, 1] defined by iw(z) = k2(w, z) and
fz : Xw → [0, 1] defined by fw(z) = k3(w, z). For every vertex w ∈ X, the intuitionistic neutrosophic
singleton set, Aw = (w, h′1, h′2, h′3), such that: h′1 : {w} → [0, 1], h′2 : {w} → [0, 1], h′3 : {w} → [0, 1]
defined by h′1(w) = h1(w), h′2(w) = h2(w) and h′3(w) = h3(w), respectively. The intuitionistic neutrosophic
closed-neighborhood of a vertex w is N[w] = N(w) ∪ Aw.
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Definition 11. Suppose G = (X, h, k) is an IN-graph. The single-valued intuitionistic neutrosophic
open-neighborhood graph of G is an IN-graph N(G) = (X, h, k′), which has the same intuitionistic neutrosophic
set of vertices in G and has an intuitionistic neutrosophic edge between two vertices w, z ∈ X in N(G) if
and only if N(w) ∩N(z) is a non-empty IN-set in G. The truth-membership, indeterminacy-membership and
falsity-membership values of the edge (w, z) are given by:

k′1(w, z) = [h1(w) ∧ h1(z)]H1(N(w) ∩N(z)),
k′2(w, z) = [h2(w) ∧ h2(z)]H2(N(w) ∩N(z)),
k′3(w, z) = [h3(w) ∨ h3(z)]H3(N(w) ∩N(z)), respectively.

Definition 12. Suppose G = (X, h, k) is an IN-graph. The single-valued intuitionistic neutrosophic
closed-neighborhood graph of G is an IN-graph N(G) = (X, h, k′), which has the same intuitionistic neutrosophic
set of vertices in G and has an intuitionistic neutrosophic edge between two vertices w, z ∈ X in N[G] if
and only if N[w] ∩ N[z] is a non-empty IN-set in G. The truth-membership, indeterminacy-membership and
falsity-membership values of the edge (w, z) are given by:

k′1(w, z) = [h1(w) ∧ h1(z)]H1(N[w] ∩N[z]),
k′2(w, z) = [h2(w) ∧ h2(z)]H2(N[w] ∩N[z]),
k′3(w, z) = [h3(w) ∨ h3(z)]H3(N[w] ∩N[z]), respectively.

Example 5. Consider G = (X, h, k) to be an IN-graph, such that X = {a, b, c, d}, h = {(a, 0.5, 0.4, 0.3),
(b, 0.6, 0.3, 0.1), (c, 0.7, 0.3, 0.1), (d, 0.5, 0.6, 0.3)}, and k = {(ab, 0.3, 0.2, 0.2), (ad, 0.4, 0.3, 0.2), (bc, 0.5,
0.2, 0.1), (cd, 0.4, 0.2, 0.2)}, as shown in Figure 11. Then, corresponding intuitionistic neutrosophic open and
closed-neighborhood graphs are shown in Figure 12.

� �

� �

a(0.5, 0.4, 0.3) b(0.6, 0.3, 0.1)

c(0.7, 0.3, 0.1)d(0.5, 0.6, 0.3)

(0.3, 0.2, 0.2)

(0
.5
,0
.2
,0
.1
)

(0.4, 0.2, 0.2)

(0
.4
, 0
.3
, 0
.2
)

Figure 11. IN-digraph.
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a(0.5, 0.4, 0.3) b(0.6, 0.3, 0.1)

c(0.7, 0.3, 0.1)d(0.5, 0.6, 0.3)

(0.2, 0.06, 0.06)

(0.2, 0.06, 0.06)

� �

(0.15, 0.06, 0.06)

(0
.3
, 0
.0
6
, 0
.0
1
)

(0.2, 0.06, 0.06)

(0
.2
,0
.1
2
,0
.0
9
)

(0.2, 0.06, 0.06)

(0.2, 0.06, 0.06)

(a)

(b)

a(0.5, 0.4, 0.3) b(0.6, 0.3, 0.1)

c(0.7, 0.3, 0.1)d(0.5, 0.6, 0.3)

Figure 12. (a) N(G); (b) N[G].

Theorem 4. For each edge of an IN-graph G, there exists an edge in N[G].

Proof. Suppose (w, z) is an edge of an IN-graph G = (V, h, k). Suppose N[G] = (V, h, k′) is the
corresponding closed neighborhood of an IN-graph. Suppose w, z ∈ N[w] and w, z ∈ N[z]. Then, w,
z ∈ N[w] ∩N[z]. Hence,

H1(N[w] ∩N[z]) 6= 0,

H2(N[w] ∩N[z]) 6= 0,

H3(N[w] ∩N[z]) 6= 0.

Then,

k′1(w, z) = [h1(w) ∧ h1(z)]H1(N[w] ∩N[z]) 6= 0,

k′2(w, z) = [h2(w) ∧ h2(z)]H2(N[w] ∩N[z]) 6= 0,

k′3(w, z) = [h3(w) ∨ h3(z)]H3(N[w] ∩N[z]) 6= 0.

Thus, for each edge (w, z) in IN-graph G, there exists an edge (w, z) in N[G].

Definition 13. The support of an IN-set Ă = (w, tĂ, iĂ, f Ă) in X is the subset Â of X defined by:

Â = {w ∈ X : tĂ(w) 6= 0, iĂ(w) 6= 0, f Ă(w) 6= 1}

and |supp(Â)| is the number of elements in the set.

We now discuss p-competition intuitionistic neutrosophic graphs.
Suppose p is a positive integer. Then, p-competition IN-graph Cp(

−→
G ) of the IN-digraph−→

G = (X, h, k) is an undirected IN-graph G = (X, h, k), which has the same intuitionistic neutrosophic
set of vertices as in

−→
G and has an intuitionistic neutrosophic edge between two vertices w, z ∈ X in
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Cp(
−→
G ) if and only if |supp(N+(w) ∩N+(z))| ≥ p. The truth-membership value of edge (w, z) in Cp(

−→
G )

is t(w, z) = (i−p)+1
i [h1(w) ∧ h1(z)]H1(N+(w) ∩N+(z)); the indeterminacy-membership value of edge

(w, z) in Cp(
−→
G ) is i(w, z) = (i−p)+1

i [h2(w) ∧ h2(z)]H2(N+(w) ∩ N+(z)); and the falsity-membership

value of edge (w, z) in Cp(
−→
G ) is f (w, z) = (i−p)+1

i [h3(w) ∨ h3(z)]H3(N+(w) ∩ N+(z)) where
i = |supp(N+(w) ∩N+(z))|.

The three-competition IN-graph is illustrated by the following example.

Example 6. Consider
−→
G = (X, h, k) to be an IN-digraph, such that X = {w1, w2, w3, z1, z2, z3}, h = {(w1,

0.5, 0.1, 0.2), (w2, 0.1, 0.6, 0.3), (w3, 0.1, 0.2, 0.5), (z1, 0.7, 0.2, 0.1), (z2, 0.5, 0.2, 0.3), (z3, 0.3, 0.7, 0.2)}
and k = {(−−−−→(w1, z1), 0.4, 0.1, 0.1), (

−−−−→
(w1, z2), 0.5, 0.1, 0.3), (

−−−−→
(w1, z3), 0.2, 0.1, 0.1), (

−−−−→
(w2, z1), 0.1, 0.1, 0.2),

(
−−−−→
(w2, z2), 0.1, 0.1, 0.2), (

−−−−→
(w2, z3), 0.1, 0.5, 0.2), (

−−−−→
(w3, z1), 0.1, 0.1, 0.1) (

−−−−→
(w3, z2), 0.1, 0.1, 0.2)}, as shown in

Figure 13. Then, N+(w1) = {(z1, 0.4, 0.1, 0.1), (z2, 0.5, 0.1, 0.3), (z3, 0.2, 0.1, 0.1)}, N+(w2) = {(z1,
0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.2), (z3, 0.1, 0.5, 0.2)} and N+(w3) = {(z1, 0.1, 0.1, 0.1), (z2, 0.1, 0.1, 0.2)}.
Therefore, N+(w1)∩N+(w2) = {(z1, 0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.3), (z3, 0.1, 0.1, 0.2)}, N+(w1)∩N+(w3) =

{(z1, 0.1, 0.1, 0.1), (z2, 0.1, 0.1, 0.3)} and N+(w2) ∩N+(w3) = {(z1, 0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.2)}.
Now, i = |supp(N+(w1) ∩ N+(w2))| = 3. For p = 3, t(w1, w2) = 0.003, i(w1, w2) = 0.003 and

f (w1, w2) = 0.02. As shown in Figure 14.
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Figure 13. IN-digraph.
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Figure 14. Three-competition IN-graph.
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We now define another extension of INC-graph known as the m-step INC-graph.−→
P m

z,w: a directed intuitionistic neutrosophic path of length m from z to w.
N+

m(z): single-valued intuitionistic neutrosophic m-step out-neighborhood of vertex z.
N−m(z): single-valued intuitionistic neutrosophic m-step in-neighborhood of vertex z.

Cm
−→
(G): m-step INC-graph of the IN-digraph

−→
G .

Definition 14. Suppose
−→
G = (X, h, k) is an IN-digraph. The m-step IN-digraph of

−→
G is denoted by

−→
G m = (X, h, k)

where the intuitionistic neutrosophic set of vertices of
−→
G is the same as the intuitionistic neutrosophic set of vertices of−→

G m and has an edge between z and w in
−→
G m if and only if there exists an intuitionistic neutrosophic directed path−→

P m
z,w in

−→
G .

Definition 15. The intuitionistic neutrosophic m-step out-neighborhood of vertex z of an IN-digraph
−→
G = (X, h, k)

is IN-set:

N+
m(z) = (X+

z , t+z , i+z , f+z ), where

X+
z = {w| there exists a directed intuitionistic neutrosophic path of length m from z to w,

−→
P m

z,w}, t+z : X+
z → [0, 1],

i+z : X+
z → [0, 1] and f+z : X+

z → [0, 1] are defined by t+z = min{t−−−−−→(w1, w2), (w1, w2) is an edge of
−→
P m

z,w}, i+z = min{i−−−−−→(w1, w2), (w1, w2) is an edge of
−→
P m

z,w} and f+z = max{ f
−−−−−→
(w1, w2), (w1, w2) is an edge of

−→
P m

z,w}, respectively.

Definition 16. The intuitionistic neutrosophic m-step in-neighborhood of vertex z of an IN-digraph
−→
G = (X, h, k)

is IN-set:

N−m(z) = (X−z , t−z , i−z , f−z ), where

X−z = {w| there exists a directed intuitionistic neutrosophic path of length m from w to z,
−→
P m

w,z}, t−z : X−z → [0, 1],

i−z : X−z → [0, 1] and f−z : X−z → [0, 1] are defined by t−z = min{t−−−−−→(w1, w2), (w1, w2) is an edge of
−→
P m

w,z}, i−z = min{i−−−−−→(w1, w2), (w1, w2) is an edge of
−→
P m

w,z} and f−z = max{ f
−−−−−→
(w1, w2), (w1, w2) is an edge of

−→
P m

w,z}, respectively.

Definition 17. Suppose
−→
G = (X, h, k) is an IN-digraph. The m-step INC-graph of IN-digraph

−→
G is denoted

by Cm(
−→
G ) = (X, h, k), which has the same intuitionistic neutrosophic set of vertices as in

−→
G and has an

edge between two vertices w, z ∈ X in Cm(
−→
G ) if and only if (N+

m(w) ∩ N+
m(z)) is a non-empty IN-set in−→

G . The truth-membership value of edge (w, z) in Cm(
−→
G ) is t(w, z) = [h1(w) ∧ h1(z)]H1(N+

m(w) ∩N+
m(z));

the indeterminacy-membership value of edge (w, z) in Cm(
−→
G ) is i(w, z) = [h2(w)∧ h2(z)]H2(N+

m(w)∩N+
m(z));

and the falsity-membership value of edge (w, z) in Cm(
−→
G ) is f (w, z) = [h3(w) ∨ h3(z)]H3(N+

m(w) ∩N+
m(z)).

The two-step INC-graph is illustrated by the following example.

Example 7. Consider
−→
G = (X, h, k) is an IN-digraph, such that, X = {w1, w2, z1, z2, z3}, h = {(w1,

0.3, 0.4, 0.6), (w2, 0.2, 0.5, 0.3), (z1, 0.4, 0.2, 0.3), (z2, 0.7, 0.2, 0.1), (z3, 0.5, 0.1, 0.2), (z4, 0.6, 0.3, 0.2)},
and k = {(−−−−→(w1, z1), 0.2, 0.1, 0.2), (

−−−−→
(w2, z4), 0.1, 0.2, 0.3), (

−−−−→
(z1, z3), 0.3, 0.1, 0.2), (

−−−−→
(z1, z2), 0.3, 0.1, 0.2),

(
−−−−→
(z4, z2), 0.2, 0.1, 0.1), and (

−−−−→
(z4, z3), 0.4, 0.1, 0.4)}, as shown in Figure 15.

Then, N+
2 (w1) = {(z2, 0.2, 0.1, 0.2), (z3, 0.2, 0.1, 0.2)} and N+

2 (w2) = {(z2, 0.1, 0.1, 0.3), (z3, 0.1,
0.1, 0.4)}. Therefore, N+

2 (w1) ∩N+
2 (w2) = {(z2, 0.1, 0.1, 0.3), (z3, 0.1, 0.1, 0.4)}. Thus, t(w1, w2) = 0.02,

i(w1, w2) = 0.04 and f (w1, w2) = 0.18. This is shown in Figure 16.
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Figure 15. IN-digraph.
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z4(0.6, 0.3, 0.2)

(0.02, 0.04, 0.18)

Figure 16. Two-step INC-graph.

Definition 18. The intuitionistic neutrosophic m-step out-neighborhood of vertex z of an IN-digraph
−→
G = (X, h, k)

is IN-set:

Nm(z) = (Xz, tz, iz, fz), where

Xz = {w| there exists a directed intuitionistic neutrosophic path of length m from z to w, Pm
z,w}, tz : Xz →

[0, 1], iz : Xz → [0, 1] and fz : Xz → [0, 1] are defined by tz = min{t(w1, w2), (w1, w2) is an edge of
Pm

z,w}, iz = min{i(w1, w2), (w1, w2) is an edge of Pm
z,w} and fz = max{ f (w1, w2), (w1, w2) is an edge of

Pm
z,w}, respectively.
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Definition 19. Suppose G = (X, h, k) is an IN-graph. Then, the m-step intuitionistic neutrosophic
neighborhood graph (IN-neighborhood-graph) Nm(G) is defined by Nm(G) = (X, h, κ), where h = (h1, h2,
h3), κ = (κ1, κ2, κ3), κ1 : X× X → [0, 1], κ2 : X× X → [0, 1] and κ3 : X× X → [0, 1] are such that:

κ1(w, z) = h1(w) ∧ h1(z)H1(Nm(w) ∩Nm(z)),

κ2(w, z) = h2(w) ∧ h2(z)H2(Nm(w) ∩Nm(z)),

κ3(w, z) = h3(w) ∨ h3(z)H3(Nm(w) ∩Nm(z)), respectively.

Theorem 5. If all the edges of IN-digraph
−→
G = (X, h, k) are independent strong, then all the edges of Cm(

−→
G )

are independent strong.

Proof. Suppose
−→
G = (X, h, k) is an IN-digraph and Cm(

−→
G ) = (X, h, k) is the corresponding

m-step INC-graph. Since all the edges of
−→
G are independent strong, then H1(N+

m(w) ∩N+
m(z)) > 0.5,

H2(N+
m(w) ∩N+

m(z)) < 0.5 and H3(N+
m(w) ∩N+

m(z)) < 0.5. Then, t(w, z) = (h1(w) ∧ h1(z))H1(N+
m(w) ∩

N+
m(z)), or t(w, z) > 0.5(h1(w) ∧ h1(z)), or t(w,z)

(h1(w)∧h1(z))
> 0.5, i(w, z) = (h2(w) ∧ h2(z))H2(N+

m(w) ∩
N+

m(z)), or i(w, z) < 0.5(h2(w) ∧ h2(z)), or i(w,z)
(h2(w)∧h2(z))

< 0.5 and f (w, z) = (h3(w) ∨ h3(z))H3(N+
m(w) ∩

N+
m(z)), or f (w, z) < 0.5(h3(w) ∨ h3(z)), or f (w,z)

(h3(w)∨h3(z))
< 0.5.

Hence, the edge (w, z) is independent strong in Cm(
−→
G ). Since, (w, z) is taken to be the arbitrary

edge of Cm(
−→
G ), thus all the edges of Cm(

−→
G ) are independent strong.

3. Applications

Competition graphs are very important to represent the competition between objects. However,
still, these representations are unsuccessful to deal with all the competitions of world; for that purpose,
INC-graphs are introduced. Now, we discuss the applications of INC-graphs to study the competition
along with algorithms. The INC-graphs have many utilizations in different areas.

3.1. Ecosystem

Consider a small ecosystem: human eats trout; bald eagle eats trout and salamander; trout eats
phytoplankton, mayfly and dragonfly; salamander eats dragonfly and mayfly; snake eats salamander and frog;
frog eats dragonfly and mayfly; mayfly eats phytoplankton; dragonfly eats phytoplankton. These nine species
human, bald eagle, salamander, snake, frog, dragonfly, trout, mayfly and phytoplankton are taken as vertices.
Let the degree of existence in the ecosystem of human be 60%, the degree of indeterminacy of existence be
30% and the degree of false-existence be 10%, i.e., the truth-membership, indeterminacy-membership and
falsity-membership values of the vertex human are (0.6, 0.3, 0.1). Similarly, we assume the truth-membership,
indeterminacy-membership and falsity-membership values of other vertices as (0.7, 0.3, 0.2), (0.4, 0.3, 0.5),
(0.3, 0.5, 0.1), (0.3, 0.4, 0.5), (0.3, 0.5, 0.2), (0.7, 0.3, 0.2), (0.6, 0.4, 0.2) and (0.3, 0.5, 0.2). Suppose that human
likes to eat trout 20%, indeterminate to eat 10% and dislike to eat, say 10%. The likeness, indeterminacy and
dislikeness of preys for predators are shown in Table 7.

It is clear that if trout is removed from the food cycle, then human must be lifeless, and in such a situation
bald eagle, phytoplankton, dragonfly and mayfly grow in an undisciplined manner. Thus, we can evaluate
the food cycle with the help of INC-graphs.
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Table 7. Likeness, indeterminacy and dislikeness of preys and predators.

Name of Predator Name of Prey Like to Eat Indeterminate to Eat Dislike to Eat

Human Trout 20 10 10
Bald eagle Trout 20 20 20
Bald eagle Salamander 30 20 30

Snake Salamander 20 20 10
Snake Frog 30 20 40

Salamander Dragon f ly 20 20 20
Salamander May f ly 20 20 40

Frog Dragon f ly 30 30 30
Trout Dragon f ly 20 40 10
Trout May f ly 30 10 10
Trout Phytoplankton 20 10 10

Dragon f ly Phytoplankton 10 10 10
May f ly Phytoplankton 30 30 20

Frog May f ly 10 10 10

For this food web Figure 17, we have the following Table 8 of IN-out-neighborhoods.

Phytoplankton

Human

Bald eagle

Salamander

Snake

Frog

Mayfly

Dragonfly

Trout

(0.6, 0.3, 0.1)
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(0.4, 0.3, 0.5)

(0.3, 0.5, 0.1)

(0.3, 0.4, 0.5)

(0.7, 0.3, 0.2)

(0.3, 0.5, 0.2)

(0.6, 0.4, 0.2)

(0.3, 0.5, 0.2)

(0
.2
, 0
.1
, 0
.1
)

(0.2, 0.2, 0.2)

(0.3, 0.2, 0.3)

(0.2, 0.2, 0.1)

(0
.3
, 0
.2
, 0
.4
)

(0.2, 0.4, 0.1)

(0
.2
, 0
.2
, 0
.2
) (0.2, 0.2, 0.4)

(0.3, 0.3, 0.2)
(0.3, 0.1, 0.1)

(0
.1
, 0
.1
, 0
.1
)

(0
.2
,0
.1
,0
.1
)

(0
.1
, 0
.1
, 0
.1
)

(0.3, 0.3, 0.3)

Figure 17. IN-food web.

Table 8. IN-out-neighborhoods.

w ∈ X N+ (w)

Human {(Trout, 0.2, 0.1, 0.1)}
Bald eagle {(Trout, 0.2, 0.2, 0.2), (Salamander, 0.3, 0.2, 0.3)}

Salamander {(Dragon f ly, 0.2, 0.2, 0.2), (May f ly, 0.2, 0.2, 0.4)}
Snake {(Salamander, 0.2, 0.2, 0.1), (Frog, 0.3, 0.2, 0.4)}
Frog {(Dragon f ly, 0.3, 0.3, 0.3), (May f ly, 0.1, 0.1, 0.1)}

May f ly {(Phytoplankton, 0.3, 0.3, 0.2)}
Phytoplankton ∅

Dragon f ly {(Phytoplankton, 0.1, 0.1, 0.1)}
Trout {(Phytoplankton, 0.2, 0.1, 0.1), (May f ly, 0.3, 0.1, 0.1), (Dragon f ly, 0.2, 0.4, 0.1)}
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Therefore, N+(Human ∩ Bald eagle) = {(Trout, 0.2, 0.1, 0.2)}, N+(Bald eagle ∩ Snake) =

{(Salamander, 0.2, 0.2, 0.3)}, N+(Salamander ∩ Frog) = {(Dragon f ly, 0.2, 0.2, 0.3), (May f ly, 0.1, 0.1,
0.4)}, N+(Salamander ∩ Trout) = {(Dragon f ly, 0.2, 0.2, 0.2), (May f ly, 0.2, 0.1, 0.4)}, N+(Trout ∩ Frog) =
{(Dragon f ly, 0.2, 0.3, 0.3), (May f ly, 0.1, 0.1, 0.1)}, N+(May f ly ∩ Trout) = {(Phytoplankton, 0.2, 0.1,
0.2)}, N+(May f ly ∩ Dragon f ly) = {(Phytoplankton, 0.1, 0.1, 0.2)} and N+(Dragon f ly ∩ Trout) =

{(Phytoplankton, 0.1, 0.1, 0.1)}.
Now, there is an edge between human and bald eagle; snake and bald eagle; salamander and trout;

salamander and frog; trout and frog; trout and dragonfly; trout and mayfly; dragonfly and mayfly in the
INC-graph, which highlights the competition between them; and for the other pair of species, there is no
edge, which indicates that there is no competition in the INC-graph Figure 18. For example, there is an
edge between human and bald eagle indicating a 12% degree of likeness to prey on the same species,
a 3% degree of indeterminacy and a 4% degree of non-likeness between them.

Phytoplankton

Human

Bald eagle

Salamander

Snake

Frog

Mayfly

Dragonfly

Trout

(0.6, 0.3, 0.1)

(0.7, 0.3, 0.2)

(0.4, 0.3, 0.5)

(0.3, 0.5, 0.1)

(0.3, 0.4, 0.5)

(0.7, 0.3, 0.2)

(0.3, 0.5, 0.2)

(0.6, 0.4, 0.2)

(0.3, 0.5, 0.2)

(0.12, 0.03, 0.04)

(0.06, 0.06, 0.06)

(0.06, 0.06, 0.15)

(0.03, 0.04, 0.02)

(0.06, 0.06, 0.1)

(0.06, 0.12, 0.05)

(0.06, 0.05, 0.04)

(0.03, 0.04, 0.04)

Figure 18. Corresponding INC-graph

We present our method, which is used in our ecosystem application in Algorithm 1.

Algorithm 1: Ecosystem.

Step 1. Input the truth-membership, indeterminacy-membership and falsity-membership values
for set of n species.

Step 2. If for any two distinct vertices wi and wj, t(wiwj) > 0, i(wiwj) > 0, f (wiwj) > 0, then

(wj, t(wiwj), i(wiwj), f (wiwj)) ∈ N+(wi).

Step 3. Repeat Step 2 for all vertices wi and wj to calculate IN-out-neighborhoods N+(wi).
Step 4. Calculate N+(wi) ∩N+(wj) for each pair of distinct vertices wi and wj.
Step 5. Calculate H[N+(wi) ∩N+(wj)].
Step 6. If N+(wi) ∩N+(wj) 6= ∅, then draw an edge wiwj.
Step 7. Repeat Step 6 for all pairs of distinct vertices.
Step 8. Assign membership values to each edge wiwj using the conditions:

t(wiwj) = (wi ∧ wj)H1[N+(wi) ∩N+(wj)]

i(wiwj) = (wi ∧ wj)H2[N+(wi) ∩N+(wj)]

f (wiwj) = (wi ∨ wj)H3[N+(wi) ∩N+(wj)].
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3.2. Career Competition

Consider the IN-digraph Figure 19 representing the competition between applicants for a career.
Let {Rosaleen, Nazneen, Abner, Amara, Casper} be the set of applicants for the particular careers
{Medicine, Pharmacy, Anatomy, Surgery}. The truth-membership value of each applicant represents the
degree of loyalty quality; the indeterminacy-value represents the indeterminate state of loyalty; and the
false-membership value represents the disloyalty of each applicant towards their careers. Let the degree of
truth-membership of Nazneen of her loyalty towards her career be 30%: degree of indeterminacy is 50%,
and degree of disloyalty is 10%, i.e., the truth-membership, indeterminacy and falsity-membership values
of the vertex Nazneen are (0.3, 0.5, 0.1). The truth-membership value of each directed edge between
an applicant and a career represents the eligibility for that career; the indeterminacy-value represents
the indeterminate state of that career; and the false-membership value represents non-eligibility for that
particular career.

Surgery
(0.3, 0.4, 0.5)

Pharmacy

Medicine

Anatomy

(0.2, 0.5, 0.3)

(0.3, 0.6, 0.2)

(0.7, 0.3, 0.2)

Nazneen
(0.3, 0.5, 0.1)

Amara
(0.6, 0.5, 0.2)

Rosaleen
(0.3, 0.5, 0.2)

Casper
(0.1, 0.6, 0.3)

Abner
(0.3, 0.5, 0.6)

(0
.2
, 0
.2
, 0
.2
) (0.1, 0.4, 0.2)

(0.2, 0.3, 0.4)

(0.2, 0.4, 0.5)

(0.3, 0.4, 0.5)

(0.2, 0.4, 0.5)

(0.1, 0.2, 0.3)

(0.
1, 0

.5,
0.2

)

(0.5, 0.3, 0.1)

(0.2, 0.5, 0.3)

Figure 19. IN-digraph.

Thus, in Table 9, N+(Nazneen) ∩ N+(Rosaleen) = {(Surgery, 0.2, 0.2, 0.4)}, N+(Nazneen) ∩
N+(Amara) = {(Pharmacy, 0.1, 0.4, 0.3)}, N+(Nazneen) ∩ N+(Abner) = {(Pharmacy, 0.1, 0.4, 0.5)},
N+(Nazneen) ∩N+(Casper) = ∅, N+(Rosaleen) ∩N+(Amara) = ∅, N+(Rosaleen) ∩N+(Casper) = ∅,
N+(Rosaleen)∩N+(Abner) = ∅, N+(Amara)∩N+(Casper) = {(Medicine, 0.1, 0.2, 0.3)}, N+(Amara)∩
N+(Abner) = {(Medicine, 0.3, 0.3, 0.5), (Pharmacy, 0.2, 0.4, 0.5)} and N+(Casper) ∩ N+(Abner) =

{(Medicine, 0.1, 0.2, 0.5), (Anatomy, 0.1, 0.4, 0.5)}.

Table 9. IN-out-neighborhoods.

w ∈ X N+ (w)

Nazneen {(Surgery, 0.2, 0.2, 0.2), (Pharmacy, 0.1, 0.4, 0.2)}
Rosaleen {(Surgery, 0.2, 0.3, 0.4)}
Amara {(Medicine, 0.5, 0.3, 0.1), (Pharmacy, 0.2, 0.5, 0.3)}
Casper {(Medicine, 0.1, 0.2, 0.3), (Anatomy, 0.1, 0.5, 0.2)}
Abner {(Medicine, 0.3, 0.4, 0.5), (Anatomy, 0.2, 0.4, 0.5), (Pharmacy, 0.2, 0.4, 0.5)}
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The INC-graph is shown in Figure 20. The solids lines indicate the strength of competition between
two applicants, and dashed lines indicate the applicant competing for the particular career. For example,
Nazneen and Rosaleen both are competing for the career, surgery, and the strength of competition
between them is (0.06, 0.1, 0.08). In Table 10, W(z, c) represents the competition of applicant z for career
c with respect to loyalty quality, indeterminacy and disloyalty to compete with the others. The strength
to compete with the other applicants with respect to a particular career is calculated in Table 10.

From Table 10, Nazneen and Rosaleen have equal strength to compete with the other for the career,
surgery. Abner and Casper have equal strength of competition for the career, anatomy. Amara competes
with the others for the career, pharmacy and medicine.

Surgery
(0.3, 0.4, 0.5)

Pharmacy

Medicine

Anatomy

(0.2, 0.5, 0.3)

(0.3, 0.6, 0.2)

(0.7, 0.3, 0.2)

Nazneen
(0.3, 0.5, 0.1)

Amara
(0.6, 0.5, 0.2)

Rosaleen
(0.3, 0.5, 0.2)

Casper
(0.1, 0.6, 0.3)

Abner
(0.3, 0.5, 0.6)

(0.06, 0.1, 0.08)
(0.03, 0.20, 0.06)

(0
.0
3,
0.
20
, 0
.3
)

(0.01, 0.10, 0.09)

(0.09, 0.20, 0.30)

(0.01, 0.20, 0.30)

Figure 20. Corresponding INC-graph.

Table 10. Strength of competition of the applicant for a particular career.

(Applicant, Career) In Competition W(Applicant, Career) S(Applicant, Career)

(Nazneen, Surgery) Rosaleen (0.06, 0.1, 0.08) 0.88
(Rosaleen, Surgery) Nazneen (0.06, 0.1, 0.08) 0.88

(Abner, Anatomy) Casper (0.01, 0.20, 0.30) 0.51
(Casper, Anatomy) Abner (0.01, 0.20, 0.30) 0.51

(Nazneen, Pharmacy) Abner, Amara (0.03, 0.20, 0.18) 0.65
(Abner, Pharmacy) Amara, Nazneen (0.06, 0.20, 0.30) 0.56
(Amara, Pharmacy) Nazneen, Abner (0.06, 0.20, 0.18) 0.68

(Amara, Medicine) Abner, Casper (0.05, 0.15, 0.195) 0.705
(Casper, Medicine) Abner, Amara (0.01, 0.15, 0.195) 0.665
(Abner, Medicine) Casper, Amara (0.05, 0.20, 0.30) 0.55

We present our method, which is used in our career competition application in Algorithm 2.
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Algorithm 2: Career Competition

Step 1. Input the truth-membership, indeterminacy-membership and falsity-membership
values for set of n applicants.

Step 2. If for any two distinct vertices zi and zj, t(zizj) > 0, i(zizj) > 0, f (zizj) > 0, then

(zj, t(zizj), i(zizj), f (zizj)) ∈ N+(zi).

Step 3. Repeat Step 2 for all vertices zi and zj to calculate IN-out-neighborhoods N+(zi).
Step 4. Calculate N+(zi) ∩N+(zj) for each pair of distinct vertices zi and zj.
Step 5. Calculate H[N+(zi) ∩N+(zj)].
Step 6. If N+(zi) ∩N+(zj) 6= ∅, then draw an edge zizj.
Step 7. Repeat Step 6 for all pairs of distinct vertices.
Step 8. Assign membership values to each edge zizj using the conditions:

t(zizj) = (zi ∧ zj)H1[N+(zi) ∩N+(zj)]

i(zizj) = (zi ∧ zj)H2[N+(zi) ∩N+(zj)]

f (zizj) = (zi ∨ zj)H3[N+(zi) ∩N+(zj)].

Step 9. If z, r1, r2, r3, . . ., rn are the applicants competing for career c, then the strength of
competition W(z, c) = (t(z, c), i(z, c), f (z, c)) of each applicant z for the career c is:

W(z, c) = (t(zr1)+t(zr2)+...+t(zrn),i(zr1)+i(zr2)+...+i(zrn), f (zr1)+ f (zr2)+...+ f (zrn))
n .

Step 10. Calculate S(z, c), the strength of competition of each applicant z for career c.

S(z, c) = t(z, c)− (i(z, c) + f (z, c)) + 1.

4. Conclusions

Graphs serve as mathematical models to analyze many concrete real-world problems successfully.
Certain problems in physics, chemistry, communication science, computer technology, sociology
and linguistics can be formulated as problems in graph theory. Intuitionistic neutrosophic set theory
is a mathematical tool to deal with incomplete and vague information. Intuitionistic neutrosophic set
theory deals with the problem of how to understand and manipulate imperfect knowledge. In this
research paper, we have described the concept of intuitionistic neutrosophic competition graphs. We have
also presented applications of intuitionistic neutrosophic competition graphs in ecosystem and career
competition. We aim to extend our research work of fuzzification to (1) fuzzy soft competition graphs,
(2) fuzzy rough soft competition graphs, (3) bipolar fuzzy soft competition graphs and (4) the application
of fuzzy soft competition graphs in decision support systems.
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1. Introduction

As a generalization of fuzzy sets, Atanassov [1] introduced the degree of nonmembership/
falsehood (f) in 1986 and defined the intuitionistic fuzzy set.

Smarandache proposed the term “neutrosophic” because “neutrosophic” etymologically comes
from “neutrosophy” [French neutre < Latin neuter, neutral, and Greek sophia, skill/wisdom] which
means knowledge of neutral thought, and this third/neutral represents the main distinction
between “fuzzy”/“intuitionistic fuzzy” logic/set and “neutrosophic” logic/set, i.e., the included middle
component (Lupasco–Nicolescu’s logic in philosophy), i.e., the neutral/indeterminate/unknown
part (besides the “truth”/“membership” and “falsehood”/“non-membership” components that
both appear in fuzzy logic/set). Smarandache introduced the degree of indeterminacy/neutrality
(i) as an independent component in 1995 (published in 1998) and defined the neutrosophic set on
three components

(t, i, f) = (truth, indeterminacy, falsehood).

For more details, refer to the site http://fs.gallup.unm.edu/FlorentinSmarandache.htm.
Jun et al. [2] introduced a new function which is called negative-valued function, and

constructed N -structures. Khan et al. [3] introduced the notion of neutrosophic N -structure
and applied it to a semigroup. Jun et al. [4] applied the notion of neutrosophic N -structure to
BCK/BCI-algebras. They introduced the notions of a neutrosophic N -subalgebra and a (closed)
neutrosophicN -ideal in a BCK/BCI-algebra, and investigated related properties. They also considered
characterizations of a neutrosophicN -subalgebra and a neutrosophicN -ideal, and discussed relations
between a neutrosophic N -subalgebra and a neutrosophic N -ideal. They provided conditions for
a neutrosophicN -ideal to be a closed neutrosophicN -ideal. BCK-algebras entered into mathematics in
1966 through the work of Imai and Iséki [5], and have been applied to many branches of mathematics,
such as group theory, functional analysis, probability theory and topology. Such algebras generalize
Boolean rings as well as Boolean D-posets (= MV-algebras). Also, Iséki introduced the notion of
a BCI-algebra which is a generalization of a BCK-algebra (see [6]).
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In this paper, we introduce the notion of a neutrosophic commutative N -ideal in BCK-algebras,
and investigate several properties. We consider relations between a neutrosophic N -ideal and
a neutrosophic commutative N -ideal. We discuss characterizations of a neutrosophic commutative
N -ideal.

2. Preliminaries

By a BCI-algebra, we mean a system X := (X, ∗, 0) ∈ K(τ) in which the following axioms hold:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(II) (x ∗ (x ∗ y)) ∗ y = 0,

(III) x ∗ x = 0,
(IV) x ∗ y = y ∗ x = 0 ⇒ x = y

for all x, y, z ∈ X. If a BCI-algebra X satisfies 0 ∗ x = 0 for all x ∈ X, then we say that X is a BCK-algebra.
We can define a partial ordering � by

(∀x, y ∈ X) (x � y ⇒ x ∗ y = 0).

In a BCK/BCI-algebra X, the following hold:

(∀x ∈ X) (x ∗ 0 = x), (1)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y). (2)

A BCK-algebra X is said to be commutative if it satisfies the following equality:

(∀x, y ∈ X) (x ∗ (x ∗ y) = y ∗ (y ∗ x)) . (3)

A subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies

0 ∈ I, (4)

(∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I ⇒ x ∈ I) . (5)

A subset I of a BCK-algebra X is called a commutative ideal of X if it satisfies (4) and

(∀x, y, z ∈ X) ((x ∗ y) ∗ z ∈ I, z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I) . (6)

Lemma 1. An ideal I is commutative if and only if the following assertion is valid.

(∀x, y ∈ X) (x ∗ y ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I) . (7)

We refer the reader to the books [7,8] for further information regarding BCK/BCI-algebras.
For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,
sup{ai | i ∈ Λ} otherwise.

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,
inf{ai | i ∈ Λ} otherwise.

Denote byF (X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We say that an element of
F (X, [−1, 0]) is a negative-valued function from X to [−1, 0] (briefly,N -function on X). By anN -structure,
we mean an ordered pair (X, f ) of X and an N -function f on X (see [2]). A neutrosophic N -structure
over a nonempty universe of discourse X (see [3]) is defined to be the structure
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XN := X
(TN ,IN ,FN)

=
{

x
(TN(x),IN(x),FN(x)) | x ∈ X

}
(8)

where TN , IN and FN are N -functions on X which are called the negative truth membership function,
the negative indeterminacy membership function and the negative falsity membership function, respectively,
on X.

Note that every neutrosophic N -structure XN over X satisfies the condition:

(∀x ∈ X) (−3 ≤ TN(x) + IN(x) + FN(x) ≤ 0) .

3. Neutrosophic Commutative N -Ideals

In what follows, let X denote a BCK-algebra unless otherwise specified.

Definition 1 ([4]). A neutrosophic N -structure XN over X is called a neutrosophic N -ideal of X if the
following assertion is valid.

(∀x, y ∈ X)

 TN(0) ≤ TN(x) ≤ ∨{TN(x ∗ y), TN(y)}
IN(0) ≥ IN(x) ≥ ∧{IN(x ∗ y), IN(y)}
FN(0) ≤ FN(x) ≤ ∨{FN(x ∗ y), FN(y)}

 . (9)

Definition 2. A neutrosophic N -structure XN over X is called a neutrosophic commutative N -ideal of X if
the following assertions are valid.

(∀x ∈ X) (TN(0) ≤ TN(x), IN(0) ≥ IN(x), FN(0) ≤ FN(x)) , (10)

(∀x, y, z ∈ X)

 TN(x ∗ (y ∗ (y ∗ x))) ≤ ∨{TN((x ∗ y) ∗ z), TN(z)}
IN(x ∗ (y ∗ (y ∗ x))) ≥ ∧{IN((x ∗ y) ∗ z), IN(z)}
FN(x ∗ (y ∗ (y ∗ x))) ≤ ∨{FN((x ∗ y) ∗ z), FN(z)}

 . (11)

Example 1. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the Cayley table which is given in Table 1.

Table 1. Cayley table for the binary operation “*”.

* 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

The neutrosophic N -structure

XN =
{

0
(−0.8,−0.2,−0.9) , 1

(−0.3,−0.9,−0.5) , 2
(−0.7,−0.7,−0.4) , 3

(−0.3,−0.6,−0.7) , 4
(−0.5,−0.3,−0.1)

}
over X is a neutrosophic commutative N -ideal of X.

Theorem 1. Every neutrosophic commutative N -ideal is a neutrosophic N -ideal.

Proof. Let XN be a neutrosophic commutative N -ideal of X. For every x, z ∈ X, we have
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TN(x) = TN(x ∗ (0 ∗ (0 ∗ x))) ≤
∨
{TN((x ∗ 0) ∗ z), TN(z)} =

∨
{TN(x ∗ z), TN(z)},

IN(x) = IN(x ∗ (0 ∗ (0 ∗ x))) ≥
∧
{IN((x ∗ 0) ∗ z), IN(z)} =

∧
{IN(x ∗ z), IN(z)},

FN(x) = FN(x ∗ (0 ∗ (0 ∗ x))) ≤
∨
{FN((x ∗ 0) ∗ z), FN(z)} =

∨
{FN(x ∗ z), FN(z)}

by putting y = 0 in (11) and using (1). Therefore, XN is a neutrosophic commutative N -ideal of X.

The converse of Theorem 1 is not true in general as seen in the following example.

Example 2. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the Cayley table which is given in Table 2.

Table 2. Cayley table for the binary operation “∗”

* 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

The neutrosophic N -structure

XN =
{

0
(−0.8,−0.1,−0.7) , 1

(−0.7,−0.6,−0.6) , 2
(−0.6,−0.2,−0.4) , 3

(−0.3,−0.8,−0.4) , 4
(−0.3,−0.8,−0.4)

}
over X is a neutrosophic N -ideal of X. But it is not a neutrosophic commutative N -ideal of X since FN(2 ∗ (3 ∗
(3 ∗ 2)) = FN(2) = −0.4 � −0.7 =

∨{FN((2 ∗ 3) ∗ 0), FN(0)}.

We consider characterizations of a neutrosophic commutative N -ideal.

Theorem 2. Let XN be a neutrosophic N -ideal of X. Then, XN is a neutrosophic commutative N -ideal of X if
and only if the following assertion is valid.

(∀x, y ∈ X)

 TN(x ∗ (y ∗ (y ∗ x))) ≤ TN(x ∗ y),

IN(x ∗ (y ∗ (y ∗ x))) ≥ IN(x ∗ y),

FN(x ∗ (y ∗ (y ∗ x))) ≤ FN(x ∗ y)

 . (12)

Proof. Assume that XN is a neutrosophic commutative N -ideal of X. The assertion (12) is by taking
z = 0 in (11) and using (1) and (10).

Conversely, suppose that a neutrosophic N -ideal XN of X satisfies the condition (12). Then,

(∀x, y ∈ X)

 TN(x ∗ y) ≤ ∨{TN((x ∗ y) ∗ z), TN(z)}
IN(x ∗ y) ≥ ∧{IN((x ∗ y) ∗ z), IN(z)}
FN(x ∗ y) ≤ ∨{FN((x ∗ y) ∗ z), FN(z)}

 . (13)

It follows that the condition (11) is induced by (12) and (13). Therefore, XN is a neutrosophic
commutative N -ideal of X.

Lemma 2 ([4]). For any neutrosophic N -ideal XN of X, we have

(∀x, y, z ∈ X)

 x ∗ y � z ⇒


TN(x) ≤ ∨{TN(y), TN(z)}
IN(x) ≥ ∧{IN(y), IN(z)}
FN(x) ≤ ∨{FN(y), FN(z)}

 . (14)
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Theorem 3. In a commutative BCK-algebra, every neutrosophic N -ideal is a neutrosophic commutative
N -ideal.

Proof. Let XN be a neutrosophic N -ideal of a commutative BCK-algebra X. For any x, y, z ∈ X,
we have

((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z)) ∗ z

= ((x ∗ (y ∗ (y ∗ x))) ∗ z) ∗ ((x ∗ y) ∗ z)

� (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y)

= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = 0,

that is, (x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z) � z. It follows from Lemma 2 that

TN(x ∗ (y ∗ (y ∗ x))) ≤
∨
{TN((x ∗ y) ∗ z), TN(z)},

IN(x ∗ (y ∗ (y ∗ x))) ≥
∧
{IN((x ∗ y) ∗ z), IN(z)},

FN(x ∗ (y ∗ (y ∗ x))) ≤
∨
{FN((x ∗ y) ∗ z), FN(z)}.

Therefore, XN is a neutrosophic commutative N -ideal of X.

Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that −3 ≤ α + β +

γ ≤ 0. Consider the following sets.

Tα
N := {x ∈ X | TN(x) ≤ α},

Iβ
N := {x ∈ X | IN(x) ≥ β},

Fγ
N := {x ∈ X | FN(x) ≤ γ}.

The set

XN(α, β, γ) := {x ∈ X | TN(x) ≤ α, IN(x) ≥ β, FN(x) ≤ γ}

is called the (α, β, γ)-level set of XN. It is clear that

XN(α, β, γ) = Tα
N ∩ Iβ

N ∩ Fγ
N .

Theorem 4. If XN is a neutrosophic N -ideal of X, then Tα
N , Iβ

N and Fγ
N are commutative ideals of X for all

α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0 whenever they are nonempty.

We call Tα
N , Iβ

N and Fγ
N level commutative ideals of XN.

Proof. Assume that Tα
N , Iβ

N and Fγ
N are nonempty for all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0.

Then, x ∈ Tα
N , y ∈ Iβ

N and z ∈ Fγ
N for some x, y, z ∈ X. Thus, TN(0) ≤ TN(x) ≤ α, IN(0) ≥ IN(y) ≥ β,

and FN(0) ≤ FN(z) ≤ γ, that is, 0 ∈ Tα
N ∩ Iβ

N ∩ Fγ
N . Let (x ∗ y) ∗ z ∈ Tα

N and z ∈ Tα
N . Then,

TN((x ∗ y) ∗ z) ≤ α and TN(z) ≤ α, which imply that

TN(x ∗ (y ∗ (y ∗ x))) ≤
∨
{TN((x ∗ y) ∗ z), TN(z)} ≤ α,

that is, x ∗ (y ∗ (y ∗ x)) ∈ Tα
N . If (a ∗ b) ∗ c ∈ Iβ

N and c ∈ Iβ
N , then IN((a ∗ b) ∗ c) ≥ β and IN(c) ≥ β.

Thus

IN(a ∗ (b ∗ (b ∗ c))) ≥
∧
{IN((a ∗ b) ∗ c), IN(c)} ≥ β,
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and so a ∗ (b ∗ (b ∗ c)) ∈ Iβ
N . Finally, suppose that (u ∗ v) ∗ w ∈ Fγ

N and w ∈ Fγ
N . Then,

FN((u ∗ v) ∗ w) ≤ γ and FN(w) ≤ γ. Thus,

FN(u ∗ (v ∗ (v ∗ w))) ≤
∨
{FN((u ∗ v) ∗ w), FN(w)} ≤ γ,

that is, u ∗ (v ∗ (v ∗ w)) ∈ Fγ
N . Therefore, Tα

N , Iβ
N and Fγ

N are commutative ideals of X.

Corollary 1. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that
−3 ≤ α + β + γ ≤ 0. If XN is a neutrosophic commutative N -ideal of X, then the nonempty (α, β, γ)-level
set of XN is a commutative ideal of X.

Proof. Straightforward.

Lemma 3 ([4]). Let XN be a neutrosophic N -structure over X and assume that Tα
N , Iβ

N and Fγ
N are ideals of X

for all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Then XN is a neutrosophic N -ideal of X.

Theorem 5. Let XN be a neutrosophic N -structure over X and assume that Tα
N , Iβ

N and Fγ
N are commutative

ideals of X for all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Then, XN is a neutrosophic commutative
N -ideal of X.

Proof. If Tα
N , Iβ

N and Fγ
N are commutative ideals of X, then they are ideals of X. Hence, XN is a

neutrosophic N -ideal of X by Lemma 3. Let x, y ∈ X and α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0
such that TN(x ∗ y) = α, IN(x ∗ y) = β and FN(x ∗ y) = γ. Then, x ∗ y ∈ Tα

N ∩ Iβ
N ∩ Fγ

N . Since

Tα
N ∩ Iβ

N ∩ Fγ
N is a commutative ideal of X, it follows from Lemma 1 that x ∗ (y ∗ (y ∗ x)) ∈ Tα

N ∩ Iβ
N ∩ Fγ

N .
Hence

TN(x ∗ (y ∗ (y ∗ x))) ≤ α = TN(x ∗ y),

IN(x ∗ (y ∗ (y ∗ x))) ≥ β = IN(x ∗ y),

FN(x ∗ (y ∗ (y ∗ x))) ≤ γ = FN(x ∗ y).

Therefore, XN is a neutrosophic commutative N -ideal of X by Theorem 2.

Theorem 6. Let f : X → X be an injective mapping. Given a neutrosophic N -structure XN over X,
the following are equivalent.

(1) XN is a neutrosophic commutative N -ideal of X, satisfying the following condition.

(∀x ∈ X)

 TN( f (x)) = TN(x)

IN( f (x)) = IN(x)

FN( f (x)) = FN(x)

 . (15)

(2) Tα
N , Iβ

N and Fγ
N are commutative ideals of XN, satisfying the following condition.

f (Tα
N) = Tα

N , f (Iβ
N) = Iβ

N , f (Fγ
N) = Fγ

N . (16)

Proof. Let XN be a neutrosophic commutative N -ideal of X, satisfying the condition (15). Then, Tα
N ,

Iβ
N and Fγ

N are commutative ideals of XN by Theorem 4. Let α ∈ Im(TN), β ∈ Im(IN), γ ∈ Im(FN) and

x ∈ Tα
N ∩ Iβ

N ∩ Fγ
N . Then TN( f (x)) = TN(x) ≤ α, IN( f (x)) = IN(x) ≥ β and FN( f (x)) = FN(x) ≤ γ.

Thus, f (x) ∈ Tα
N ∩ Iβ

N ∩ Fγ
N , which shows that f (Tα

N) ⊆ Tα
N , f (Iβ

N) ⊆ Iβ
N and f (Fγ

N) ⊆ Fγ
N . Let y ∈ X

be such that f (y) = x. Then, TN(y) = TN( f (y)) = TN(x) ≤ α, IN(y) = IN( f (y)) = IN(x) ≥ β
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and FN(y) = FN( f (y)) = FN(x) ≤ γ, which imply that y ∈ Tα
N ∩ Iβ

N ∩ Fγ
N . Thus, x = f (y) ∈

f (Tα
N) ∩ f (Iβ

N) ∩ f (Fγ
N), and so Tα

N ⊆ f (Tα
N), Iβ

N ⊆ f (Iβ
N) and Fγ

N ⊆ f (Fγ
N). Therefore (16) is valid.

Conversely, assume that Tα
N , Iβ

N and Fγ
N are commutative ideals of XN, satisfying the condition (16).

Then, XN is a neutrosophic commutative N -ideal of X by Theorem 5. Let x, y, z ∈ X be such that
TN(x) = α, IN(y) = β and FN(z) = γ. Note that

TN(x) = α⇐⇒ x ∈ Tα
N and x /∈ Tα̃

N for all α > α̃,

IN(y) = β⇐⇒ y ∈ Iβ
N and y /∈ I β̃

N for all β < β̃,

FN(z) = γ⇐⇒ z ∈ Fγ
N and z /∈ Fγ̃

N for all γ > γ̃.

It follows from (16) that f (x) ∈ Tα
N , f (y) ∈ Iβ

N and f (z) ∈ Fγ
N . Hence, TN( f (x)) ≤ α, IN( f (y)) ≥ β

and FN( f (z)) ≤ γ. Let α̃ = TN( f (x)), β̃ = IN( f (y)) and γ̃ = FN( f (z)). If α > α̃, then f (x) ∈ Tα̃
N =

f
(
Tα̃

N
)
, and thus x ∈ Tα̃

N since f is one to one. This is a contradiction. Hence, TN( f (x)) = α = TN(x).

If β < β̃, then f (y) ∈ I β̃
N = f

(
I β̃
N

)
which implies from the injectivity of f that y ∈ I β̃

N , a contradiction.

Hence, IN( f (x)) = β = IN(x). If γ > γ̃, then f (z) ∈ Fγ̃
N = f

(
Fγ̃

N

)
. Since f is one to one, we have

z ∈ Fγ̃
N which is a contradiction. Thus, FN( f (x)) = γ = FN(x). This completes the proof.

For any elements ωt, ωi, ω f ∈ X, we consider sets:

Xωt
N := {x ∈ X | TN(x) ≤ TN(ωt)} ,

Xωi
N := {x ∈ X | IN(x) ≥ IN(ωi)} ,

X
ω f
N :=

{
x ∈ X | FN(x) ≤ FN(ω f )

}
.

Obviously, ωt ∈ Xωt
N , ωi ∈ Xωi

N and ω f ∈ X
ω f
N .

Lemma 4 ([4]). Let ωt, ωi and ω f be any elements of X. If XN is a neutrosophic N -ideal of X, then Xωt
N ,

Xωi
N and X

ω f
N are ideals of X.

Theorem 7. Let ωt, ωi and ω f be any elements of X. If XN is a neutrosophic commutative N -ideal of X,

then Xωt
N , Xωi

N and X
ω f
N are commutative ideals of X.

Proof. If XN is a neutrosophic commutative N -ideal of X, then it is a neutrosophic N -ideal of X and
so Xωt

N , Xωi
N and X

ω f
N are ideals of X by Lemma 4. Let x ∗ y ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N for any x, y ∈ X. Then,

TN(x ∗ y) ≤ TN(ωt), IN(x ∗ y) ≥ TN(ωi) and FN(x ∗ y) ≤ FN(ω f ). It follows from Theorem 2 that

TN(x ∗ (y ∗ (y ∗ x))) ≤ TN(x ∗ y) ≤ TN(ωt),

IN(x ∗ (y ∗ (y ∗ x))) ≥ IN(x ∗ y) ≥ IN(ωi),

FN(x ∗ (y ∗ (y ∗ x))) ≤ FN(x ∗ y) ≤ FN(ω f ).

Hence, x ∗ (y ∗ (y ∗ x)) ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N , and therefore Xωt

N , Xωi
N and X

ω f
N are commutative

ideals of X by Lemma 1.

Theorem 8. Any commutative ideal of X can be realized as level commutative ideals of some neutrosophic
commutative N -ideal of X.

Proof. Let A be a commutative ideal of X and let XN be a neutrosophic N -structure over X in which
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TN : X → [−1, 0], x 7→
{

α if x ∈ A,
0 otherwise,

IN : X → [−1, 0], x 7→
{

β if x ∈ A,
−1 otherwise,

FN : X → [−1, 0], x 7→
{

γ if x ∈ A,
0 otherwise

where α, γ ∈ [−1, 0) and β ∈ (−1, 0]. Division into the following cases will verify that XN is
a neutrosophic commutative N -ideal of X.

If (x ∗ y) ∗ z ∈ A and z ∈ A, then x ∗ (y ∗ (y ∗ x) ∈ A. Thus,

TN((x ∗ y) ∗ z) = TN(z) = TN(x ∗ (y ∗ (y ∗ x))) = α,

IN((x ∗ y) ∗ z) = IN(z) = IN(x ∗ (y ∗ (y ∗ x))) = β,

FN((x ∗ y) ∗ z) = FN(z) = FN(x ∗ (y ∗ (y ∗ x))) = γ,

and so (11) is clearly verified.
If (x ∗ y) ∗ z /∈ A and z /∈ A, then TN((x ∗ y) ∗ z) = TN(z) = 0, IN((x ∗ y) ∗ z) = IN(z) = −1 and

FN((x ∗ y) ∗ z) = FN(z) = 0. Hence

TN(x ∗ (y ∗ (y ∗ x))) ≤
∨
{TN((x ∗ y) ∗ z), TN(z)},

IN(x ∗ (y ∗ (y ∗ x))) ≥
∧
{IN((x ∗ y) ∗ z), IN(z)},

FN(x ∗ (y ∗ (y ∗ x))) ≤
∨
{FN((x ∗ y) ∗ z), FN(z)}.

If (x ∗ y) ∗ z ∈ A and z /∈ A, then TN((x ∗ y) ∗ z) = α, TN(z) = 0, IN((x ∗ y) ∗ z) = β, IN(z) = −1,
FN((x ∗ y) ∗ z) = γ and FN(z) = 0. Therefore,

TN(x ∗ (y ∗ (y ∗ x))) ≤
∨
{TN((x ∗ y) ∗ z), TN(z)},

IN(x ∗ (y ∗ (y ∗ x))) ≥
∧
{IN((x ∗ y) ∗ z), IN(z)},

FN(x ∗ (y ∗ (y ∗ x))) ≤
∨
{FN((x ∗ y) ∗ z), FN(z)}.

Similarly, if (x ∗ y) ∗ z /∈ A and z ∈ A, then (11) is verified. Therefore, XN is a neutrosophic
commutative N -ideal of X. Obviously, Tα

N = A, Iβ
N = A and Fγ

N = A. This completes the proof.

4. Conclusions

In order to deal with the negative meaning of information, Jun et al. [2] have introduced a
new function which is called negative-valued function, and constructed N -structures. The concept
of neutrosophic set (NS) has been developed by Smarandache in [9,10] as a more general platform
which extends the concepts of the classic set and fuzzy set, intuitionistic fuzzy set and interval valued
intuitionistic fuzzy set. In this article, we have introduced the notion of a neutrosophic commutative
N -ideal in BCK-algebras, and investigated several properties. We have considered relations between
a neutrosophicN -ideal and a neutrosophic commutativeN -ideal. We have discussed characterizations
of a neutrosophic commutative N -ideal.
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Abstract: Neutrosophic N -structures with applications in BCK/BCI-algebras is discussed.
The notions of a neutrosophic N -subalgebra and a (closed) neutrosophic N -ideal in a
BCK/BCI-algebra are introduced, and several related properties are investigated. Characterizations
of a neutrosophic N -subalgebra and a neutrosophic N -ideal are considered, and relations between a
neutrosophic N -subalgebra and a neutrosophic N -ideal are stated. Conditions for a neutrosophic
N -ideal to be a closed neutrosophic N -ideal are provided.
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1. Introduction

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [1], and
they have been applied to many branches of mathematics, such as group theory, functional analysis,
probability theory and topology. Such algebras generalize Boolean rings as well as Boolean D-posets
(MV-algebras). Additionally, Iséki introduced the notion of a BCI-algebra, which is a generalization of
a BCK-algebra (see [2]).

A (crisp) set A in a universe X can be defined in the form of its characteristic function µA :
X → {0, 1} yielding the value 1 for elements belonging to the set A and the value 0 for elements
excluded from the set A. So far, most of the generalizations of the crisp set have been conducted
on the unit interval [0, 1], and they are consistent with the asymmetry observation. In other words,
the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp
point {1} into the interval [0, 1]. Because no negative meaning of information is suggested, we now
feel a need to deal with negative information. To do so, we also feel a need to supply a mathematical
tool. To attain such an object, Jun et al. [3] introduced a new function, called a negative-valued
function, and constructed N -structures. Zadeh [4] introduced the degree of membership/truth (t)
in 1965 and defined the fuzzy set. As a generalization of fuzzy sets, Atanassov [5] introduced the
degree of nonmembership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache
introduced the degree of indeterminacy/neutrality (i) as an independent component in 1995 (published
in 1998) and defined the neutrosophic set on three components:

(t, i, f) = (truth, indeterminacy, falsehood)
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For more details, refer to the following site:

http://fs.gallup.unm.edu/FlorentinSmarandache.htm

In this paper, we discuss a neutrosophic N -structure with an application to BCK/BCI-algebras.
We introduce the notions of a neutrosophic N -subalgebra and a (closed) neutrosophic N -ideal in a
BCK/BCI-algebra, and investigate related properties. We consider characterizations of a neutrosophic
N -subalgebra and a neutrosophicN -ideal. We discuss relations between a neutrosophicN -subalgebra
and a neutrosophic N -ideal. We provide conditions for a neutrosophic N -ideal to be a closed
neutrosophic N -ideal.

2. Preliminaries

We let K(τ) be the class of all algebras with type τ = (2, 0). A BCI-algebra refers to a system
X := (X, ∗, θ) ∈ K(τ) in which the following axioms hold:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ,
(II) (x ∗ (x ∗ y)) ∗ y = θ,
(III) x ∗ x = θ,
(IV) x ∗ y = y ∗ x = θ ⇒ x = y.

for all x, y, z ∈ X. If a BCI-algebra X satisfies θ ∗ x = θ for all x ∈ X, then we say that X is a BCK-algebra.
We can define a partial ordering � by

(∀x, y ∈ X) (x � y ⇒ x ∗ y = θ)

In a BCK/BCI-algebra X, the following hold:

(∀x ∈ X) (x ∗ θ = x) (1)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) (2)

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all
x, y ∈ S.

A subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies the following:

(I1) 0 ∈ I,
(I2) (∀x, y ∈ X)(x ∗ y ∈ I, y ∈ I ⇒ x ∈ I).

We refer the reader to the books [6,7] for further information regarding BCK/BCI-algebras.
For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite
sup{ai | i ∈ Λ} otherwise

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite
inf{ai | i ∈ Λ} otherwise

We denote by F (X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We say that an
element of F (X, [−1, 0]) is a negative-valued function from X to [−1, 0] (briefly, N -function on X).
An N -structure refers to an ordered pair (X, f ) of X and an N -function f on X (see [3]). In what
follows, we let X denote the nonempty universe of discourse unless otherwise specified.

A neutrosophic N -structure over X (see [8]) is defined to be the structure:

XN := X
(TN ,IN ,FN)

=
{

x
(TN(x),IN(x),FN(x)) | x ∈ X

}
(3)

http://fs.gallup.unm.edu/FlorentinSmarandache.htm
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where TN , IN and FN are N -functions on X, which are called the negative truth membership function,
the negative indeterminacy membership function and the negative falsity membership function, respectively,
on X.

We note that every neutrosophic N -structure XN over X satisfies the condition:

(∀x ∈ X) (−3 ≤ TN(x) + IN(x) + FN(x) ≤ 0)

3. Application in BCK/BCI-Algebras

In this section, we take a BCK/BCI-algebra X as the universe of discourse unless
otherwise specified.

Definition 1. A neutrosophic N -structure XN over X is called a neutrosophic N -subalgebra of X if the
following condition is valid:

(∀x, y ∈ X)

 TN(x ∗ y) ≤ ∨{TN(x), TN(y)}
IN(x ∗ y) ≥ ∧{IN(x), IN(y)}
FN(x ∗ y) ≤ ∨{FN(x), FN(y)}

 (4)

Example 1. Consider a BCK-algebra X = {θ, a, b, c} with the following Cayley table.

∗ θ a b c
θ θ θ θ θ

a a θ θ a
b b a θ b
c c c c θ

The neutrosophic N -structure

XN =
{

θ
(−0.7,−0.2,−0.6) , a

(−0.5,−0.3,−0.4) , b
(−0.5,−0.3,−0.4) , c

(−0.3,−0.8,−0.5)

}
over X is a neutrosophic N -subalgebra of X.

Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that −3 ≤ α + β +

γ ≤ 0. Consider the following sets:

Tα
N := {x ∈ X | TN(x) ≤ α}

Iβ
N := {x ∈ X | IN(x) ≥ β}

Fγ
N := {x ∈ X | FN(x) ≤ γ}

The set

XN(α, β, γ) := {x ∈ X | TN(x) ≤ α, IN(x) ≥ β, FN(x) ≤ γ}

is called the (α, β, γ)-level set of XN. Note that

XN(α, β, γ) = Tα
N ∩ Iβ

N ∩ Fγ
N

Theorem 1. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that −3 ≤
α + β + γ ≤ 0. If XN is a neutrosophic N -subalgebra of X, then the nonempty (α, β, γ)-level set of XN is a
subalgebra of X.



Information 2017, 8, 128 4 of 12

Proof. Let α, β, γ ∈ [−1, 0] be such that−3 ≤ α + β + γ ≤ 0 and XN(α, β, γ) 6= ∅. If x, y ∈ XN(α, β, γ),
then TN(x) ≤ α, IN(x) ≥ β, FN(x) ≤ γ, TN(y) ≤ α, IN(y) ≥ β and FN(y) ≤ γ. It follows from
Equation (4) that

TN(x ∗ y) ≤ ∨{TN(x), TN(y)} ≤ α,
IN(x ∗ y) ≥ ∧{IN(x), IN(y)} ≥ β, and
FN(x ∗ y) ≤ ∨{FN(x), FN(y)} ≤ γ.

Hence, x ∗ y ∈ XN(α, β, γ), and therefore XN(α, β, γ) is a subalgebra of X.

Theorem 2. Let XN be a neutrosophic N -structure over X and assume that Tα
N , Iβ

N and Fγ
N are subalgebras of

X for all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Then XN is a neutrosophic N -subalgebra of X.

Proof. Assume that there exist a, b ∈ X such that TN(a ∗ b) >
∨{TN(a), TN(b)}. Then TN(a ∗ b) > tα ≥∨{TN(a), TN(b)} for some tα ∈ [−1, 0). Hence a, b ∈ Ttα

N but a ∗ b /∈ Ttα
N , which is a contradiction. Thus

TN(x ∗ y) ≤ ∨{TN(x), TN(y)}

for all x, y ∈ X. If IN(a ∗ b) <
∧{IN(a), IN(b)} for some a, b ∈ X, then

IN(a ∗ b) < tβ <
∧
{IN(a), IN(b)}

where tβ := 1
2 {IN(a ∗ b) +

∧{IN(a), IN(b)}}. Thus a, b ∈ I
tβ

N and a ∗ b /∈ I
tβ

N , which is a
contradiction. Therefore

IN(x ∗ y) ≥ ∧{IN(x), IN(y)}

for all x, y ∈ X. Now, suppose that there exist a, b ∈ X and tγ ∈ [−1, 0) such that

FN(a ∗ b) > tγ ≥
∨
{FN(a), FN(b)}

Then a, b ∈ Ftγ

N and a ∗ b /∈ Ftγ

N , which is a contradiction. Hence

FN(x ∗ y) ≤
∨
{FN(x), FN(y)}

for all x, y ∈ X. Therefore XN is a neutrosophic N -subalgebra of X.

Because [−1, 0] is a completely distributive lattice with respect to the usual ordering, we have the
following theorem.

Theorem 3. If {XNi | i ∈ N} is a family of neutrosophic N -subalgebras of X, then
(
{XNi | i ∈ N},⊆

)
forms

a complete distributive lattice.

Proposition 1. If a neutrosophic N -structure XN over X is a neutrosophic N -subalgebra of X, then TN(θ) ≤
TN(x), IN(θ) ≥ IN(x) and FN(θ) ≤ FN(x) for all x ∈ X.

Proof. Straightforward.

Theorem 4. Let XN be a neutrosophic N -subalgebra of X. If there exists a sequence {an} in X such that
lim

n→∞
TN(an) = −1, lim

n→∞
IN(an) = 0 and lim

n→∞
FN(an) = −1, then TN(θ) = −1, IN(θ) = 0 and FN(θ) = −1.

Proof. By Proposition 1, we have TN(θ) ≤ TN(x), IN(θ) ≥ IN(x) and FN(θ) ≤ FN(x) for all x ∈
X. Hence TN(θ) ≤ TN(an), IN(an) ≤ IN(θ) and FN(θ) ≤ FN(an) for every positive integer n. It
follows that
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− 1 ≤ TN(θ) ≤ lim
n→∞

TN(an) = −1

0 ≥ IN(θ) ≥ lim
n→∞

IN(an) = 0

− 1 ≤ FN(θ) ≤ lim
n→∞

FN(an) = −1

Hence TN(θ) = −1, IN(θ) = 0 and FN(θ) = −1.

Proposition 2. If every neutrosophic N -subalgebra XN of X satisfies:

TN(x ∗ y) ≤ TN(y), IN(x ∗ y) ≥ IN(y), FN(x ∗ y) ≤ FN(y) (5)

for all x, y ∈ X, then XN is constant.

Proof. Using Equations (1) and (5), we have TN(x) = TN(x ∗ θ) ≤ TN(θ), IN(x) = IN(x ∗ θ) ≥ IN(θ)

and FN(x) = FN(x ∗ θ) ≤ FN(θ) for all x ∈ X. It follows from Proposition 1 that TN(x) = TN(θ),
IN(x) = IN(θ) and FN(x) = FN(θ) for all x ∈ X. Therefore XN is constant.

Definition 2. A neutrosophic N -structure XN over X is called a neutrosophic N -ideal of X if the following
assertion is valid:

(∀x, y ∈ X)

 TN(θ) ≤ TN(x) ≤ ∨{TN(x ∗ y), TN(y)}
IN(θ) ≥ IN(x) ≥ ∧{IN(x ∗ y), IN(y)}
FN(θ) ≤ FN(x) ≤ ∨{FN(x ∗ y), FN(y)}

 (6)

Example 2. The neutrosophic N -structure XN over X in Example 1 is a neutrosophic N -ideal of X.

Example 3. Consider a BCI-algebra X := Y×Z where (Y, ∗, θ) is a BCI-algebra and (Z,−, 0) is the adjoint
BCI-algebra of the additive group (Z,+, 0) of integers (see [6]). Let XN be a neutrosophic N -structure over X
given by

XN =
{

x
(α,0,γ) | x ∈ Y× (N∪ {0})

}
∪
{

x
(0,β,0) | x /∈ Y× (N∪ {0})

}
where α, γ ∈ [−1, 0) and β ∈ (−1, 0]. Then XN is a neutrosophic N -ideal of X.

Proposition 3. Every neutrosophic N -ideal XN of X satisfies the following assertions:

(x, y ∈ X) (x � y ⇒ TN(x) ≤ TN(y), IN(x) ≥ IN(y), FN(x) ≤ FN(y)) (7)

Proof. Let x, y ∈ X be such that x � y. Then x ∗ y = θ, and so

TN(x) ≤ ∨{TN(x ∗ y), TN(y)} =
∨{TN(θ), TN(y)} = TN(y)

IN(x) ≥ ∧{IN(x ∗ y), IN(y)} =
∧{IN(θ), IN(y)} = IN(y)

FN(x) ≤ ∨{FN(x ∗ y), FN(y)} =
∨{FN(θ), FN(y)} = FN(y)

This completes the proof.

Proposition 4. Let XN be a neutrosophic N -ideal of X. Then

(1) TN(x ∗ y) ≤ TN((x ∗ y) ∗ y) ⇔ TN((x ∗ z) ∗ (y ∗ z)) ≤ TN((x ∗ y) ∗ z)
(2) IN(x ∗ y) ≥ IN((x ∗ y) ∗ y) ⇔ IN((x ∗ z) ∗ (y ∗ z)) ≥ IN((x ∗ y) ∗ z)
(3) FN(x ∗ y) ≤ FN((x ∗ y) ∗ y) ⇔ FN((x ∗ z) ∗ (y ∗ z)) ≤ FN((x ∗ y) ∗ z)

for all x, y, z ∈ X.
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Proof. Note that
((x ∗ (y ∗ z)) ∗ z) ∗ z � (x ∗ y) ∗ z (8)

for all x, y, z ∈ X. Assume that TN(x ∗ y) ≤ TN((x ∗ y) ∗ y), IN(x ∗ y) ≥ IN((x ∗ y) ∗ y) and FN(x ∗ y) ≤
FN((x ∗ y) ∗ y) for all x, y ∈ X. It follows from Equation (2) and Proposition 3 that

TN((x ∗ z) ∗ (y ∗ z)) = TN((x ∗ (y ∗ z)) ∗ z)

≤ TN(((x ∗ (y ∗ z)) ∗ z) ∗ z)

≤ TN((x ∗ y) ∗ z)

IN((x ∗ z) ∗ (y ∗ z)) = IN((x ∗ (y ∗ z)) ∗ z)

≥ IN(((x ∗ (y ∗ z)) ∗ z) ∗ z)

≥ IN((x ∗ y) ∗ z)

and

FN((x ∗ z) ∗ (y ∗ z)) = FN((x ∗ (y ∗ z)) ∗ z)

≤ FN(((x ∗ (y ∗ z)) ∗ z) ∗ z)

≤ FN((x ∗ y) ∗ z)

for all x, y ∈ X.
Conversely, suppose

TN((x ∗ z) ∗ (y ∗ z)) ≤ TN((x ∗ y) ∗ z)

IN((x ∗ z) ∗ (y ∗ z)) ≥ IN((x ∗ y) ∗ z)

FN((x ∗ z) ∗ (y ∗ z)) ≤ FN((x ∗ y) ∗ z)

(9)

for all x, y, z ∈ X. If we substitute z for y in Equation (9), then

TN(x ∗ z) = TN((x ∗ z) ∗ θ) = TN((x ∗ z) ∗ (z ∗ z)) ≤ TN((x ∗ z) ∗ z)

IN(x ∗ z) = IN((x ∗ z) ∗ θ) = IN((x ∗ z) ∗ (z ∗ z)) ≥ IN((x ∗ z) ∗ z)

FN(x ∗ z) = FN((x ∗ z) ∗ θ) = FN((x ∗ z) ∗ (z ∗ z)) ≤ FN((x ∗ z) ∗ z)

for all x, z ∈ X by using (III) and Equation (1).

Theorem 5. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that
−3 ≤ α + β + γ ≤ 0. If XN is a neutrosophic N -ideal of X, then the nonempty (α, β, γ)-level set of
XN is an ideal of X.

Proof. Assume that XN(α, β, γ) 6= ∅ for α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Clearly, θ ∈
XN(α, β, γ). Let x, y ∈ X be such that x ∗ y ∈ XN(α, β, γ) and y ∈ XN(α, β, γ). Then TN(x ∗ y) ≤ α,
IN(x ∗ y) ≥ β, FN(x ∗ y) ≤ γ, TN(y) ≤ α, IN(y) ≥ β and FN(y) ≤ γ. It follows from Equation (6) that

TN(x) ≤
∨
{TN(x ∗ y), TN(y)} ≤ α

IN(x) ≥
∧
{IN(x ∗ y), IN(y)} ≥ β

FN(x) ≤
∨
{FN(x ∗ y), FN(y)} ≤ γ

so that x ∈ XN(α, β, γ). Therefore XN(α, β, γ) is an ideal of X.
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Theorem 6. Let XN be a neutrosophic N -structure over X and assume that Tα
N , Iβ

N and Fγ
N are ideals of X for

all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Then XN is a neutrosophic N -ideal of X.

Proof. If there exist a, b, c ∈ X such that TN(θ) > TN(a), IN(θ) < IN(b) and FN(θ) > FN(c),
respectively, then TN(θ) > at ≥ TN(a), IN(θ) < bi ≤ IN(b) and FN(θ) > c f ≥ FN(c) for some

at, c f ∈ [−1, 0) and bi ∈ (−1, 0]. Then θ /∈ Tat
N , θ /∈ Ibi

N and θ /∈ F
c f
N . This is a contradiction.

Hence, TN(θ) ≤ TN(x), IN(θ) ≥ IN(x) and FN(θ) ≤ FN(x) for all x ∈ X. Assume that there exist
at, bt, ai, bi, a f , b f ∈ X such that TN(at) >

∨{TN(at ∗ bt), TN(bt)}, IN(ai) <
∧{IN(ai ∗ bi), IN(bi)} and

FN(a f ) >
∨{FN(a f ∗ b f ), FN(b f )}. Then there exist st, s f ∈ [−1, 0) and si ∈ (−1, 0] such that

TN(at) > st ≥
∨
{TN(at ∗ bt), TN(bt)}

IN(ai) < si ≤
∧
{IN(ai ∗ bi), IN(bi)}

FN(a f ) > s f ≥
∨
{FN(a f ∗ b f ), FN(b f )}

It follows that at ∗ bt ∈ Tst
N , bt ∈ Tst

N , ai ∗ bi ∈ Isi
N , bi ∈ Isi

N , a f ∗ b f ∈ F
s f
N and b f ∈ F

s f
N . However,

at /∈ Tst
N , ai /∈ Isi

N and a f /∈ F
s f
N . This is a contradiction, and so

TN(x) ≤
∨
{TN(x ∗ y), TN(y)}

IN(x) ≥
∧
{IN(x ∗ y), IN(y)}

FN(x) ≤
∨
{FN(x ∗ y), FN(y)}

for all x, y ∈ X. Therefore XN is a neutrosophic N -ideal of X.

Proposition 5. For any neutrosophic N -ideal XN of X, we have

(∀x, y, z ∈ X)

 x ∗ y � z ⇒


TN(x) ≤ ∨{TN(y), TN(z)}
IN(x) ≥ ∧{IN(y), IN(z)}
FN(x) ≤ ∨{FN(y), FN(z)}

 (10)

Proof. Let x, y, z ∈ X be such that x ∗ y � z. Then (x ∗ y) ∗ z = θ, and so

TN(x ∗ y) ≤
∨
{TN((x ∗ y) ∗ z), TN(z)} =

∨
{TN(θ), TN(z)} = TN(z)

IN(x ∗ y) ≥
∧
{IN((x ∗ y) ∗ z), IN(z)} =

∧
{IN(θ), IN(z)} = IN(z)

FN(x ∗ y) ≤
∨
{FN((x ∗ y) ∗ z), FN(z)} =

∨
{FN(θ), FN(z)} = FN(z)

It follows that

TN(x) ≤
∨
{TN(x ∗ y), TN(y)} ≤

∨
{TN(y), TN(z)}

IN(x) ≥
∧
{IN(x ∗ y), IN(y)} ≥

∧
{IN(y), IN(z)}

FN(x) ≤
∨
{FN(x ∗ y), FN(y)} ≤

∨
{FN(y), FN(z)}

This completes the proof.

Theorem 7. In a BCK-algebra, every neutrosophic N -ideal is a neutrosophic N -subalgebra.

Proof. Let XN be a neutrosophic N -ideal of a BCK-algebra X. For any x, y ∈ X, we have
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TN(x ∗ y) ≤
∨
{TN((x ∗ y) ∗ x), TN(x)} =

∨
{TN((x ∗ x) ∗ y), TN(x)}

=
∨
{TN(θ ∗ y), TN(x)} =

∨
{TN(θ), TN(x)}

≤
∨
{TN(x), TN(y)}

IN(x ∗ y) ≥
∧
{IN((x ∗ y) ∗ x), IN(x)} =

∧
{IN((x ∗ x) ∗ y), IN(x)}

=
∧
{IN(θ ∗ y), IN(x)} =

∧
{IN(θ), IN(x)}

≥
∧
{IN(y), IN(x)}

and

FN(x ∗ y) ≤
∨
{FN((x ∗ y) ∗ x), FN(x)} =

∨
{FN((x ∗ x) ∗ y), FN(x)}

=
∨
{FN(θ ∗ y), FN(x)} =

∨
{FN(θ), FN(x)}

≤
∨
{FN(x), FN(y)}

Hence XN is a neutrosophic N -subalgebra of a BCK-algebra X.

The converse of Theorem 7 may not be true in general, as seen in the following example.

Example 4. Consider a BCK-algebra X = {θ, 1, 2, 3, 4} with the following Cayley table.

∗ θ 1 2 3 4
θ θ θ θ θ θ

1 1 θ θ θ θ

2 2 1 θ 1 θ

3 3 3 3 θ θ

4 4 4 4 3 θ

Let XN be a neutrosophic N -structure over X, which is given as follows:

XN =
{

θ
(−0.8,0,−1) , 1

(−0.8,−0.2,−0.9) ,

2
(−0.2,−0.6,−0.5) , 3

(−0.7,−0.4,−0.7) , 4
(−0.4,−0.8,−0.3)

}
Then XN is a neutrosophic N -subalgebra of X, but it is not a neutrosophic N -ideal of X as

TN(2) = −0.2 > −0.7 =
∨{TN(2 ∗ 3), TN(3)}, IN(4) = −0.8 < −0.4 =

∧{IN(4 ∗ 3), IN(3)}, or
FN(4) = −0.3 > −0.7 =

∨{FN(4 ∗ 3), FN(3)}.

Theorem 7 is not valid in a BCI-algebra; that is, if X is a BCI-algebra, then there is a neutrosophic
N -ideal that is not a neutrosophic N -subalgebra, as seen in the following example.

Example 5. Consider the neutrosophic N -ideal XN of X in Example 3. If we take x := (θ, 0) and y := (θ, 1)
in Y× (N∪ {0}), then x ∗ y = (θ, 0) ∗ (θ, 1) = (θ,−1) /∈ Y× (N∪ {0}). Hence

TN(x ∗ y) = 0 > α =
∨
{TN(x), TN(y)}

IN(x ∗ y) = β < 0 =
∧
{IN(x), IN(y)} or

FN(x ∗ y) = 0 > γ =
∨
{FN(x), FN(y)}

Therefore XN is not a neutrosophic N -subalgebra of X.
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For any elements ωt, ωi, ω f ∈ X, we consider sets:

Xωt
N := {x ∈ X | TN(x) ≤ TN(ωt)}

Xωi
N := {x ∈ X | IN(x) ≥ IN(ωi)}

X
ω f
N :=

{
x ∈ X | FN(x) ≤ FN(ω f )

}
Clearly, ωt ∈ Xωt

N , ωi ∈ Xωi
N and ω f ∈ X

ω f
N .

Theorem 8. Let ωt, ωi and ω f be any elements of X. If XN is a neutrosophic N -ideal of X, then Xωt
N , Xωi

N

and X
ω f
N are ideals of X.

Proof. Clearly, θ ∈ Xωt
N , θ ∈ Xωi

N and θ ∈ X
ω f
N . Let x, y ∈ X be such that x ∗ y ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N and

y ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N . Then

TN(x ∗ y) ≤ TN(ωt), TN(y) ≤ TN(ωt)

IN(x ∗ y) ≥ IN(ωi), IN(y) ≥ IN(ωi)

FN(x ∗ y) ≤ FN(ω f ), FN(y) ≤ FN(ω f )

It follows from Equation (6) that

TN(x) ≤
∨
{TN(x ∗ y), TN(y)} ≤ TN(ωt)

IN(x) ≥
∧
{IN(x ∗ y), IN(y)} ≥ IN(ωi)

FN(x) ≤
∨
{FN(x ∗ y), FN(y)} ≤ FN(ω f )

Hence x ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N , and therefore Xωt

N , Xωi
N and X

ω f
N are ideals of X.

Theorem 9. Let ωt, ωi, ω f ∈ X and let XN be a neutrosophic N -structure over X. Then

(1) If Xωt
N , Xωi

N and X
ω f
N are ideals of X, then the following assertion is valid:

(∀x, y, z ∈ X)

 TN(x) ≥ ∨{TN(y ∗ z), TN(z)} ⇒ TN(x) ≥ TN(y)

IN(x) ≤ ∧{IN(y ∗ z), IN(z)} ⇒ IN(x) ≤ IN(y)

FN(x) ≥ ∨{FN(y ∗ z), FN(z)} ⇒ FN(x) ≥ FN(y)

 (11)

(2) If XN satisfies Equation (11) and

(∀x ∈ X) (TN(θ) ≤ TN(x), IN(θ) ≥ IN(x), FN(θ) ≤ FN(x)) (12)

then Xωt
N , Xωi

N and X
ω f
N are ideals of X for all ωt ∈ Im(TN), ωi ∈ Im(IN) and ω f ∈ Im(FN).

Proof. (1) Assume that Xωt
N , Xωi

N and X
ω f
N are ideals of X for ωt, ωi, ω f ∈ X. Let x, y, z ∈ X be such

that TN(x) ≥ ∨{TN(y ∗ z), TN(z)}, IN(x) ≤ ∧{IN(y ∗ z), IN(z)} and FN(x) ≥ ∨{FN(y ∗ z), FN(z)}.
Then y ∗ z ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N and z ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N , where ωt = ωi = ω f = x. It follows

from (I2) that y ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N for ωt = ωi = ω f = x. Hence TN(y) ≤ TN(ωt) = TN(x),

IN(y) ≥ IN(ωi) = IN(x) and FN(y) ≤ FN(ω f ) = FN(x).
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(2) Let ωt ∈ Im(TN), ωi ∈ Im(IN) and ω f ∈ Im(FN) and suppose that XN satisfies Equations (11)

and (12). Clearly, θ ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N by Equation (12). Let x, y ∈ X be such that x ∗ y ∈ Xωt

N ∩ Xωi
N ∩

X
ω f
N and y ∈ Xωt

N ∩ Xωi
N ∩ X

ω f
N . Then

TN(x ∗ y) ≤ TN(ωt), TN(y) ≤ TN(ωt)

IN(x ∗ y) ≥ IN(ωi), IN(y) ≥ IN(ωi)

FN(x ∗ y) ≤ FN(ω f ), FN(y) ≤ FN(ω f )

which implies that
∨{TN(x ∗ y), TN(y)} ≤ TN(ωt),

∧{IN(x ∗ y), IN(y)} ≥ IN(ωi), and
∨{FN(x ∗

y), FN(y)} ≤ FN(ω f ). It follows from Equation (11) that TN(ωt) ≥ TN(x), IN(ωi) ≤ IN(x) and

FN(ω f ) ≥ FN(x). Thus, x ∈ Xωt
N ∩ Xωi

N ∩ X
ω f
N , and therefore Xωt

N , Xωi
N and X

ω f
N are ideals of X.

Definition 3. A neutrosophic N -ideal XN of X is said to be closed if it is a neutrosophic N -subalgebra of X.

Example 6. Consider a BCI-algebra X = {θ, 1, a, b, c} with the following Cayley table.

∗ θ 1 a b c
θ θ θ a b c
1 1 θ a b c
a a a θ c b
b b b c θ a
c c c b a θ

Let XN be a neutrosophic N -structure over X which is given as follows:

XN =
{

θ
(−0.9,−0.3,−0.8) , 1

(−0.7,−0.4,−0.7) , a
(−0.6,−0.8,−0.3) ,

b
(−0.2,−0.6,−0.3) , c

(−0.2,−0.8,−0.5)

}
Then XN is a closed neutrosophic N -ideal of X.

Theorem 10. Let X be a BCI-algebra, For any α1, α2, γ1, γ2 ∈ [−1, 0) and β1, β2 ∈ (−1, 0] with α1 < α2,
γ1 < γ2 and β1 > β2, let XN := X

(TN ,IN ,FN)
be a neutrosophic N -structure over X given as follows:

TN : X → [−1, 0], x 7→
{

α1 if x ∈ X+

α2 otherwise

IN : X → [−1, 0], x 7→
{

β1 if x ∈ X+

β2 otherwise

FN : X → [−1, 0], x 7→
{

γ1 if x ∈ X+

γ2 otherwise

where X+ = {x ∈ X | θ � x}. Then XN is a closed neutrosophic N -ideal of X.

Proof. Because θ ∈ X+, we have TN(θ) = α1 ≤ TN(x), IN(θ) = β1 ≥ IN(x) and FN(θ) = γ1 ≤ FN(x)
for all x ∈ X. Let x, y ∈ X. If x ∈ X+, then

TN(x) = α1 ≤
∨
{TN(x ∗ y), TN(y)}

IN(x) = β1 ≥
∧
{IN(x ∗ y), IN(y)}

FN(x) = γ1 ≤
∨
{FN(x ∗ y), FN(y)}
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Suppose that x /∈ X+. If x ∗ y ∈ X+ then y /∈ X+, and if y ∈ X+ then x ∗ y /∈ X+. In either case,
we have

TN(x) = α2 =
∨
{TN(x ∗ y), TN(y)}

IN(x) = β2 =
∧
{IN(x ∗ y), IN(y)}

FN(x) = γ2 =
∨
{FN(x ∗ y), FN(y)}

For any x, y ∈ X, if any one of x and y does not belong to X+, then

TN(x ∗ y) ≤ α2 =
∨
{TN(x), TN(y)}

IN(x ∗ y) ≥ β2 =
∧
{IN(x), IN(y)}

FN(x ∗ y) ≤ γ2 =
∨
{FN(x), FN(y)}

If x, y ∈ X+, then x ∗ y ∈ X+. Hence

TN(x ∗ y) = α1 =
∨
{TN(x), TN(y)}

IN(x ∗ y) = β1 =
∧
{IN(x), IN(y)}

FN(x ∗ y) = γ1 =
∨
{FN(x), FN(y)}

Therefore XN is a closed neutrosophic N -ideal of X.

Proposition 6. Every closed neutrosophic N -ideal XN of a BCI-algebra X satisfies the following condition:

(∀x ∈ X) (TN(θ ∗ x) ≤ TN(x), IN(θ ∗ x) ≥ IN(x), FN(θ ∗ x) ≤ FN(x)) (13)

Proof. Straightforward.

We provide conditions for a neutrosophic N -ideal to be closed.

Theorem 11. Let X be a BCI-algebra. If XN is a neutrosophic N -ideal of X that satisfies the condition of
Equation (13), then XN is a neutrosophic N -subalgebra and hence is a closed neutrosophic N -ideal of X.

Proof. Note that (x ∗ y) ∗ x � θ ∗ y for all x, y ∈ X. Using Equations (10) and (13), we have

TN(x ∗ y) ≤
∨
{TN(x), TN(θ ∗ y)} ≤

∨
{TN(x), TN(y)}

IN(x ∗ y) ≥
∧
{IN(x), IN(θ ∗ y)} ≥

∧
{IN(x), IN(y)}

FN(x ∗ y) ≤
∨
{FN(x), FN(θ ∗ y)} ≤

∨
{FN(x), FN(y)}

Hence XN is a neutrosophicN -subalgebra and is therefore a closed neutrosophicN -ideal of X.

Author Contributions: In this paper, Y. B. Jun conceived and designed the main idea and wrote the paper,
H. Bordbar performed the idea, checking contents and finding examples, F. Smarandache analyzed the data and
checking language.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Imai,Y.; Iséki, K. On axiom systems of propositional calculi. Proc. Jpn. Acad. 1966, 42, 19–21.
2. Iséki, K. An algebra related with a propositional calculus. Proc. Jpn. Acad. 1966, 42, 26–29.
3. Jun, Y.B.; Lee, K.J.; Song, S.Z. N -ideals of BCK/BCI-algebras. J. Chungcheong Math. Soc. 2009, 22, 417–437.
4. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.



Information 2017, 8, 128 12 of 12

5. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96.
6. Huang, Y.S. BCI-Algebra; Science Press: Beijing, China, 2006.
7. Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoon Sa Co.: Seoul, Korea, 1994.
8. Khan, M.; Amis, S.; Smarandache, F.; Jun, Y.B. Neutrosophic N -structures and their applications in

semigroups. Ann. Fuzzy Math. Inform. submitted, 2017.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


  information

Article

TODIM Method for Single-Valued Neutrosophic
Multiple Attribute Decision Making

Dong-Sheng Xu 1, Cun Wei 1,* and Gui-Wu Wei 2,* ID

1 School of Science, Southwest Petroleum University, Chengdu 610500, China; xudongsheng1976@163.com
2 School of Business, Sichuan Normal University, Chengdu 610101, China
* Correspondence: weicun1990@163.com (C.W.); weiguiwu1973@sicnu.edu.cn (G.-W.W.)

Received: 20 September 2017; Accepted: 11 October 2017; Published: 16 October 2017

Abstract: Recently, the TODIM has been used to solve multiple attribute decision making (MADM)
problems. The single-valued neutrosophic sets (SVNSs) are useful tools to depict the uncertainty of
the MADM. In this paper, we will extend the TODIM method to the MADM with the single-valued
neutrosophic numbers (SVNNs). Firstly, the definition, comparison, and distance of SVNNs are
briefly presented, and the steps of the classical TODIM method for MADM problems are introduced.
Then, the extended classical TODIM method is proposed to deal with MADM problems with the
SVNNs, and its significant characteristic is that it can fully consider the decision makers’ bounded
rationality which is a real action in decision making. Furthermore, we extend the proposed model to
interval neutrosophic sets (INSs). Finally, a numerical example is proposed.

Keywords: multiple attribute decision making (MADM); single-valued neutrosophic numbers;
interval neutrosophic numbers; TODIM method; prospect theory

1. Introduction

Multiple attribute decision making (MADM) is a hot research area of the decision theory domain,
which has had wide applications in many fields, and attracted increasing attention [1,2]. Due to the
fuzziness and uncertainty of the alternatives in different attributes, attribute values in decision making
problems are not always represented as real numbers, and they can be described as fuzzy numbers
in more suitable occasions, such as interval-valued numbers [3,4], triangular fuzzy variables [5–8],
linguistic variables [9–13] or uncertain linguistic variables [14–21], intuitionistic fuzzy numbers
(IFSs) [22–27] or interval-valued intuitionistic fuzzy numbers (IVIFSs) [28–31], and SVNSs [32] or
INSs [33]. Since Fuzzy set (FS), which is a very useful tool to process fuzzy information, was
firstly proposed by Zadeh [34], it has been regarded as an useful tool to solve MADM [35,36],
fuzzy logic [37], and patterns recognition [38]. Atanassov [22] introduced IFSs with the membership
degree and non-membership degree, which were extended to IVIFSs [28]. Smarandache [39,40]
proposed a neutrosophic set (NS) with truth-membership function, indeterminacy-membership
function, and falsity-membership function. Furthermore, the concepts of a SVNS [32] and an INS [33]
were presented for actual applications. Ye [41] proposed a simplified neutrosophic set (SNS), including
the SVNS and INS. Recently, SNSs (INSs, and SVNSs) have been utilized to solve many MADM
problems [42–67].

In order to depict the increasing complexity in the actual world, the DMs’ risk attitudes
should be taken into consideration to deal with MADM [68–70]. Based on the prospect theory,
Gomes and Lima [71] established TODIM (an acronym in Portuguese for Interactive Multi-Criteria
Decision Making) method to solve the MADM problems with the DMs’ psychological behaviors
are considered. Some scholars have paid attention to depict the DMs’ attitudinal characters in the
MADM [72–74]. Also, some scholars proposed fuzzy TODIM models [75,76], intuitionistic fuzzy
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TODIM models [77,78], the Pythagorean fuzzy TODIM approach [68], the multi-hesitant fuzzy
linguistic TODIM approach [79,80], the interval type-2 fuzzy TODIM model [81], the intuitionistic
linguistic TODIM method [82], and the 2-dimension uncertain linguistic TODIM method [83]. However,
there is no scholar to investigate the TODIM model with SVNNS. Therefore, it is very necessary to pay
abundant attention to this novel and worthy issue. The aim of this paper is to extend the TODIM idea
to solve the MADM with the SVNNs, to fill up this vacancy. In Section 2, we give the basic concepts of
SVNSs and the classical TODIM method for MADM problems. In Section 3, we propose the TODIM
method for SVN MADM problems. In Section 4, we extend the proposed SVN TODIM method to
INNs. In Section 5, an illustrative example is pointed out and some comparative analysis is conducted.
We give a conclusion in Section 6.

2. Preliminaries

Some basic concepts and definitions of NSs and SVNSs are introduced.

2.1. NSs and SVNSs

Definition 1 [39,40]. Let X be a space of points (objects) with a generic element in fix set X, denoted
by x. NSs A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership
IA(x) and a falsity-membership function FA(x), where TA(x) : X → ]−0, 1+[, IA(x) : X → ]−0, 1+

[ and FA(x) : X → ]−0, 1+[ and 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.
The NSs was difficult to apply to real applications. Wang [32] develop the SNSs.

Definition 2 [32]. Let X be a space of points (objects); a SVNSs A in X is characterized as the following:

A = {(x, TA(x), IA(x), FA(x))|x ∈ X } (1)

where the truth-membership function TA(x), indeterminacy-membership IA(x) and falsity-membership function
FA(x), TA(x) : X → [0, 1], IA(x) : X → [0, 1] and FA(x) : X → [0, 1] , with the condition 0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3.

For convenience, a SVNN can be expressed to be A = (TA, IA, FA), TA ∈ [0, 1], IA ∈ [0, 1], FA ∈ [0, 1],
and 0 ≤ TA + IA + FA ≤ 3.

Definition 3 [50]. Let A = (TA, IA, FA) be a SVNN, a score function S(A) is defined:

S(A) =
(2 + TA − IA − FA)

3
, S(A) ∈ [0, 1]. (2)

Definition 4 [50]. Let A = (TA, IA, FA) be a SVNN, an accuracy function H(A) of a SVNN is defined:

H(A) = TA − FA, H(A) ∈ [−1, 1]. (3)

to evaluate the degree of accuracy of the SVNN A = (TA, IA, FA), where H(A) ∈ [−1, 1] . The larger the value
of H(A) is, the higher the degree of accuracy of the SVNN A.

Zhang et al. [50] gave an order relation between two SVNNs, which is defined as follows:

Definition 5 [50]. Let A = (TA, IA, FA) and B = (TB, IB, FB) be two SVNNs, if S(A) < S(B), then A < B;
if S(A) = S(B), then

(1) if H(A) = H(B), then A = B;
(2) if H(A) < H(B), then A < B.
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Definition 6 [32]. Let A and B be two SVNNs, the basic operations of SVNNs are:

(1) A⊕ B = (TA + TB − TATB, IA IB, FAFB);
(2) A⊗ B = (TATB, IA + IB − IA IB, FA + FB − FAFB);

(3) λA =
(

1− (1− TA)
λ, (IA)

λ, (FA)
λ
)

, λ > 0;

(4) (A)λ =
(
(TA)

λ, (IA)
λ, 1− (1− FA)

λ
)

, λ > 0.

Definition 7 [42]. Let A and B be two SVNNs, then the normalized Hamming distance between A and B is:

d(A, B) =
1
3
(|TA − TB|+ |IA − IB|+ |FA − FB|) (4)

2.2. The TODIM Approach

The TODIM approach [71], developed to consider the DM’s psychological behavior, can effectively
solve the MADM problems. Based on the prospect theory, this approach depicts the dominance of
each alternative over others by constructing a function of multi-attribute values [69].

Let G = {G1, G2, · · · , Gn} be the attributes, w = (w1, w2, · · · , wn) be the weight of Gj, 0 ≤ wj ≤ 1,

and
n
∑

j=1
wj = 1. A = {A1, A2, · · · , Am} are alternatives. Let A =

(
aij
)

m×n be a decision matrix,

where aij is given for the alternative Ai under the Gj, i = 1, 2, · · · , m, and j = 1, 2, · · · , n. We set
wjr = wj/wr(j, r = 1, 2, · · · , n) are relative weight of Gj to Gr, and wr = max

{
wj|j = 1, 2, · · · , n

}
,

and 0 ≤ wjr ≤ 1.
Then the traditional TODIM model concludes the following computing steps:

Step 1. Normalizing A =
(
aij
)

m×n into B =
(
bij
)

m×n.

Step 2. Computing the dominance degree of Ai over every alternative At under attribute Gj:

δ(Ai, At) =
n

∑
j=1

φj(Ai, At), (i, t = 1, 2, · · · , m) (5)

where

φj(Ai, At) =



√
wjr
(
bij − btj

)
/

n
∑

j=1
wjr, i f bij − btj > 0

0, i f bij − btj = 0

− 1
θ

√√√√( n
∑

j=1
wjr

)(
btj − bij

)
/wjr, i f bij − btj < 0

(6)

and the parameter θ shows the attenuation factor of the losses. If bij − btj > 0, then φj(Ai, At)

represents a gain; if bij − btj < 0, then φj(Ai, At) signifies a loss.

Step 3. Deriving the overall dominance value of Ai by the Equation (7):

φ(Ai) =

m
∑

t=1
δ(Ai, At)−min

i

{
m
∑

t=1
δ(Ai, At)

}
max

i

{
m
∑

t=1
δ(Ai, At)

}
−min

i

{
m
∑

t=1
δ(Ai, At)

} , i = 1, 2, · · · , m. (7)

Step 4. Ranking all alternatives and selecting the most desirable alternative in accordance with
φ(Ai). The alternative with minimum value is the worst. Inversely, the maximum value is
the best one.
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3. TODIM Method for SVN MADM Problems

Let A = {A1, A2, · · · , Am} be alternatives, and G = {G1, G2, · · · , Gn} be attributes. Let w =

(w1, w2, · · · , wn) be the weight of attributes, where wj ∈ [0, 1],
n
∑

j=1
wj = 1. Suppose that R =

(
rij
)

m×n =(
Tij, Iij, Fij

)
m×n be a SVN matrix, where r̃ij =

(
Tij, Iij, Fij

)
, which is an attribute value, given by an

expert, for the alternative Ai under Gj, Tij ∈ [0, 1], Iij ∈ [0, 1], Fij ∈ [0, 1], 0 ≤ Tij + Iij + Fij ≤ 3,
i = 1, 2, · · · , m, j = 1, 2, · · · , n.

To solve the MADM problem with single-valued neutrosophic information, we try to present
a single-valued neutrosophic TODIM model based on the prospect theory and can depict the DMs’
behaviors under risk.

Firstly, we calculate the relative weight of each attribute Gj as:

wjr = wj/wr, j, r = 1, 2, · · · , n. (8)

where wj is the weight of the attribute of Gj, wr = max
{

wj|j = 1, 2, · · · , n
}

, and 0 ≤ wjr ≤ 1.
Based on the Equation (8), we can derive the dominance degree of Ai over each alternative At

with respect to the attribute Gj:

φj(Ai, At) =



√
wjrd

(
rij, rtj

)
/

n
∑

j=1
wjr, i f rij > rtj

0, i f rij = rtj

− 1
θ

√√√√( n
∑

j=1
wjr

)
d
(
rij, rtj

)
/wjr, i f rij < rtj

(9)

d
(
rij, rtj

)
=

1
3
(∣∣Tij − Ttj

∣∣+ ∣∣Iij − Itj
∣∣+ ∣∣Fij − Ftj

∣∣). (10)

where the parameter θ shows the attenuation factor of the losses, and d
(
rij, rtj

)
is to measure the

distances between the SVNNs rij and rtj by Definition 7. If rij > rtj, then φj(Ai, At) represents a gain;
if rij < rtj, then φj(Ai, At) signifies a loss.

For indicating functions φj(Ai, At) clearly, a dominance degree matrix φj =
[
φj(Ai, At)

]
m×m

under Gj is expressed as:

A1 A2 · · · Am

φj =
[
φj(Ai, At)

]
m×m =

A1

A2
...

Am


o φj(A1, A2) · · · φj(A1, Am)

φj(A2, A1) 0 · · · φj(A2, Am)
...

... · · ·
...

φj(Am, A1) φj(Am, A2) · · · 0

, j = 1, 2, · · · , n
.

(11)
On the basis of Equation (11), the overall dominance degree δ(Ai, At) of the Ai over each At can

be calculated:

δ(Ai, At) =
n

∑
j=1

φj(Ai, At), (i, t = 1, 2, · · · , m). (12)

Thus, the overall dominance degree matrix δ = [δ(Ai, At)]m×m can be derived by Equation (12):

A1 A2 · · · Am

δ = [δ(Ai, At)]m×m =

A1

A2
...

Am


o δ(A1, A2) · · · δ(A1, Am)

δ(A2, A1) 0 · · · δ(A2, Am)
...

... · · ·
...

δ(Am, A1) δ(Am, A2) · · · 0

 . (13)
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Then, the overall value of each Ai can be calculated Equation (14):

δ(Ai) =

m
∑

t=1
δ(Ai, At)−min

i

{
m
∑

t=1
δ(Ai, At)

}
max

i

{
m
∑

t=1
δ(Ai, At)

}
−min

i

{
m
∑

t=1
δ(Ai, At)

} , i = 1, 2, · · · , m. (14)

Also the greater the overall value δ(Ai), the better the alternative Ai.
In general, single-valued neutrosophic TODIM model includes the computing steps:
(Procedure one)

Step 1. Identifying the single-valued neutrosophic matrix R =
(
rij
)

m×n =
(
Tij, Iij, Fij

)
m×n in the

MADM, where rij is a SVNN.

Step 2. Calculating the relative weight of Gj by using Equation (8).

Step 3. Calculating the dominance degree φj(Ai, At) of Ai over each alternative At under attribute
Gj by Equation (9).

Step 4. Calculating the overall dominance degree δ(Ai, At) of Ai over each alternative At by using
Equation (12).

Step 5. Deriving the overall value δ(Ai) of each alternative Ai using Equation (14).
Step 6. Determining the order of the alternatives in accordance with δ(Ai)(i = 1, 2, · · · , m).

4. TODIM Method for Interval Neutrosophic MADM Problems

Furthermore, Wang et al. [33] defined INSs.

Definition 8 [33]. Let X be a space of points (objects) with a generic element in fix set X, an INSs Ã in X is
characterized as follows:

Ã =
{(

x, TÃ(x), IÃ(x), FÃ(x)
)
|x ∈ X

}
(15)

where truth-membership function TÃ(x), indeterminacy-membership IÃ(x) and falsity-membership function
FÃ(x) are interval values, TA(x) ⊆ [0, 1], IA(x) ⊆ [0, 1] and FA(x) ⊆ [0, 1], and 0 ≤ sup

(
TÃ(x)

)
+

sup
(

IÃ(x)
)
+ sup

(
FÃ(x)

)
≤ 3.

An interval neutrosophic number (INN) can be expressed as Ã =
(
TÃ, IÃ, FÃ

)
=([

TL
Ã

, TR
Ã

]
,
[

IL
Ã

, IR
Ã

]
,
[

FL
Ã

, FR
Ã

])
, where

[
TL

Ã
, TR

Ã

]
⊆ [0, 1],

[
IL
Ã

, IR
Ã

]
⊆ [0, 1],

[
FL

Ã
, FR

Ã

]
⊆ [0, 1],

and 0 ≤ TR
Ã
+ IR

Ã
+ FR

Ã
≤ 3.

Definition 9 [84]. Let Ã =
([

TL
Ã

, TR
Ã

]
,
[

IL
Ã

, IR
Ã

]
,
[

FL
Ã

, FR
Ã

])
be an INN, a score function S of an INN can be

represented as follows:

S
(

Ã
)
=

(
2 + TL

Ã
− IL

Ã
− FL

Ã

)
+
(

2 + TR
Ã
− IR

Ã
− FR

Ã

)
6

, S
(

Ã
)
∈ [0, 1]. (16)

Definition 10 [84]. Let Ã =
([

TL
Ã

, TR
Ã

]
,
[

IL
Ã

, IR
Ã

]
,
[

FL
Ã

, FR
Ã

])
be an INN, an accuracy function H

(
Ã
)

is defined:

H
(

Ã
)
=

(
TL

Ã
+ TR

Ã

)
−
(

FL
Ã
+ FR

Ã

)
2

, H
(

Ã
)
∈ [−1, 1]. (17)

Tang [84] defined an order relation between two INNs.



Information 2017, 8, 125 6 of 18

Definition 11 [84]. Let Ã =
([

TL
Ã

, TR
Ã

]
,
[

IL
Ã

, IR
Ã

]
,
[

FL
Ã

, FR
Ã

])
and B̃ =

([
TL

B̃
, TR

B̃

]
,
[

IL
B̃

, IR
B̃

]
,
[

FL
B̃

, FR
B̃

])
be two INNs, S

(
Ã
)
=

(
2+TL

Ã
−IL

Ã
−FL

Ã

)
+
(

2+TR
Ã
−IR

Ã
−FR

Ã

)
6 and S

(
B̃
)
=

(
2+TL

B̃
−IL

B̃
−FL

B̃

)
+
(

2+TR
B̃
−IR

B̃
−FR

B̃

)
6 be the

scores, and H
(

Ã
)
=

(
TL

Ã
+TR

Ã

)
−
(

FL
Ã
+FR

Ã

)
2 and H

(
B̃
)
=

(
TL

B̃
+TR

B̃

)
−
(

FL
B̃
+FR

B̃

)
2 be the accuracy function, then if

S
(

Ã
)
< S

(
B̃
)

, then Ã < B̃ ; if S
(

Ã
)
= S

(
B̃
)

, then

(1) if H
(

Ã
)
= H

(
B̃
)

, then Ã = B̃ ;

(2) if H
(

Ã
)
< H

(
B̃
)

, Ã < B̃.

Definition 12 [33,61]. Let Ã1 =
([

TL
1 , TR

1
]
,
[
IL
1 , IR

1
]
,
[
FL

1 , FR
1
])

and Ã2 =
([

TL
2 , TR

2
]
,
[
IL
2 , IR

2
]
,
[
FL

2 , FR
2
])

be two INNs, and some basic operations on them are defined as follows:

(1) Ã1 ⊕ Ã2 =
([

TL
1 + TL

1 − TL
1 TL

1 , TR
1 + TR

1 − TR
1 TR

1
]
,
[
IL
1 IL

2 , IR
1 IR

2
]
,
[
FL

1 FL
2 , FR

1 FR
2
])

;

(2) Ã1 ⊗ Ã2 =

( [
TL

1 TL
2 , TR

1 TR
2
]
,
[
IL
1 + IL

1 − IL
1 IL

1 , IR
1 + IR

1 − IR
1 IR

1
]
,[

FL
1 + FL

1 − FL
1 FL

1 , FR
1 + FR

1 − FR
1 FR

1
] )

;

(3) λÃ1 =
([

1−
(
1− TL

1
)λ, 1−

(
1− TR

1
)λ
]
,
[(

IL
1
)λ,
(

IR
1
)λ
]
,
[(

FL
1
)λ,
(

FR
1
)λ
])

, λ > 0;

(4)
(

Ã1

)λ
=
([(

TL
1
)λ,
(
TR

1
)λ
]
,
[(

IL
1
)λ,
(

IR
1
)λ
]
,
[
1−

(
1− FL

1
)λ, 1−

(
1− FR

1
)λ
])

, λ > 0.

Definition 13 [84]. Let Ã1 =
([

TL
1 , TR

1
]
,
[
IL
1 , IR

1
]
,
[
FL

1 , FR
1
])

and Ã2 =
([

TL
2 , TR

2
]
,
[
IL
2 , IR

2
]
,
[
FL

2 , FR
2
])

be two INNs, then the normalized Hamming distance between Ã1 =
([

TL
1 , TR

1
]
,
[
IL
1 , IR

1
]
,
[
FL

1 , FR
1
])

and
Ã2 =

([
TL

2 , TR
2
]
,
[
IL
2 , IR

2
]
,
[
FL

2 , FR
2
])

is defined as follows:

d
(

Ã1, Ã2

)
=

1
6

(∣∣∣TL
1 − TL

2

∣∣∣+ ∣∣∣TR
1 − TR

2

∣∣∣+ ∣∣∣IL
1 − IL

2

∣∣∣+ ∣∣∣IR
1 − IR

2

∣∣∣+ ∣∣∣FL
1 − FL

2

∣∣∣+ ∣∣∣FR
1 − FR

2

∣∣∣) (18)

Let A, G and w be presented as in Section 3. Suppose that R̃ =
(
r̃ij
)

m×n =([
TL

ij , TR
ij

]
,
[

IL
ij , IR

ij

]
,
[

FL
ij , FR

ij

])
m×n

is the interval neutrosophic decision matrix, where[
TL

ij , TR
ij

]
,
[

IL
ij , IR

ij

]
,
[

FL
ij , FR

ij

]
is truth-membership function, indeterminacy-membership function and

falsity-membership function,
[

TL
ij , TR

ij

]
⊆ [0, 1],

[
IL
ij , IR

ij

]
⊆ [0, 1],

[
FL

ij , FR
ij

]
⊆ [0, 1], 0 ≤ TR

ij + IR
ij + FR

ij ≤ 3,
i = 1, 2, · · · , m, j = 1, 2, · · · , n.

To cope with the MADM with INNs, we develop interval neutrosophic TODIM model.
Firstly, we calculate the relative weight of each attribute Gj as:

wjr = wj/wr, j, r = 1, 2, · · · , n (19)

where wj is the weight of the attribute of Gj, wr = max
{

wj|j = 1, 2, · · · , n
}

, and 0 ≤ wjr ≤ 1.
Based on the Equation (20), we can derive the dominance degree of Ai over each alternative At

with respect to the attribute Gj:

φj(Ai, At) =



√
wjrd

(
r̃ij, r̃tj

)
/

n
∑

j=1
wjr, i f r̃ij > r̃tj

0, i f r̃ij = r̃tj

− 1
θ

√√√√( n
∑

j=1
wjr

)
d
(
r̃ij, r̃tj

)
/wjr, i f r̃ij < r̃tj

(20)
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d
(
r̃ij, r̃tj

)
=

1
6

(∣∣∣TL
ij − TL

tj

∣∣∣+ ∣∣∣TR
ij − TR

tj

∣∣∣+ ∣∣∣IL
ij − IL

tj

∣∣∣+ ∣∣∣IR
ij − IR

tj

∣∣∣+ ∣∣∣FL
ij − FL

tj

∣∣∣+ ∣∣∣FR
ij − FR

tj

∣∣∣). (21)

where the parameter θ shows the attenuation factor of the losses, and d
(
r̃ij, r̃tj

)
is to measure the

distances between the INNs r̃ij and r̃tj by Definition 13. If r̃ij > r̃tj, then φj(Ai, At) represents a gain; if
r̃ij < r̃tj, then φj(Ai, At) signifies a loss.

For indicating functions φj(Ai, At) clearly, a dominance degree matrix φj =
[
φj(Ai, At)

]
m×m

under Gj is expressed as:

A1 A2 · · · Am

φj =
[
φj(Ai, At)

]
m×m =

A1

A2
...

Am


o φj(A1, A2) · · · φj(A1, Am)

φj(A2, A1) 0 · · · φj(A2, Am)
...

... · · ·
...

φj(Am, A1) φj(Am, A2) · · · 0

 , j = 1, 2, · · · , n

(22)
On the basis of Equation (22), the overall dominance degree δ(Ai, At) of the Ai over each At can

be calculated:

δ(Ai, At) =
n

∑
j=1

φj(Ai, At), (i, t = 1, 2, · · · , m) (23)

Thus, the overall dominance degree matrix δ = [δ(Ai, At)]m×m can be derived by Equation (23):

A1 A2 · · · Am

δ = [δ(Ai, At)]m×m =

A1

A2
...

Am


o δ(A1, A2) · · · δ(A1, Am)

δ(A2, A1) 0 · · · δ(A2, Am)
...

... · · ·
...

δ(Am, A1) δ(Am, A2) · · · 0

 (24)

Then, the overall value of each Ai can be calculated Equation (25):

δ(Ai) =

m
∑

t=1
δ(Ai, At)−min

i

{
m
∑

t=1
δ(Ai, At)

}
max

i

{
m
∑

t=1
δ(Ai, At)

}
−min

i

{
m
∑

t=1
δ(Ai, At)

} , i = 1, 2, · · · , m. (25)

Also the greater the overall value δ(Ai), the better the alternative Ai.
In general, interval neutrosophic TODIM model includes the computing steps:
(Procedure two)

Step 1. Identifying the interval neutrosophic matrix R̃ =
(̃
rij
)

m×n =
([

TL
ij , TR

ij

]
,
[

IL
ij , IR

ij

]
,
[

FL
ij , FR

ij

])
m×n

in the MADM, where r̃ij is an INN.

Step 2. Calculating the relative weight of Gj by using Equation (19).

Step 3. Calculating the dominance degree φj(Ai, At) of Ai over each alternative At under attribute
Gj by Equation (20).

Step 4. Calculating the overall dominance degree δ(Ai, At) of Ai over each alternative At by using
Equation (23).

Step 5. Deriving the overall value δ(Ai) of each alternative Ai using Equation (25).
Step 6. Determining the order of the alternatives in accordance with δ(Ai)(i = 1, 2, · · · , m).
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5. Numerical Example and Comparative Analysis

5.1. Numerical Example 1

In this part, a numerical example is given to show potential evaluation of emerging
technology commercialization with SVNNs. Five possible emerging technology enterprises (ETEs)
Ai(i = 1, 2, 3, 4, 5) are to be evaluated and selected. Four attributes are selected to evaluate the
five possible ETEs: 1© G1 is the employment creation; 2© G2 is the development of science and
technology; 3© G3 is the technical advancement; and 4© G4 is the industrialization infrastructure. The
five ETEs Ai(i = 1, 2, 3, 4, 5) are to be evaluated by using the SVNNs under the above four attributes
(whose weighting vector ω = (0.2, 0.1, 0.3, 0.4)T), as listed in the following matrix.

G1 G2 G3 G4

R̃ =

A1

A2

A3

A4

A5


(0.5, 0.8, 0.1) (0.6, 0.3, 0.3) (0.3, 0.6, 0.1) (0.5, 0.7, 0.2)
(0.7, 0.2, 0.1) (0.7, 0.2, 0.2) (0.7, 0.2, 0.4) (0.8, 0.2, 0.1)
(0.6, 0.7, 0.2) (0.5, 0.7, 0.3) (0.5, 0.3, 0.1) (0.6, 0.3, 0.2)
(0.8, 0.1, 0.3) (0.6, 0.3, 0.4) (0.3, 0.4, 0.2) (0.5, 0.6, 0.1)
(0.6, 0.4, 0.4) (0.4, 0.8, 0.1) (0.7, 0.6, 0.1) (0.5, 0.8, 0.2)


Then, we use Procedure One to select the best ETE.
Firstly, since w4 = max{w1, w2, w3, w4}, then G4 is the reference attribute and the reference

attribute’s weight is wr = 0.4. Then, we can calculate the relative weights of the attributes
Gj(j = 1, 2, 3, 4) as w1r = 0.50, w2r = 0.25, w3r = 0.75 and w4r = 1.00. Let θ = 2.5, then the dominance
degree matrix φj(Ai, At)(j = 1, 2, 3, 4) with respect to Gj can be calculated:

A1 A2 A3 A4 A5

φ1 =

A1

A2

A3

A4

A5


0.0000 −0.4619 −0.2828 −0.5657 −0.4619
0.2309 0.0000 0.2160 0.1633 0.2000
0.1414 −0.4320 0.0000 −0.4899 −0.3651
0.2828 −0.3266 0.2449 0.0000 0.2000
0.2309 −0.4000 0.1826 −0.4000 0.0000


A1 A2 A3 A4 A5

φ2 =

A1

A2

A3

A4

A5


0.0000 −0.4000 0.1291 0.0577 0.1732
0.1000 0.0000 0.1633 0.1155 0.1826
−0.5164 −0.6532 0.0000 −0.5657 −0.4619
−0.2309 −0.4619 0.1414 0.0000 0.1826
−0.6928 −0.7303 0.1155 −0.7303 0.0000


A1 A2 A3 A4 A5

φ3 =

A1

A2

A3

A4

A5


0.0000 −0.4422 −0.2981 −0.2309 −0.2667
0.3317 0.0000 −0.3266 0.2828 0.2646
0.2236 0.2449 0.0000 0.2000 0.2236
0.1732 −0.3771 −0.2667 0.0000 −0.3528
0.2000 −0.3528 −0.2981 0.2646 0.0000


A1 A2 A3 A4 A5

φ4 =

A1

A2

A3

A4

A5


0.0000 −0.3464 −0.2582 −0.1633 0.1155
0.3464 0.0000 0.2309 0.3055 0.3651
0.2582 −0.2309 0.0000 0.2582 0.2828
0.1633 −0.3055 −0.2582 0.0000 0.2000
−0.1155 −0.3651 −0.2828 −0.2000 0.0000
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The overall dominance degree δ(Ai, At) of the candidate Ai over each candidate At can be derived
by Equation (13):

A1 A2 A3 A4 A5

δ =

A1

A2

A3

A4

A5


0.0000 −1.6505 −0.7100 −0.9022 −0.4399
1.0090 0.0000 0.2836 0.8671 1.01234
0.1068 −1.0712 0.0000 −0.5974 −0.3206
0.3884 −1.4711 −0.1386 0.0000 0.2298
−0.3774 −1.8482 −0.2828 −1.0657 0.0000


Then, we get the overall value δ(Ai)(i = 1, 2, 3, 4, 5) by using Equation (14):

δ(A1) = 0.0000, δ(A2) = 1.0000, δ(A3) = 0.2648
δ(A4) = 0.3944, δ(A5) = 0.0187

Finally, we get order of ETEs by δ(Ai)(i = 1, 2, 3, 4, 5): A2 � A4 � A3 � A5 � A1, and thus the
most desirable ETE is A2.

5.2. Comparative Analysis 1

In what follows, we compare our proposed method with other existing methods including the
SVNWA operator and SVNWG operator proposed by Sahin [85] as follows:

Definition 14 [85]. Let Aj =
(
Tj, Ij, Fj

)
(j = 1, 2, · · · , n) be a collection of SVNNs, w = (w1, w2, · · · , wn)

T

be the weight of Aj(j = 1, 2, · · · , n), and wj > 0,
n
∑

j=1
wj = 1 . Then

ri = (Ti, Ii, Fi)

= SVNWAw(ri1, ri2, · · · , rin) =
n
⊕

j=1

(
wjrij

)
=

(
1−

n
∏
j=1

(
1− Tij

)wj ,
n
∏
j=1

(
Iij
)wj ,

n
∏
j=1

(
Fij
)wj

) (26)

ri = (Ti, Ii, Fi)

= SVNWGω(ri1, ri2, · · · , rin) =
n
⊗

j=1

(
rij
)wj

=

(
n
∏
j=1

(
Tij
)wj , 1−

n
∏
j=1

(
1− Iij

)wj , 1−
n
∏
j=1

(
1− Fij

)wj

) (27)

By utilizing the R̃, as well as the SVNWA and SVNWG operators, the aggregating values are
derived in Table 1.

Table 1. The aggregating values of the emerging technology enterprises by the SVNWA
(SVNWG) operators.

SVNWA SVNWG

A1 (0.4591, 0.6307, 0.1473) (0.4369, 0.6718, 0.1627)
A2 (0.7449, 0.2000, 0.1625) (0.7384, 0.2000, 0.2124)
A3 (0.5627, 0.3868, 0.1692) (0.5578, 0.4571, 0.1822)
A4 (0.5497, 0.3464, 0.1762) (0.4799, 0.4381, 0.2067)
A5 (0.5822, 0.6389, 0.1741) (0.5610, 0.6933, 0.2083)
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According to the aggregating results in Table 1, the score functions are listed in Table 2.

Table 2. The score functions of the emerging technology enterprises.

SVNWA SVNWG

A1 0.5604 0.5341
A2 0.7942 0.7753
A3 0.6689 0.6398
A4 0.6757 0.6117
A5 0.5898 0.5531

According to the score functions shown in Table 2, the order of the emerging technology
enterprises are in Table 3.

Table 3. Order of the emerging technology enterprises.

Order

SVNWA A2 > A4 > A3 > A5 > A1
SVNWG A2 > A3 > A4 > A5 > A1

From the above analysis, it can be seen that two operators have the same best emerging technology
enterprise A2 and two methods’ ranking results are slightly different. However, the SVN TODIM
approach can reasonably depict the DMs’ psychological behaviors under risk, and thus, it may deal
with the above issue effectively. This verifies the method we proposed is reasonable and effective in
this paper.

5.3. Numerical Example 2

If the five possible emerging technology enterprises Ai(i = 1, 2, 3, 4, 5) are to be evaluated by
using the INNS under the above four attributes (whose weighting vector ω = (0.2, 0.1, 0.3, 0.4)T),
as listed in the matrix R̃, then:

R̃ =


([0.5, 0.6], [0.8, 0.9], [0.1, 0.2]) ([0.6, 0.7], [0.3, 0.4], [0.3, 0.4])
([0.7, 0.9], [0.2, 0.3], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2], [0.2, 0.3])
([0.6, 0.7], [0.7, 0.8], [0.2, 0.3]) ([0.5, 0.6], [0.7, 0.8], [0.3, 0.4])
([0.8, 0.9], [0.1, 0.2], [0.3, 0.4]) ([0.6, 0.7], [0.3, 0.4], [0.4, 0.5])
([0.6, 0.7], [0.4, 0.5], [0.4, 0.5]) ([0.4, 0.5], [0.8, 0.9], [0.1, 0.2])

([0.3, 0.4], [0.6, 0.7], [0.1, 0.2]) ([0.5, 0.6], [0.7, 0.8], [0.1, 0.2])
([0.7, 0.9], [0.2, 0.3], [0.4, 0.5]) ([0.8, 0.9], [0.2, 0.3], [0.1, 0.2])
([0.5, 0.6], [0.3, 0.4], [0.1, 0.2]) ([0.6, 0.7], [0.3, 0.4], [0.2, 0.3])
([0.3, 0.4], [0.4, 0.5], [0.2, 0.3]) ([0.5, 0.6], [0.6, 0.7], [0.1, 0.2])
([0.7, 0.8], [0.6, 0.7], [0.1, 0.2]) ([0.5, 0.6], [0.8, 0.9], [0.2, 0.3])


Then, we use Procedure Two to select the best ETE.
Firstly, since w4 = max{w1, w2, w3, w4}, then G4 is the reference attribute and the reference

attribute’s weight is wr = 0.4. Then, we can calculate the relative weights of the attributes
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Gj(j = 1, 2, 3, 4) as: w1r = 0.50, w2r = 0.25, w3r = 0.75 and w4r = 1.00. Let θ = 2.5, then the dominance
degree matrix φj(Ai, At)(j = 1, 2, 3, 4) with respect to Gj can be calculated:

A1 A2 A3 A4 A5

φ1 =

A1

A2

A3

A4

A5


0.0000 −0.4761 −0.2828 −0.5657 −0.4619
0.2380 0.0000 0.2236 0.1528 0.2082
0.1414 −0.4472 0.0000 −0.4899 −0.3651
0.2828 −0.3055 0.2449 0.0000 0.2000
0.2309 −0.4163 0.1826 −0.4000 0.0000


A1 A2 A3 A4 A5

φ2 =

A1

A2

A3

A4

A5


0.0000 −0.4619 0.1291 0.0577 0.1732
0.1155 0.0000 0.1732 0.1291 0.1915
−0.5164 −0.6928 0.0000 −0.5657 −0.4619
−0.2309 −0.5164 0.1414 0.0000 0.1826
−0.6928 −0.7659 0.1155 −0.7303 0.0000


A1 A2 A3 A4 A5

φ3 =

A1

A2

A3

A4

A5


0.0000 −0.4522 −0.2981 −0.2309 −0.2667
0.3391 0.0000 0.2550 0.2915 0.2739
0.2236 −0.3399 0.0000 0.2000 0.2236
0.1732 −0.3887 −0.2667 0.0000 −0.3528
0.2000 −0.3651 −0.2981 0.2646 0.0000


A1 A2 A3 A4 A5

φ4 =

A1

A2

A3

A4

A5


0.0000 −0.3266 −0.2828 −0.1155 0.1633
0.3266 0.0000 0.2309 0.3055 0.3651
0.2828 −0.2309 0.0000 0.2582 0.2828
0.1155 −0.3055 −0.2582 0.0000 0.2000
−0.1633 −0.3651 −0.2828 −0.2000 0.0000


The overall dominance degree δ(Ai, At) of the candidate Ai over each candidate At can be derived

by Equation (24):

A1 A2 A3 A4 A5

δ =

A1

A2

A3

A4

A5


0.0000 −1.7168 −0.7346 −0.7506 0.0698
1.0192 0.0000 0.3727 0.3513 0.8305
0.1314 −1.0310 0.0000 −0.4726 0.0445
0.3406 −1.5161 −0.1386 0.2000 0.0298
−0.4252 −1.9124 −0.8654 −0.6657 0.0000


Then, we get the overall value δ(Ai)(i = 1, 2, 3, 4, 5) by using Equation (25):

δ(A1) = 0.1143, δ(A2) = 1.0000, δ(A3) = 0.3944
δ(A4) = 0.4322, δ(A5) = 0.0000

Finally, we get order of ETEs by δ(Ai)(i = 1, 2, 3, 4, 5): A2 � A4 � A3 � A1 � A5, and thus the
most desirable ETE is A2.

5.4. Comparative Analysis 2

In what follows, we compare our proposed method with other existing methods including the
INWA operator and INWG operator proposed by Zhang et al. [50] as follows:
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Definition 15 [50]. Let Ãj =
([

TL
j , TR

j

]
,
[

IL
j , IR

j

]
,
[

FL
j , FR

j

])
(j = 1, 2, · · · , n) be a collection of INNs,

w = (w1, w2, · · · , wn)
T be the weight of Aj(j = 1, 2, · · · , n), and wj > 0,

n
∑

j=1
wj = 1 . Then

r̃i =
([

TL
i , TR

i
]
,
[
IL
i , IR

i
]
,
[
FL

i , FR
i
])

= INWAw(r̃i1, r̃i2, · · · , r̃in) =
n
⊕

j=1

(
wj r̃ij

)

=


[

1−
n
∏
j=1

(
1− TL

ij

)wj
, 1−

n
∏
j=1

(
1− TR

ij

)wj

]
,[

n
∏
j=1

(
IL
ij

)wj
,

n
∏
j=1

(
IR
ij

)wj

]
,

[
n
∏
j=1

(
FL

ij

)wj
,

n
∏
j=1

(
FR

ij

)wj

]


(28)

r̃i =
([

TL
i , TR

i
]
,
[
IL
i , IR

i
]
,
[
FL

i , FR
i
])

= INWGw(r̃i1, r̃i2, · · · , r̃in) =
n
⊗

j=1

(
r̃ij
)wj

=


[

n
∏
j=1

(
TL

ij

)wj
,

n
∏
j=1

(
TR

ij

)wj

]
,

[
1−

n
∏
j=1

(
1− IL

ij

)wj
, 1−

n
∏
j=1

(
1− IR

ij

)wj

]
,[

1−
n
∏
j=1

(
1− FL

ij

)wj
, 1−

n
∏
j=1

(
1− FR

ij

)wj

]


(29)

By utilizing the decision matrix R̃, and the INWA and INWG operators, the aggregating values
are in Table 4.

Table 4. The aggregating values of the emerging technology enterprises by the INWA and
INWG operators.

INWA

A1 ([0.4591, 0.5611], [0.6307, 0.7342], [0.1116, 0.2144])

A2 ([0.7449, 0.8928], [0.1866, 0.2881], [0.1625, 0.2742])

A3 ([0.5627, 0.6634], [0.3868, 0.4925], [0.1692, 0.2734])

A4 ([0.5497, 0.6674], [0.3464, 0.4657], [0.1762, 0.2844])

A5 ([0.5822, 0.6863], [0.6389, 0.7421], [0.1741, 0.2825])

INWG

A1 ([0.4369, 0.5395], [0.6718, 0.7805], [0.1223, 0.2227])
A2 ([0.7384, 0.8895], [0.1905, 0.2906], [0.2124, 0.3144])
A3 ([0.5578, 0.6581], [0.4571, 0.5685], [0.1822, 0.2825])
A4 ([0.4799, 0.5851], [0.4381, 0.5440], [0.2067, 0.3077])
A5 ([0.5610, 0.6624], [0.6933, 0.8082], [0.2083, 0.3097])

According to the aggregating values in Table 4, the score functions are in Table 5.

Table 5. The score functions of the emerging technology enterprises.

INWA INWG

A1 0.5549 0.5298
A2 0.7877 0.7700
A3 0.6507 0.6209
A4 0.6574 0.5948
A5 0.5718 0.5340
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According to the score functions shown in Table 5, the order of the emerging technology
enterprises are in Table 6.

Table 6. Order of the emerging technology enterprises.

Ordering

INWA A2 > A4 > A3 > A5 > A1
INWG A2 > A3 > A4 > A5 > A1

From the above analysis, it can be seen that two operators have the same best emerging
technology enterprise A2 and two methods’ ranking results are slightly different. However, the
interval neutrosophic TODIM approach can reasonably depict the DMs’ psychological behaviors under
risk, and thus, it may deal with the above issue effectively. This verifies the method we proposed is
reasonable and effective.

6. Conclusions

In this paper, we will extend the TODIM method to the MADM with the single-valued
neutrosophic numbers (SVNNs). Firstly, the definition, comparison and distance of SVNNs are
briefly presented, and the steps of the classical TODIM method for MADM problems are introduced.
Then, the extended classical TODIM method is proposed to deal with MADM problems with the
SVNNs, and its significant characteristic is that it can fully consider the decision makers’ bounded
rationality which is a real action in decision making. Furthermore, we extend the proposed
model to interval neutrosophic sets (INSs). Finally, a numerical example is proposed to verify the
developed approach.

In the future, the application of the proposed models and methods of SVNSs and INSs needs
to be explored in the decision making [86–99], risk analysis and many other uncertain and fuzzy
environment [100–112].
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Abstract: Visual object tracking is a critical task in computer vision. Challenging things always exist
when an object needs to be tracked. For instance, background clutter is one of the most challenging
problems. The mean-shift tracker is quite popular because of its efficiency and performance in a
range of conditions. However, the challenge of background clutter also disturbs its performance.
In this article, we propose a novel weighted histogram based on neutrosophic similarity score to
help the mean-shift tracker discriminate the target from the background. Neutrosophic set (NS) is a
new branch of philosophy for dealing with incomplete, indeterminate, and inconsistent information.
In this paper, we utilize the single valued neutrosophic set (SVNS), which is a subclass of NS to
improve the mean-shift tracker. First, two kinds of criteria are considered as the object feature
similarity and the background feature similarity, and each bin of the weight histogram is represented
in the SVNS domain via three membership functions T(Truth), I(indeterminacy), and F(Falsity). Second,
the neutrosophic similarity score function is introduced to fuse those two criteria and to build the
final weight histogram. Finally, a novel neutrosophic weighted mean-shift tracker is proposed.
The proposed tracker is compared with several mean-shift based trackers on a dataset of 61 public
sequences. The results revealed that our method outperforms other trackers, especially when
confronting background clutter.

Keywords: tracking; mean-shift; neutrosophic set; single valued neutrosophic set; neutrosophic
similarity score

1. Introduction

Currently, applications in the computer vision field such as surveillance, video indexing, traffic
monitoring, and auto-driving have come into our life. However, most of the key algorithms still lack
the performance of those applications. One of the most important tasks is visual object tracking, and it
is still a challenging problem [1–3].

Challenges like illumination variation, scale variation, motion blur, background clutters, etc.
may happen when dealing with the task of visual object tracking [2]. A specific classifier is always
considered for tackling such kinds of challenging problems. Boosting [4] and semi-supervised
boosting [5] were employed for building a robust classifier; multiple instance learning [6] was
introduced into the classifier training procedure due to the interference of the inexact training instance;
compressive sensing theory [7] was applied for developing effective and efficient appearance models
for robust object tracking, due to factors such as pose variation, illumination change, occlusion, and
motion blur.
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The mean-shift procedure was first introduced into visual object tracking by Comaniciu et al. [8,9].
The color histogram was employed as the tracking feature. The location of the target in each frame was
decided by minimizing the distance between two probability density functions, which are represented
by a target histogram and a target candidate histogram. By utilizing the color histogram feature
and the efficient seeking method, such a mean-shift tracker demonstrates high efficiency and good
performance, even when confronting motion blur and deformation problems. On the other hand, the
color histogram feature cannot help the tracker discriminate the target from the background effectively,
especially when background clutter exists. Several new metrics or features were considered to deal
with such a problem. For instance, Cross-Bin metric [10], SIFT (Scale-invariant feature transform) [11],
and texture feature [12] were introduced into the mean shift based tracker, and the proposed trackers all
earn a better performance than the traditional one. Besides, Tomas et al. [13] exploited the background
to discriminate the target and proposed the background ratio weighting method. In addition, since
estimating an adequate scale is essential for robust tracking, a more robust method for estimating the
scale of the searching bounding box was proposed through the forward–backward consistency check.
This mean-shift based tracker [13] outperforms several state-of-the-art algorithms. Robert et al. [14] also
proposed a scale selecting scheme by utilizing the Lindeberg’s theory [15] based on the local maxima
of differential scale-space filters. Although so many kinds of visual trackers have been proposed, the
visual tracking is still an open problem, due to the challenging conditions in the real tracking tasks. All
in all, the mean-shift tracker demonstrates high efficiency and may earn an even better performance if
a more effective method can be found to discriminate the target from the background. Thus, finding
a suitable way to represent the information presented by the background, as well as the target, is of
high relevance.

Neutrosophic set (NS) [16] is a new branch of philosophy to deal with the origin, nature, and
scope of neutralities. It has an inherent ability to handle the indeterminate information like the noise
included in images [17–21] and video sequences. Until now, NS has been successfully applied in
many areas [22]. For the computer vision research fields, the NS theory is widely utilized in image
segmentation [17–21], skeleton extraction [23] and object tracking [24], etc. Before calculating the
segmentation result for an image, a specific neutrosophic image was usually computed via several
criteria in NS domain [17–21]. For object tracking, in order to improve the traditional color based
CAMShift tracker, the single valued neutrosophic cross-entropy was employed for fusing color and
depth information [24]. In addition, the NS theory is also utilized for improving the clustering
algorithms, such as c-means [25]. While several criteria are always proposed to handle a specific image
processing problem, an appropriate way for fusing information is needed. Decision-making [26–30]
can be regarded as a problem-solving activity terminated by a solution deemed to be satisfactory, and
it has been frequently employed for dealing with such an information fusion problem. The similarity
measurement [30] using the correlation coefficient under single valued neutrosophic environment
was successfully applied into the issue of image thresholding [21]. A single valued neutrosophic set
(SVNS) [31] is an instance of a neutrosophic set and provides an additional possibility to represent
uncertainty, imprecise, incomplete, and inconsistent information, which exists in the real world. The
correlation coefficient of SVNS was proposed by the authors of [30] and was successfully applied for
handling the multicriteria decision making problem. For the mean-shift tracker, the color histogram is
employed for representing the tracked target. Due to the challenging conditions during the tracking
procedure, indeterminate information always exists. For instance, object feature may changes due
to object pose or external environment changes between frames. It is difficult to localize the object
exactly during the tracking procedure. Thus, there exists indeterminate information when you try to
utilize the uncertain bounding box to extract object feature. All in all, how to utilize the information
of the object and the corresponding background to help the tracker discriminate the object is also an
indeterminate problem.

In this work, we propose a novel mean-shift tracker based on the neutrosophic similarity
score [21,30] under the SVNS environment. We build a neutrosophic weight histogram, which jointly
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considered the indeterminate attributes of the object and the background information. First, we
propose two criteria of the object feature similarity and the background feature similarity, where each
one is represented as its bin of the histogram corresponding to three membership functions for the
T(Truth), I(indeterminacy), and F(Falsity) element of the neutrosophic set. Second, the neutrosophic
similarity score function is introduced to fuse those two criteria and build the final weighted histogram.
Finally, the weight of each bin of the histogram is applied to modify the traditional mean-shift tracker,
and a novel neutrosophic weighted mean-shift tracker is proposed. To our own knowledge, it is the
first time to introduce the NS theory into the mean-shift procedure. Experiments results revealed that
the proposed neutrosophic weighted mean-shift tracker outperforms several kinds of mean-shift based
trackers [9,13,14].

The remainder of this paper is organized as follows: in Section 2, the traditional mean-shift
procedure for visual object tracking and the definition of the neutrosophic similarity score are first
given. Then the details of the method for calculating the neutrosophic weight histogram are presented,
and the main steps of the proposed mean-shift tracker are illustrated in the following subsection.
Experimental evaluations and discussions are presented in Section 3, and Section 4 has the conclusions.

2. Problem Formulation

In this section, we present the algorithmic details of this paper.
For the visual tracking problem, the initial location of the target will be given in the first frame, and

the location is always represented by a rectangle bounding box [1–3]. Then the critical task for a visual
tracker is to calculate the displacement of the bounding box in the following frame corresponding to
the previous one.

2.1. Traditional Mean-Shift Tracker

The main steps of the traditional mean-shift visual tracker are summarized in this subsection.
The kernel-based histogram is employed by the traditional mean-shift tracker. At the beginning,

the feature model of the target is calculated by

q̂u = C
n

∑
i=1

k
(
‖x∗i ‖

2
)

δ[b(x∗i )− u] (1)

where q̂ is the target model, q̂ = {q̂u}u=1...m; q̂u is the u-th bin of the target model satisfying
m
∑

u=1
q̂u = 1;

x∗i is the normalized pixel location which located in the initial bounding box; and n is the number of
pixels belonging to the target. In order to reduce the interference of the background clutters, the kernel
k(x) is utilized. k(x) is an isotropic, convex, and monotonic decreasing kernel. The kernel assigns smaller

weights to pixels farther than the center. In this work, k(x) is defined as k(x) =

{
2
π (1− x) i f x < 1
0 else

.

The function b(x): R2 → 1 . . . m associates to the pixel at location x the index b(x) of the histogram bin
corresponding to the color of that pixel. Then, C is the normalization constant, which is denoted by

C =
1

∑n
i=1 k

(
‖x∗i ‖

2
) (2)

The function δ(x) is the Kronecker delta function. Let y be the center of the target candidate and
{xi}i = 1, . . . , nh be the pixel locations in the bounding box of the target candidate. Here, nh is the total
number of the pixels falling in the bounding box. Then when using the same kernel profile k(x), the
probability of the feature in the target candidate is given by

p̂u = Ch

nh

∑
i=1

k
(
‖y− xi

h
‖

2)
δ[b(xi − u)] (3)
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where h is the bandwidth and Ch is the normalization constant derived by imposing the condition
m
∑

u=1
p̂u = 1.

The metric based on Bhattacharyya coefficient is proposed to evaluate the similarity between
the probability distributions of the target and the candidate target. Let ρ[p(ŷ), q̂] be the similarity
probability, then it can be calculated by

ρ[p(ŷ), q̂] =
m

∑
u=1

√
p̂(y)q̂u (4)

For the mean-shift tracker, the location ŷ0 in the previous frame is employed as the starting
location for searching the new target location in the current frame. The estimate of a new target
location is then obtained by maximizing the Bhattacharyya coefficient ρ[p(ŷ), q̂] using a Taylor series
expansion, see [8,9] for further details. To reach the maximum of the Bhattacharyya coefficient, the
kernel is repeatedly moved from the current location ŷ0 to the new location

ŷ1 =
∑nh

i=1 xiwig
(
‖ ŷ0−xi

h ‖
2
)

∑nh
i=1 wig

(
‖ ŷ0−xi

h ‖
2
) (5)

where g(x) is the negative derivative of the kernel k(x), i.e., g(x) = −k′(x). Furthermore, it is assumed
that g(x) exists for all x ∈ [0, ∞) except for a finite set of points. The parameter wi in Equation (5) is
denoted by

wi =
m

∑
u=1

δ[b(xi)− u]

√
q̂u

p̂u(ŷ0)
(6)

2.2. Neutrosophic Similarity Score

A neutrosophic set with multiple criteria can be expressed as follows:
Let A = {A1, A2, . . . , Am} be a set of alternatives and C = {C1, C2, . . . , Cn} be a set of criteria. Then

the character of the alternative Ai (i = 1, 2, . . . , m) can be represented by the following information:

Ai =
{〈

Cj, TCj(Ai), ICj(Ai), FCj(Ai)
〉∣∣∣Cj ∈ C

}
i = 1 . . . m, j = 1 . . . n (7)

where TCj(Ai), ICj(Ai), FCj(Ai) ∈ [0, 1]. Here, TCj(Ai) denotes the degree to which the alternative Ai
satisfies the criterion Cj; ICj(Ai) indicates the indeterminacy degree to which the alternative Ai satisfies
or does not satisfy the criterion Cj; FCj(Ai) indicates the degree to which the alternative Ai does not
satisfy the criterion Cj.

A method for multicriteria decision-making based on the correlation coefficient under
single-valued neutrosophic environment is proposed in [30]. The similarity degree between two
elements Ai and Aj is defined as:

SCk (Ai, Aj) =
TCk (Ai)TCk (Aj) + ICk (Ai)ICk (Aj) + FCk (Ai)FCk (Aj)√

TCk
2(Ai) + ICk

2(Ai) + FCk
2(Ai)

√
TCk

2(Aj) + ICk
2(Aj) + FCk

2(Aj)
(8)
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Assume the ideal alternative A∗ =
{〈

Cj, TCj(A∗), ICj(A∗), FCj(A∗)
〉∣∣∣Cj ∈ C

}
i = 1 . . . m,

j = 1 . . . n. Then the similarity degree between any alternative Ai and the ideal alternative A* can be
calculated by

SCk (Ai, A∗) =
TCk (Ai)TCk (A∗) + ICk (Ai)ICk (A∗) + FCk (Ai)FCk (A∗)√

TCk
2(Ai) + ICk

2(Ai) + FCk
2(Ai)

√
TCk

2(A∗) + ICk
2(A∗) + FCk

2(A∗)
(9)

Suppose wk ∈ [0,1] is the weight of each criterion Ck and ∑n
j=1 wj = 1, then the weighted correlation

coefficient between an alternative Ai and the ideal alternative A* is defined by

W(Ai, A∗) =
n

∑
k=1

wk
TCk (Ai)TCk (A∗) + ICk (Ai)ICk (A∗) + FCk (Ai)FCk (A∗)√

TCk
2(Ai) + ICk

2(Ai) + FCk
2(Ai)

√
TCk

2(A∗) + ICk
2(A∗) + FCk

2(A∗)
(10)

The alternative with high correlation coefficient is considered to be a good choice for the
current decision.

2.3. Calculate the Neutrosophic Weight Histogram

Employing the information discriminated from the background is one of the most important
issues for robustly tacking a visual object. As shown in Figure 1, the smallest region GO inside the
red bounding box is the object region and this region corresponds to the location of the object in the
corresponding frame. Then GO is decided by the tracker and its accuracy depends on the robustness of
the tracker. In this work, the surrounding area of GO is defined as the background region GB. In order
to eliminate the indeterminacy of the region GO to some extent, the region far from GO is employed as
GB and GB = βGO − αGO.
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Figure 1. Illustration of the object region.

To enhance the robustness of the traditional mean-shift tracker, a novel weight histogram wNS

is defined in the neutrosophic domain. Each bin of the weighted histogram wNS is expressed in the
SVNS domain via three membership functions T(Truth), I(indeterminacy), and F(Falsity).

For the proposition of object feature is a discriminative feature, TCO, ICO, and FCO represent the
probabilities when a proposition is true, indeterminate and false degrees, respectively. Finding the
location of the tracked object in a new frame is the main task for a tracker, and the target model (object
feature histogram in the initial frame) is frequently employed as major information to discriminate the
object from the background. The region which owns more similarity to the object feature is more likely
to be the object region. Using the object feature similarity criterion, we can further give the definitions:

TCO(u) = q̂u (11)

ICO(u) = |q̂u − q̂u(t− 1)| (12)
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FCO(u) = 1− TCO(u) (13)

where q̂u is the u-th bin of the target model corresponding to the object region GO in the first frame of
the tracking process and it is calculated by using Equation (1).

The indeterminacy degree ICO (u) is defined in Equation (12). Then, q̂u(t− 1) is the u-th bin of the
updated object feature histogram in the previous frame. Suppose p̂u(t− 1) is the feature histogram
corresponding to the extracted object region at time t−1, then q̂u(t− 1) is calculated by

q̂u(t− 1) = (1− λ)q̂u(t− 2) + λ p̂u(t− 1) (14)

where λ is the updating rate for λ ∈ (0,1).
As the tracker may drift from the object due to the similar surroundings, using the object features

with high similarity to the background will bring risk to the accuracy of the tracker. The background
feature similarity criterion is considered in this work. The corresponding three membership functions
TCB, ICB and FCB are defined as follows:

TCB(u) = q̂u (15)

ICB(u) =


0 i f b̂u = 0
1 i f b̂u > q̂u

b̂u/q̂u else
(16)

FCB(u) = b̂u (17)

where b̂u is the u-th bin of the object background feature histogram. This histogram is initialized
in the background region GB in the first frame, as shown in Figure 1. For q̂u, Equation (1) is also
employed to calculate b̂u, and b̂u, which will be updated when the surroundings of the tracked target
change dramatically.

By substituting the corresponding T(Truth), I(indeterminacy), and F(Falsity) under the criteria of
the object feature similarity and the background feature similarity into Equation (10), the u-th bin of
the neutrosophic weight histogram can be calculated by

wNS
u = wCOSCO(u, A∗) + wCBSCB(u, A∗)

= wCO
TCO(u)TCk

(A∗)+ICO(u)ICk
(A∗)+FCO(u)FCk

(A∗)√
TCO

2(u)+ICO
2(u)+FCO

2(u)
√

TCk
2(A∗)+ICk

2(A∗)+FCk
2(A∗)

+wCB
TCB(u)TCk

(A∗)+ICB(u)ICk
(A∗)+FCB(u)FCk

(A∗)√
TCB

2(u)+ICB
2(u)+FCB

2(u)
√

TCk
2(A∗)+ICk

2(A∗)+FCk
2(A∗)

(18)

where wCO, wCB ∈ [0,1] are the corresponding weights of criteria and wCO + wCB = 1. The ideal
alternative under two criteria is the same as A∗ = 〈1, 0, 0〉.

2.4. Neutrosophic Weighted Mean-Shift Tracker

In this work, the neutrosophic weighted histogram is introduced into the traditional mean-shift
procedure, and this improved mean-shift tracker is called the neutrosophic weighted mean-shift tracker.
The basic flow of the proposed tracker is described below:

Initialization
Step 1: Read the first frame and select an object on the image plane as the target to be tracked.
Step 2: Calculate the object feature histogram q̂ and object background feature histogram b̂ by using

Equation (1).

Tracking
Input: (t + 1)-th video frame
Step 3: Employ the location ŷ0 in the previous frame as the starting location for searching the new

target location in the current frame.
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Step 4: Based on the mean-shift algorithm and neutrosophic weight histogram, derive the new
location of the object according to Equation (19) and Equation (5) as follows:

wi =
m

∑
u=1

δ[b(xi)− u]

√
wNS

u
q̂u

p̂u(ŷ0)
(19)

Step 5: If ‖ŷ1 − ŷ0‖ < ε0, stop. Otherwise, set ŷ0 ← ŷ1 and go to Step 4.
Step 6: Derive q̂u(t − 1) according to Equation (14) and then update object background feature

histogram b̂← b̂c when the Bhattacharyya coefficient ρ
[
b̂, b̂c

]
< ε1, where b̂c is the

corresponding feature histogram in the current background region GB.

Output: Tracking location.

3. Experiment Results and Analysis

We tested the neutrosophic weighted mean-shift tracker on a challenging benchmark [2].
As mentioned at the outset, background clutter is one of the most challenging problems for the
mean-shift tracker. Besides the 50 challenging sequences in this benchmark [2], another 10 sequences
with the challenge of background clutter are also selected as testing sequences. The information of
those 10 sequences is given in Table 1. The abbreviations of several kinds of challenges included in the
testing sequences are shown in the footer of Table 1.

Table 1. An overview of another 10 sequences.

Sequence Target Challenges Frames

Board board SV, MB, FM, OPR, OV, BC 698
Bolt2 human DEF, BC 293
Box box IV, SV, OCC, MB, IPR, OPR, OV, BC, LR 1161

ClifBar book SV, OCC, MB, FM, IPR, OV, BC 472
Coupon coupon OCC, BC 327
Crowds human IV, DEF, BC 347

Car2 car IV, SV, MB, FM, BC 913
Car1 car IV, SV, MB, FM, BC, LR 1020

Human3 human SV, OCC, DEF, OPR, BC 1698
Car24 car IV, SV, BC 3059

Note: IV: Illumination Variation, SV: Scale Variation, OCC: Occlusion, DEF: Deformation, MB: Motion Blur, FM: Fast
Motion, IPR: In-Plane Rotation, OPR: Out-of-Plane Rotation, OV: Out-of-View, BC: Background Clutters, and LR:
Low Resolution.

To gauge the performance of the proposed tracker, we compare our results to another three
mean-shift based trackers including ASMS [13], KMS [9] and SMS [14]. Some experimental results
have shown that ASMS [13] outperforms several state-of-the-art algorithms. KMS is the traditional
mean-shift tracker. Both SMS and ASMS are scale adaptive. All of the tested algorithms employ the
color histogram as object feature.

3.1. Setting Parameters

For the proposed neutrosophic weighted mean-shift tracker, the parameter α and β relate to the
background region GB are set to 1.2 and 1.48 respectively. The parameter λ in Equation (14) decides
the updating rate of the object feature histogram. With the assumption that the appearance of the
tracked object will not change dramatically, a low updating rate should be given. In this work, λ is set
to 0.05. As seen in the Section 2.4, the accuracy of the result of the mean-shift procedure depends on
the parameter ε0 to some extent, where ε0 is set to 0.1. A much greater value of ε0 may lead to failure.
The parameter ε1 is a threshold for updating the object background feature histogram. During the
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tracking procedure, the surroundings of the object always change. Hence, it is essential to update
the object background feature histogram when the similarity between the current surroundings and
the object background feature falls to a specific value. If ε1 is set to 0, the updating process of the
background feature will stop. If ε1 is set to 1, the updating frequency will be too high. Thus, a medium
value is chosen as ε1 = 0.5. The neutrosophic weight histogram plays an essential role in this proposed
mean-shift based tracker. In order to emphasize the background information when constructing the
neutrosophic weight histogram, the corresponding parameter wCB should be set to a relatively high
value. However, if this value is set too high, the effect of the first neutrosophic criteria will reduce, even
to zero. In this work, wCB is set to 0.6, and wCO is set to 0.4. Finally, all the values of these parameters
are chosen by hand-tuning, and all of them are constant for all experiments.

3.2. Evaluation Criteria

The overlap rate of the bounding box is used as the evaluation criterion, and the overlap rate is
defined as

si =
area

(
ROITi ∩ ROIGi

)
area

(
ROITi ∪ ROIGi

) (20)

where ROITi is the target bounding box in the i-th frame and ROIGi is the corresponding ground truth
bounding box. For the video datasets applied in this work, the ground truth bounding boxes of the
tracked target are manually labeled for each frame. The success ratio is defined as:

R = ∑N
i=1 ui/N, ui =

{
1 i f si > r
0 otherwise

(21)

where N is the number of frames and r is the overlap threshold which decides the corresponding
tracking result is correct or not. The success ratio is R ∈ [0,1]. When the overlap ratio si is greater than
r on each frame, R achieves the maximum, and then this means the corresponding tracker performs
very well in this sequence. On the contrary, R achieves the minimum when si is smaller than r on each
frame, and then this means the corresponding tracker performs the worst.

Both the one-pass evaluation (OPE) and temporal robustness evaluation (TRE) are employed as
the evaluation metric. For the TRE, each testing sequence is partitioned into 20 segments, and each
tracker is tested throughout all of the segments. The results for the OPE evaluation metric are derived
by testing the tracker with one time initialization from the ground truth position in the first frame of
each testing sequence. Finally, we use the area under curve (AUC) of each success plot to rank the
tracking algorithms. For each success plot, the tracker with a greater value of AUC ranks better.

3.3. Tracking Results

Several screen captures for some of the testing sequences are given in Figures 2–5. Success plots
of TRE and OPE for the whole testing sequences are shown in Figures 6a and 7a, and the success plots
for those sequences including background clutter challenge are shown in Figures 6b and 7b. In the
following section, a more detailed discussion of the tracking results is documented.
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Figure 3. Screenshots of tracking results of the video sequence used for testing (Box, target is selected
in frame #1).

MountainBike sequence: This sequence highlights the challenges of BC, IPR and OPR. As shown in
Figure 2, an improper scale of the bounding box is estimated by the SMS tracker, and the SMS tracker
has failed in frame #26. The ASMS tracker, as can be seen in frame #32, has drifted from the tracking
target because of the similar color of the surroundings, although an appropriate scale is given. During
the first half of the tracking process, both of the KMS and our NEUTMS perform well. However,
compared to the NEUTMS, the KMS tracker sometimes drifts a little farer from the biker, as seen in
frame #38. When the challenge of background clutter appears, the KMS tracker may also drift from the
right location of the target, as seen in frame #178. During the whole tracking process, the NEUTMS
tracker performs the best result.
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Bolt sequence: This sequence presents the challenges of OCC, DEF, IPR and OPR. As shown in 

Figure 5, all the trackers perform well till frame #117. Compared to the ASMS and SMS trackers, the 

KMS and NEUTMS trackers cannot calculate a proper size for the bounding box due to the fixed 

scale. The KMS tracker has begun to drift form the target on the account of the improper size of the 

bounding box since frame #117. By fusing the information of the feature of the object and background 

Figure 4. Screenshots of tracking results of the video sequence used for testing (Football, target is
selected in frame #1).

Box sequence: The challenges included in this sequence can be found in Table 1. This sequence is
more challenging than the MountainBike sequence. As seen in frame #31 in Figure 3, all the trackers
except for the SMS tracker can give a right location of the tracked box, and the ASMS performs the
best result so far. Due to the black background upon the box, the SMS tracker fails soon. While the
box is passing by the circuit board on the table, both the ASMS and the KMS tracker begin to lose the
box. By employing the information of the background region, our NEUTMS tracker has successfully
overcome the challenges like BC and MB during this sequence.

Football sequence: Challenges of BC, OCC, IPR and OPR are presented in this sequence. As shown
in Figure 4, the SMS tracker has already failed in frame #10. The ASMS and KMS trackers fail when
the tracked player getting close to another player on account of the factor of all the players wear the
same helmet. However, the NEUTMS tracker performs well even the tracked player runs through
some players with similar feature.
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Figure 5. Screenshots of tracking results of the video sequence used for testing (Bolt, target is selected
in frame #1).

Bolt sequence: This sequence presents the challenges of OCC, DEF, IPR and OPR. As shown in
Figure 5, all the trackers perform well till frame #117. Compared to the ASMS and SMS trackers, the
KMS and NEUTMS trackers cannot calculate a proper size for the bounding box due to the fixed
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scale. The KMS tracker has begun to drift form the target on the account of the improper size of the
bounding box since frame #117. By fusing the information of the feature of the object and background
region, the NEUTMS tracker has successfully tracked the target throughout this sequence even with an
inappropriate scale. Though a good scale is estimated by the ASMS tracker, it fails when Bolt passes by
some other runners, as seen in frame #142 and #160.
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Figure 6. Success plots of one-pass evaluation (OPE): (a) Success plots of OPE over all the testing
sequences; (b) Success plots of OPE over all the 31 testing sequences included the challenge of
background clutters (BC). The value shown between the brackets is the area under curve (AUC)
value corresponds to the tracker.
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Figure 7. Success plots of temporal robustness evaluation (TRE): (a) Success plots of TRE over all the
testing sequences; (b) Success plots of TRE over all the 31 testing sequences included the challenge of
BC. The value shown between the brackets is the AUC value corresponds to the tracker.

We employ all the 61 sequences as the testing sequence dataset. Success plots of OPE and TRE
over all the sequences are shown in Figures 6a and 7a respectively, which show our NEUTMS tracker is
superior to other trackers. Due to the fact that the focus of our work in this paper is to employ both the
object and background feature to enhance the mean-shift tracker’s ability of overcoming the problem
of similar surroundings, only the success plots for the challenge of BC are given, and then the BC
challenge is one of the most challenging problems for the traditional mean-shift tracker [13]. The results
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of the corresponding success plots are shown in Figures 6b and 7b, which show the robustness of the
NEUTMS tracker when handling the challenge of BC.

In order to test the performance of the proposed NEUTMS tracker over other kinds of challenges,
all the AUC results for each tracker are given in Tables 2 and 3. The best result is highlighted in red
italic type and the second result is highlighted in bold type. As seen in Tables 2 and 3, the NEUTMS
tracker performs the best result when tackling the challenge of BC, MB, DEF, IPR, OCC or OPR when
the OPE evaluation is considered. For TRE, the NEUTMS tracker performs the best result when
confronting the same kind of challenge to OPE except for the challenge of MB. The ASMS tracker wins
over SV because a robust scale updating scheme is used. The NEUTMS tracker performs the second
best result over FM, IV and OV mainly because some inaccurate background information may be
brought into the background feature model. The NEUTMS tracker performs the second best result
when confronting the challenge of LR on account of less information can be employed for enhancing
the tracker.

Table 2. AUC results of each tracker on sequences with different challenge for OPE.

Challenge BC FM MB DEF IV IPR LR OCC OPR OV SV Total

NEUTMS 0.374 0.409 0.408 0.444 0.306 0.365 0.235 0.413 0.422 0.380 0.340 0.404
ASMS 0.358 0.436 0.406 0.399 0.338 0.346 0.271 0.387 0.393 0.413 0.390 0.382
KMS 0.284 0.325 0.322 0.302 0.292 0.277 0.185 0.315 0.315 0.369 0.290 0.306
SMS 0.180 0.255 0.222 0.219 0.193 0.184 0.131 0.251 0.235 0.274 0.242 0.220

Table 3. AUC results of each tracker on sequences with different challenge for TRE.

Challenge BC FM MB DEF IV IPR LR OCC OPR OV SV Total

NEUTMS 0.395 0.422 0.418 0.480 0.361 0.402 0.252 0.432 0.442 0.392 0.366 0.432
ASMS 0.389 0.442 0.434 0.453 0.392 0.401 0.271 0.416 0.437 0.418 0.387 0.421
KMS 0.328 0.346 0.342 0.371 0.328 0.334 0.237 0.361 0.363 0.357 0.320 0.354
SMS 0.209 0.274 0.243 0.277 0.224 0.220 0.153 0.281 0.268 0.258 0.247 0.249

4. Conclusions

In this paper, a neutrosophic weighted mean-shift tracker is proposed. The experimental results
have revealed its robustness. While calculating the neutrosophic weighted histogram, two kinds of
criteria are considered as the object feature similarity and the background feature similarity, and each
bin of the weight histogram is represented in the SVNS domain via three membership functions T, I
and F. Both the feature in the object and the background region are fused by introducing the weighted
neutrosophic similarity score function. Finally, the neutrosophic weighted histogram is employed to
decide the new location of the object. As discussed in this work, we have not considered the scale
variation problem. To further improve the performance of our tracker in the future, our primary
mission is to introduce a scale updating scheme into this neutrosophic weighted mean-shift tracker.
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Abstract: To describe both certain linguistic neutrosophic information and uncertain linguistic
neutrosophic information simultaneously in the real world, this paper originally proposes the
concept of a linguistic neutrosophic cubic number (LNCN), including an internal LNCN and external
LNCN. In LNCN, its uncertain linguistic neutrosophic number consists of the truth, indeterminacy,
and falsity uncertain linguistic variables, and its linguistic neutrosophic number consists of the
truth, indeterminacy, and falsity linguistic variables to express their hybrid information. Then,
we present the operational laws of LNCNs and the score, accuracy, and certain functions of
LNCN for comparing/ranking LNCNs. Next, we propose a LNCN weighted arithmetic averaging
(LNCNWAA) operator and a LNCN weighted geometric averaging (LNCNWGA) operator to
aggregate linguistic neutrosophic cubic information and discuss their properties. Further, a multiple
attribute decision-making method based on the LNCNWAA or LNCNWGA operator is developed
under a linguistic neutrosophic cubic environment. Finally, an illustrative example is provided to
indicate the application of the developed method.

Keywords: linguistic neutrosophic cubic number; score function; accuracy function; certain
function; linguistic neutrosophic cubic number weighted arithmetic averaging (LNCNWAA)
operator; linguistic neutrosophic cubic number weighted geometric averaging (LNCNWGA) operator;
decision-making

1. Introduction

In terms of complex objective aspects of real life, human preference judgments may use linguistic
expression, instead of numerical value expression, in order to be more suitable for people’s thinking
habits. Hence, Zadeh [1] firstly introduced the concept of a linguistic variable and applied it to
fuzzy reasoning. After that, linguistic decision analysis and linguistic aggregation operators have
been proposed to solve linguistic decision-making problems [2–5]. Due to the incompleteness
and uncertainty of linguistic decision environments, uncertain linguistic variables and their
various aggregation operators were developed and applied to uncertain linguistic decision-making
problems [6–11]. As to the extension of linguistic variables, the concept of linguistic intuitionistic
fuzzy numbers and their linguistic intuitionistic multicriteria group decision-making methods were
introduced in the literature [12,13], and then linguistic intuitionistic multicriteria decision-making
method was proposed based on the Frank Heronian mean operator [14]. Recently, the concept
of a neutrosophic linguistic number, which indicates a changeable uncertain linguistic number
corresponding to some specified indeterminate range, and some weighted aggregation operators
of neutrosophic linguistic numbers, were presented to solve multiple attribute group decision-making
problems with neutrosophic linguistic numbers [15]. Then, the concept of a linguistic neutrosophic
number, which is described independently by the truth, indeterminacy, and falsity linguistic variables,
and some aggregation operators of linguistic neutrosophic numbers, were proposed to solve multiple
attribute group decision-making problems with linguistic neutrosophic numbers [16,17].
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To express vagueness and uncertainty in real life, the concept of a (fuzzy) cubic set (including
the internal cubic set and external cubic set) was introduced based on the hybrid information of both
partial certain and partial uncertain values in [18], where the first component is an interval/uncertain
value and the second component is an exact/certain value. After that, the concept of a neutrosophic
cubic set (including the internal neutrosophic cubic set and external neutrosophic cubic set),
where a neutrosophic cubic number (a basic element in a neutrosophic cubic set) is composed
of both the interval neutrosophic number and the single-valued neutrosophic number, and the
distance measure of neutrosophic cubic sets were proposed and applied to pattern recognition [19,20].
Then, decision-making methods with neutrosophic cubic information were put forward based on grey
relational analysis [21] and cosine measures [22], respectively.

However, all the existing linguistic variables, including: uncertain linguistic variables, linguistic
intuitionistic fuzzy numbers (basic elements in a linguistic intuitionistic fuzzy set), neutrosophic
linguistic numbers (basic elements in a neutrosophic linguistic set), and linguistic neutrosophic
numbers (basic elements in a linguistic neutrosophic set), cannot express the hybrid information of
both uncertain linguistic and certain linguistic neutrosophic numbers simultaneously in linguistic
decision-making environments. Furthermore, the cubic set and neutrosophic cubic set cannot
also express linguistic arguments and handle linguistic decision-making problems under linguistic
environments. Hence, it is necessary to extend neutrosophic cubic sets to linguistic neutrosophic
arguments. For this purpose, this study presents a new concept of a linguistic neutrosophic cubic
number (LNCN), where the uncertain linguistic neutrosophic number corresponding to its first part
is composed of the truth, indeterminacy, and falsity uncertain linguistic variables and the linguistic
neutrosophic number corresponding to its second part is composed of the truth, indeterminacy,
and falsity linguistic variables. Then, we propose the operational laws of LNCNs and the score,
accuracy, and certain functions of LNCN for comparing/ranking LNCNs. Further, we present a LNCN
weighted arithmetic averaging (LNCNWAA) operator and a LNCN weighted geometric averaging
(LNCNWGA) operator. Moreover, we develop a decision-making method based on the LNCNWAA or
LNCNWGA operator and the score, accuracy, and certain functions to solve decision-making problems
with the hybrid information of both certain linguistic neutrosophic numbers and uncertain linguistic
neutrosophic numbers under linguistic environments.

The rest of this paper is structured as follows: Section 2 proposes the concept of LNCN (including
the internal LNCN and external LNCN), the operational laws of LNCNs, and the score, accuracy,
and certain functions of LNCNs to rank LNCNs. In Section 3, we propose the LNCNWAA and
LNCNWGA operators to aggregate LNCNs and discuss their properties. In Section 4, a multiple
attribute decision-making method is developed based on the LNCNWAA or LNCNWGA operator
under a LNCN environment. In Section 5, an example illustrates the application of the proposed
method. Section 6 gives conclusions and future work.

2. Linguistic Neutrosophic Cubic Numbers (LNCNs) and Their Operational Laws

This section proposes the concept of LNCN, which include the internal LNCN and external
LNCN, and the operational laws of LNCNs.

Definition 1. Let a linguistic term set be S = {sj| j ∈ [0, p]}, where p + 1 is an odd number/cardinality. A LNCN
h in S is constructed as h = (u, c), where u = 〈[sTa, sTb], [sIa, sIb], [sFa, sFb]〉 is an uncertain linguistic
neutrosophic number with the truth, indeterminacy, and falsity uncertain linguistic variables [sTa, sTb], [sIa, sIb],
and [sFa, sFb] for sTa, sIa, sFa sTb, sIb, sFb ∈ S and Ta ≤ Tb, Ia ≤ Ib, Fa ≤ Fb; c = 〈sT , sI , sF〉 is a linguistic
neutrosophic number with the truth, indeterminacy, and falsity linguistic variables sT, sI, and sF for sT, sI,
sF ∈ S.

Definition 2. Let a LNCN be h = (〈[sTa, sTb], [sIa, sIb], [sFa, sFb]〉, 〈sT , sI , sF〉) for sTa, sIa, sFa sTb, sIb, sFb, sT,
sI, sF ∈ S. Then, we call
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(1) h an internal LNCN if Ta ≤ T ≤ Tb, Ia ≤ I ≤ Ib, Fa ≤ F ≤ Fb;
(2) h an external LNCN if T /∈ (Ta, Tb), I /∈ (Ia, Ib), and F /∈ (Fa, Fb).

Based on the operational laws of linguistic intuitionistic fuzzy numbers and linguistic
neutrosophic numbers introduced in the existing literature [12–14,16,17], we propose the following
operational laws of LNCNs.

Definition 3. Let two LNCNs be h1 = (〈[sTa1, sTb1], [sIa1, sIb1], [sFa1, sFb1]〉, 〈sT1, sI1, sF1〉) and
h2 = (〈[sTa2, sTb2], [sIa2, sIb2], [sFa2, sFb2]〉, 〈sT2, sI2, sF2〉). Then, their operational laws are defined as follows:

h1 ⊕ h2 =


〈[

sTa1+Ta2− Ta1·Ta2
p

, sTb1+Tb2− Tb1·Tb2
p

]
,
[

s Ia1·Ia2
p

, s Ib1·Ib2
p

]
,
[

s Fa1·Fa2
p

, s Fb1·Fb2
p

]〉
,〈

sT1+T2− T1·T2
p

, s I1·I2
p

, s F1·F2
p

〉


h1⊗ h2 =


〈[

s Ta1·Ta2
p

, s Tb1·Tb2
p

]
,
[

sIa1+Ia2− Ia1·Ia2
p

, sIb1+Ib2− Ib1·Ib2
p

]
,
[

sFa1+Fa2− Fa1·Fa2
p

, sFb1+Fb2− Fb1·Fb2
p

]〉
,〈
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p

, sI1+I2− I1·I2
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p
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λ , s
p( F1

g )
λ

〉
, λ > 0

hλ
1 =


〈[

s
p( Ta1

p )
λ , s

p( Tb1
p )

λ

]
,
[

s
p−p(1− Ia1

p )
λ , s

p−p(1− Ib1
p )

λ

]
,
[

s
p−p(1− Fa1

p )
λ , s

p−p(1− Fb1
p )

λ

]〉
,〈

s
p( T1

p )
λ , s

p−p(1− I1
p )

λ , s
p−p(1− F1

p )
λ

〉
, λ > 0

Then, the above operational results are still LNCNs.
Based on the score and accuracy functions of a linguistic neutrosophic number in the literature [16],

we present the score, accuracy, and certain functions of LNCN to compare/rank LNCNs.

Definition 4. Let a LNCN be h = (〈[sTa, sTb], [sIa, sIb], [sFa, sFb]〉, 〈sT , sI , sF〉) for sTa, sIa, sFa sTb, sIb, sFb, sT,
sI, sF ∈ S. Then, its score, accuracy, and certain functions are defined as follows:

S(h) =
1

9p
[(4p + Ta + Tb− Ia− Ib− Fa− Fb) + (2p + T − I − F)], for S(h) ∈ [0, 1] (1)

H(h) =
1

3p
[(Ta + Tb− Fa− Fb) + (T − F)], for H(h) ∈ [−1, 1] (2)

C(h) =
Ta + Tb + T

3p
, for C(h) ∈ [0, 1] (3)

Then, we introduce a ranking method based on the values of the score, accuracy, and
certain functions.

Definition 5. Let two LNCNs be h1 = (〈[sTa1, sTb1], [sIa1, sIb1], [sFa1, sFb1]〉, 〈sT1, sI1, sF1〉) and
h2 = (〈[sTa2, sTb2], [sIa2, sIb2], [sFa2, sFb2]〉, 〈sT2, sI2, sF2〉). Then, their ranking method based on their score,
accuracy, and certain functions are defined as follows:

(1) If S(h1) > S(h2), then h1 � h2;
(2) If S(h1) = S(h2) and H(h1) > H(h2), then h1 � h2;
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(3) If S(h1) = S(h2), H(h1) = H(h2), and C(h1) > C(h2), then h1 � h2;
(4) S(h1) = S(h2), H(h1) = H(h2), and C(h1) = C(h2), then h1 ~ h2

Example 1. Let h1 = (<[s4, s6], [s1, s2], [s1, s3]>, <s5, s1, s2>), h2 = (<[s4, s5], [s1, s2], [s1, s2]>, <s4, s1, s1>),
and h3 = (<[s6, s7], [s2, s3], [s1, s3]>, <s6, s2, s3>) in the linguistic term set S = {sj| j ∈ [0, 8]} are three LNCNs.
Then, we need to compare them.

By using Equations (1) to (3), the values of their score, accuracy, and certain functions are
as follows:

S(h1) = [32 + 4 + 6 − (1 + 2 + 1 + 3) + 16 + 5 − (1 + 2)]/72 = 0.7361, S(h2) = [32 + 4 + 5 − (1 + 2 + 1 +
2) + 16 + 4− (1 + 1)]/72 = 0.7361, and S(h3) = [32 + 6 + 7 − (2 + 3 + 1 + 3) + 16 + 6 − (2 + 3)]/72 = 0.7361;
H(h1) = [4 + 6 − (1 + 3) + 5 − 2]/24 = 0.375, H(h2) = [4 + 5 − (1 + 2) + 4 − 1]/24 = 0.375, and H(h3) =
[6 + 7 − (1 + 3) + 6 − 3]/24 = 0.5; and C(h1) = (4 + 6 + 5)/24 = 0.625 and C(h2) = (4 + 5 + 4)/24 = 0.5417.

According to the ranking method of Definition 5, their ranking order is h3 � h1 � h2.

3. Two Weighted Aggregation Operators of LNCNs

3.1. Linguistic Neutrosophic Cubic Number Weighted Arithmetic Averaging (LNCNWAA) Operator

Definition 6. Let hj =
(〈

[sTaj, sTbj], [sIaj, sIbj], [sFaj, sFbj]
〉

,
〈
sTj, sI j, sFj

〉)
(j =1, 2, . . . , n) be a group of

LNCNs, then the LNCNWAA operator can be defined as follows:

LNCNWAA(h1, h2, · · · , hn) =
n

∑
j=1

wjhj (4)

where wj is the weight of hj (j = 1, 2, . . . , n) for wj ∈ [0, 1] and ∑n
j=1 wj = 1.

According to Definitions 3 and 6, there is the following theorem.

Theorem 1. Let hj =
(〈

[sTaj, sTbj], [sIaj, sIbj], [sFaj, sFbj]
〉

,
〈
sTj, sI j, sFj

〉)
(j = 1, 2, . . . , n) be a group of

LNCNs, then the aggregation result obtained by Equation (4) is still a LNCN, which is calculated by the
following aggregation formula:

LNCNWAA(h1, h2, · · · , hn) =
n
∑

j=1
wjhj

=



〈s
p−p

n
∏
j=1

(1− Taj
p )

wj , s
p−p

n
∏
j=1

(1− Tbj
p )

wj

,

s
p

n
∏
j=1

(
Iaj
p )

wj , s
p

n
∏
j=1

(
Ibj
p )

wj

,

s
p

n
∏
j=1

(
Faj
p )

wj , s
p

n
∏
j=1

(
Fbj
p )

wj

〉,〈
s

p−p
n
∏
j=1

(1− Tj
p )

wj , s
p

n
∏
j=1

(
I j
p )

wj , s
p

n
∏
j=1

(
Fj
p )

wj

〉


(5)

where wj is the weight of hj (j = 1, 2, . . . , n) for wj ∈ [0, 1] and ∑n
j=1 wj = 1.

In the following, the mathematical induction is used to prove Theorem 1.

Proof. (1) Set n = 2, according the operational laws of LNCNs, we have the following results:

w1h1 =


〈[

sp−p(1− Ta1
p )

w1 , sp−p(1− Tb1
p )

w1

]
,
[

sp( Ia1
p )

w1 , sp( Ib1
p )

w1

]
,
[

sp( Fa1
p )

w1 , sp( Fb1
p )

w1

]〉
,〈

sp−p(1− T1
p )

w1 , sp( I1
p )

w1 , sp( F1
p )

w1

〉




Information 2017, 8, 110 5 of 11

w2h2 =


〈[

sp−p(1− Ta2
p )

w2 , sp−p(1− Tb2
p )

w2

]
,
[

sp( Ia2
p )

w2 , sp( Ib2
p )

w2

]
,
[

sp( Fa2
p )

w2 , sp( Fb2
p )

w2

]〉
,〈

sp−p(1− T2
p )

w2 , sp( I2
p )

w2 , sp( F2
p )

w2

〉


Then, there exists the following result:

LNCNWAA(h1, h2) = w1h1 ⊕ w2h2

=



〈


s
p−p(1− Ta1

p )
w1+p−p(1− Ta2

p )
w2−

(p−p(1− Ta1
p )

w1 )(p−p(1− Ta2
p )

w2 )
p

,

s
p−p(1− Tb1

p )
w1+p−p(1− Tb2

p )
w2−

(p−p(1− Tb1
p )

w1 )(p−p(1− Tb2
p )

w2 )
p

,

[
sp( Ia1

p )
w1 ( Ia2

p )
w2 , sp( Ib1

p )
w1 ( Ib2

p )
w2

]
,
[

sp( Fa1
p )

w1 ( Fa2
p )

w2 , sp( Fb1
p )

w1 ( Fb2
p )

w2

]
〉

,

〈
s

p−p(1− T1
p )

w1+p−p(1− T2
p )

w2−
(p−p(1− T1

p )
w1 )(p−p(1− T2

p )
w2 )

p

, sp( I1
p )

w1 ( I2
p )

w2 , sp( F1
p )

w1 ( F2
p )

w2

〉



=



〈
 sp−p(1− Ta1

p )
w1+p−p(1− Ta2

p )
w2−(p−p(1− Ta1

p )
w1−p(1− Ta2

p )
w2+p(1− Ta1

p )
w1 (1− Ta2

p )
w2 )

,

sp−p(1− Tb1
p )

w1+p−p(1− Tb2
p )

w2−(p−p(1− Tb1
p )

w1−p(1− Tb2
p )

w2+p(1− Tb1
p )

w1 (1− Tb2
p )

w2 )

,s
p

2
∏
j=1

(
Iaj
p )

wj
, s

p
2
∏
j=1

(
Ibj
p )

wj

,

s
p

2
∏
j=1

(
Faj
p )

wj
, s

p
2
∏
j=1

(
Fbj
p )

wj


〉

,

〈
sp−p(1− T1

p )
w1+p−p(1− T2

p )
w2−(p−p(1− T1

p )
w1−p(1− T2

p )
w2+p(1− T1

p )
w1 (1− T2

p )
w2 )

, s
p

2
∏
j=1

(
I j
p )

wj
, s

p
2
∏
j=1

(
Fj
p )

wj

〉



=



〈 [
sp−p(1− Ta1

p )
w1 (1− Ta2

p )
w2 , sp−p(1− Tb1

p )
w1 (1− Tb2

p )
w2

]
,s

p
2
∏
j=1

(
Iaj
p )

wj
, s

p
2
∏
j=1

(
Ibj
p )

wj

,

s
p

2
∏
j=1

(
Faj
p )

wj
, s

p
2
∏
j=1

(
Fbj
p )

wj


〉

,

〈
sp−p(1− T1

p )
w1 (1− T2

p )
w2 , s

p
2
∏
j=1

(
I j
p )

wj
, s

p
2
∏
j=1

(
Fj
p )

wj

〉



=



〈s
p−p

2
∏
j=1

(1− Taj
p )

wj
, s

p−p
2
∏
j=1

(1− Tbj
p )

wj

,

s
p

2
∏
j=1

(
Iaj
p )

wj
, s

p
2
∏
j=1

(
Ibj
p )

wj

,

s
p

2
∏
j=1

(
Faj
p )

wj
, s

p
2
∏
j=1

(
Fbj
p )

wj

〉,

〈
s

p−p
2
∏
j=1

(1− Tj
p )

wj
, s

p
2
∏
j=1

(
I j
p )

wj
, s

p
2
∏
j=1

(
Fj
p )

wj

〉


.

(6)

(2) Set n = k, by Equation (5) we obtain

LNCNWAA(h1, h2, · · · , hk) =
k
∑

j=1
wjhj

=



〈s
p−p

k
∏
j=1

(1− Taj
p )

wj
, s

p−p
k

∏
j=1

(1− Tbj
p )

wj

,

s
p

k
∏
j=1

(
Iaj
p )

wj
, s

p
k

∏
j=1

(
Ibj
p )

wj

,

s
p

k
∏
j=1

(
Faj
p )

wj
, s

p
k

∏
j=1

(
Fbj
p )

wj

〉,

〈
s

p−p
k

∏
j=1

(1− Tj
p )

wj
, s

p
k

∏
j=1

(
I j
p )

wj
, s

p
k

∏
j=1

(
Fj
p )

wj

〉


(7)
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(3) Set n = k + 1, based on Equations (6) and (7), we can obtain the following result:

LNCNWAA(h1, h2, · · · , hk+1) =
k+1
∑

j=1
wjhj

=



〈


s

p−p
k

∏
j=1

(1− Taj
p )

wj+p−p(1− Tak+j
p )

wk+1−
(p−p

k
∏

j=1
(1− Taj

p )
wj

)(p−p(1− Tak+1
p )

wk+1 )

p

,

s

p−p
k

∏
j=1

(1− Tbj
p )

wj+p−p(1− Tbk+j
p )

wk+1−
(p−p

k
∏

j=1
(1− Tbj

p )
wj

)(p−p(1− Tbk+1
p )

wk+1 )

p

,

s
p

k
∏
j=1

(
Iaj
p )

wj (
Iak+j

p )
wk+1

, s
p

k
∏
j=1

(
Ibj
p )

wj (
Ibk+j

p )
wk+1

,

s
p

k
∏
j=1

(
Faj
p )

wj (
Fak+j

p )
wk+1

, s
p

k
∏
j=1

(
Fbj
p )

wj (
Fbk+j

p )
wk+1



〉
,

〈
s

p−p
k

∏
j=1

(1− Tj
p )

wj+p−p(1− Tk+j
p )

wk+1−
(p−p

k
∏

j=1
(1− Tj

p )wj))(p−p(1− Tk+1
p )

wk+1 )

p

, s
p

k
∏
j=1

(
I j
p )

wj (
Ik+j

p )
wk+1

, s
p

k
∏
j=1

(
Fj
p )

wj (
Fk+j

p )
wk+1

〉



=



〈


s
p−p

k
∏
j=1

(1− Taj
p )

wj+p−p(1− Tak+1
p )

wk+1−(p−p
k

∏
j=1

(1− Taj
p )

wj−p(1− Tak+1
p )

wk+1+p
k

∏
j=1

(1− Taj
p )

wj (1− Tak+1
p )

wk+1 )
,

s
p−p

k
∏
j=1

(1− Tbj
p )

wj+p−p(1− Tbk+1
p )

wk+1−(p−p
k

∏
j=1

(1− Tbj
p )

wj−p(1− Tbk+1
p )

wk+1+p
k

∏
j=1

(1− Tbj
p )

wj (1− Tbk+1
p )

wk+1 )

,

s
p

k
∏
j=1

(
Iaj
p )

wj ( Iak+1
p )

wk+1
, s

p
k

∏
j=1

(
Ibj
p )

wj ( Ibk+1
p )

wk+1

,

s
p

k
∏
j=1

(
Faj
p )

wj ( Fak+1
p )

wk+1
, s

p
k

∏
j=1

(
Fbj
p )

wj ( Fbk+1
p )

wk+1


〉

,

〈
s

p−p
k

∏
j=1

(1− Tj
p )

wj+p−p(1− Tk+1
p )

wk+1−(p−p
k

∏
j=1

(1− Tj
p )

wj−p(1− Tk+1
p )

wk+1+p
k

∏
j=1

(1− Tj
p )

wj (1− Tk+1
p )

wk+1 )
, s

p
k

∏
j=1

(
I j
p )

wj ( Ik+1
p )

wk+1
, s

p
k

∏
j=1

(
Fj
p )

wj ( Fk+1
p )

wk+1

〉



=



〈
s

p−p
k

∏
j=1

(1− Taj
p )

wj (1− Tak+1
p )

wk+1
, s

p−p
k

∏
j=1

(1− Tbj
p )

wj (1− Tbk+1
p )

wk+1

,

s
p

k
∏
j=1

(
Iaj
p )

wj ( Iak+1
p )

wk+1
, s

p
k

∏
j=1

(
Ibj
p )

wj ( Ibk+1
p )

wk+1

,

s
p

k
∏
j=1

(
Faj
p )

wj ( Fak+1
p )

wk+1
, s

p
k

∏
j=1

(
Fbj
p )

wj ( Fbk+1
p )

wk+1


〉

,

〈
s

p−p
k

∏
j=1

(1− Tj
p )

wj (1− Tk+1
p )

wk+1
, s

p
k

∏
j=1

(
I j
p )

wj ( Ik+1
p )

wk+1
, s

p
k

∏
j=1

(
Fj
p )

wj ( Fk+1
p )

wk+1

〉



=



〈s
p−p

k+1
∏
j=1

(1− Taj
p )

wj
, s

p−p
k+1
∏
j=1

(1− Tbj
p )

wj

,

s
p

k+1
∏
j=1

(
Iaj
p )

wj
, s

p
k+1
∏
j=1

(
Ibj
p )

wj

,

s
p

k+1
∏
j=1

(
Faj
p )

wj
, s

p
k+1
∏
j=1

(
Fbj
p )

wj

〉,

〈
s

p−p
k+1
∏
j=1

(1− Tj
p )

wj
, s

p
k+1
∏
j=1

(
I j
p )

wj
, s

p
k+1
∏
j=1

(
Fj
p )

wj

〉


.

Based on the above results, Equation (5) can hold for any n. The proof is finished.
Clearly, the LNCNWAA operator contains the following properties:
(1) Idempotency: Let hj (j = 1, 2, . . . , n) be a group of LNCNs. When hj = h for j = 1, 2, . . . , n, there

is LNCNWAA(h1, h2, · · · , hn) = h.
(2) Boundedness: Let hj (j = 1, 2, . . . , n) be a group of LNCNs and the minimum and maximum

LNCNs be h− =

(〈[
min

j
(sTaj), min

j
(sTbj)

]
,
[

max
j

(sIaj), max
j

(sIbj)

]
,
[

max
j

(sFaj), max
j

(sFbj)

]〉
,
〈

min
j
(sTj), max

j
(sI j), max

j
(sFj)

〉)
and h+ =

(〈[
max

j
(sTaj), max

j
(sTbj)

]
,
[

min
j
(sIaj), min

j
(sIbj)

]
,
[

min
j
(sFaj), min

j
(sFbj)

]〉
,
〈

max
j

(sTj), min
j
(sI j), min

j
(sFj)

〉)
respectively. Then, there exists h− ≤ LNCNWAA(h1, h2, · · · , hn) ≤ h+.

(3) Monotonicity: Let hj (j = 1, 2, . . . , n) be a group of LNCNs. When hj ≤ h∗j for j = 1, 2, . . . , n,
then there exists LNCNWAA(h1, h2, · · · , hn) ≤ LNCNWAA

(
h∗1 , h∗2 , · · · , h∗n

)
.
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Proof. (1) For hj = h (j = 1, 2, . . . , n), we have the following result:

LNCNWAA(h1, h2, · · · , hn) =
n
∑

j=1
wjhj

=



〈s
p−p

n
∏
j=1

(1− Taj
p )

wj , s
p−p

n
∏
j=1

(1− Tbj
p )

wj

,

s
p

n
∏
j=1

(
Iaj
p )

wj , s
p

n
∏
j=1

(
Ibj
p )

wj

,

s
p

n
∏
j=1

(
Faj
p )

wj , s
p

n
∏
j=1

(
Fbj
p )

wj

〉,〈
s

p−p
n
∏
j=1

(1− Tj
p )

wj , s
p

n
∏
j=1

(
I j
p )

wj , s
p

n
∏
j=1

(
Fj
p )

wj

〉


=



〈s
p−p(1− Ta

p )

n
∑

j=1
wj

, s
p−p(1− Tb

p )

n
∑

j=1
wj

,

s
p( Ia

p )

n
∑

j=1
wj

, s
p( Ib

p )

n
∑

j=1
wj

,

s
p( Fa

p )

n
∑

j=1
wj

, s
p( Fb

p )

n
∑

j=1
wj

〉,

〈
s

p−p(1− T
p )

n
∑

j=1
wj

, s
p( I

p )

n
∑

j=1
wj

, s
p( F

p )

n
∑

j=1
wj

〉


=

(〈[
sp−p(1− Ta

p ), sp−p(1− Tb
p )

]
,
[

sp( Ia
p ), sp( Ib

p )

]
,
[

sp( Fa
p ), sp( Fb

p )

]〉
,
〈

sp−p(1− T
p )

, sp( I
p )

, sp( F
p )

〉)
= (〈[sTa, sTb], [sIa, sIb], [sFa, sFb]〉, 〈sT , sI , sF〉) = h.

(2) Since the minimum LNCN is h− and the maximum LNCN is h+, there is h− ≤ hj ≤ h+.

Thus, there exists
n
∑

j=1
wjh− ≤

n
∑

j=1
wjhj ≤

n
∑

j=1
wjh+. According to the above property (1), there exists

h− ≤
n
∑

j=1
wjhj ≤ h+. Then, h− ≤ LNCNWAA(h1, h2, · · · , hn) ≤ h+ can hold.

(3) For hj ≤ h∗j (j = 1, 2, . . . , n), there exists
n
∑

j=1
wjhj ≤

n
∑

j=1
wjh∗j . Then,

LNCNWAA(h1, h2, · · · , hn) ≤ LNCNWAA
(
h∗1 , h∗2 , · · · , h∗n

)
can hold.

Hence, we complete the proofs of these properties.
Obviously, when wj = 1/n for j = 1, 2, . . . , n, the LNCNWAA operator is reduced to the LNCN

arithmetic averaging operator.

3.2. LNCNWGA Operator

Definition 7. Let hj =
(〈

[sTaj, sTbj], [sIaj, sIbj], [sFaj, sFbj]
〉

,
〈
sTj, sI j, sFj

〉)
(j =1, 2, . . . , n) be a group of

LNCNs, then the LNCNWGA operator is defined as follows:

LNCNWGA(h1, h2, · · · , hn) =
n

∏
j=1

h
wj
j (8)

where wj is the weight of hj (j =1, 2, . . . , n) for wj ∈ [0, 1] and ∑n
j=1 wj = 1.

According to Definitions 3 and 7, we can introduce the following theorem.
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Theorem 2. Lethj =
(〈

[sTaj, sTbj], [sIaj, sIbj], [sFaj, sFbj]
〉

,
〈
sTj, sI j, sFj

〉)
(j = 1, 2, . . . , n) be a group of

LNCNs. Then, the aggregation result of Equation (8) is still a LNCN, which is calculated by the following
aggregation equation:

LNCNWGA(h1, h2, · · · , hn) =
n
∏
j=1

h
wj
j

=



〈s
p

n
∏
j=1

(
Taj
p )

wj , s
p

n
∏
j=1

(
Tbj

p )
wj

,

s
p−p

n
∏
j=1

(1− Iaj
p )

wj , s
p−p

n
∏
j=1

(1− Ibj
p )

wj

,

s
p−p

n
∏
j=1

(1− Faj
p )

wj , s
p−p

n
∏
j=1

(1− Fbj
p )

wj

〉,〈
s

p
n
∏
j=1

(
Tj
p )

wj , s
p−p

n
∏
j=1

(1− I j
p )

wj , s
p−p

n
∏
j=1

(1− Fj
p )

wj

〉


(9)

where wj is the weight of hj (j = 1, 2, . . . , n) for wj ∈ [0, 1] and ∑n
j=1 wj = 1. Obviously, when wj = 1/n for

j = 1, 2, ..., n, the LNCNWGA operator is reduced to the LNCN geometric averaging operator.

Based on the similar proof manner of Theorem 1, we can prove Theorem 2. Hence, it is
omitted here.

Obviously, the LNCNWGA operator also contains the following properties:
(1) Idempotency: Let hj (j = 1, 2, . . . , n) be a group of LNCNs. When hj = h for j = 1, 2, . . . , n, there

exists LNCNWGA(h1, h2, · · · , hn) = h.
(2) Boundedness: Let hj (j = 1, 2, . . . , n) be a group of LNCNs and the minimum and maximum

LNCNs be h− =

(〈[
min

j
(sTaj), min

j
(sTbj)

]
,
[

max
j

(sIaj), max
j

(sIbj)

]
,
[

max
j

(sFaj), max
j

(sFbj)

]〉
,
〈

min
j
(sTj), max

j
(sI j), max

j
(sFj)

〉)
and h+ =

(〈[
max

j
(sTaj), max

j
(sTbj)

]
,
[

min
j
(sIaj), min

j
(sIbj)

]
,
[

min
j
(sFaj), min

j
(sFbj)

]〉
,
〈

max
j

(sTj), min
j
(sI j), min

j
(sFj)

〉)
respectively. Then, there exists h− ≤ LNCNWGA(h1, h2, · · · , hn) ≤ h+.

(3) Monotonicity: Let hj (j = 1, 2, . . . , n) be a group of LNCNs. When hj ≤ h∗j for j = 1, 2, . . . , n,
there exists LNCNWGA(h1, h2, · · · , hn) ≤ LNCNWGA

(
h∗1 , h∗2 , · · · , h∗n

)
.

Based on the similar proofs of the properties corresponding to the LNCNWAA operator, we can
also prove these properties of the LNCNWGA operator. Hence, these proofs are omitted here.

4. Decision-Making Method Based on the LNCNWAA or Linguistic Neutrosophic Cubic Number
Weighted Geometric Averaging (LNCNWGA) Operator

This section proposes a decision-making method based the LNCNWAA or LNCNWGA operator
to solve multiple attribute decision-making problems with LNCN information.

If there is a multiple attribute decision-making problem, we consider Q = {Q1, Q2, . . . , Qm}
as a set of alternatives and R = {R1, R2, . . . , Rn} as a set of attributes. The weigh vector of the
attributes Rj (j = 1, 2, . . . , n) is specified as w = (w1, w2, . . . , wn). Then, decision-makers are invited
to evaluate the alternatives Qi (i = 1, 2, . . . , m) over the attributes Rj (j = 1, 2, . . . , n) by LNCNs
from the predefined linguistic term set S = {sj| j ∈ [0, p]}, where p + 1 is an odd number/cardinality.
Based on the linguistic term set, the decision-makers can assign the uncertain linguistic arguments
corresponding to the truth, indeterminacy, and falsity linguistic terms and the certain linguistic
arguments corresponding to the truth, indeterminacy, and falsity linguistic terms in each LNCN as the
linguistic evaluation of each attribute Rj (j = 1, 2, . . . , n) on each alternative Qi (i = 1, 2, . . . , m) in the
evaluation process. Thus, all the LNCNs can be constructed as a LNCN decision matrix D = (hij)m×n,

where hij =
(〈

[sTaij, sTbij], [sIaij, sIbij], [sFaij, sFbij]
〉

,
〈
sTij, sIij, sFij

〉)
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) is

a LNCN.
Thus, the decision-making method based on the LNCNWAA or LNCNWGA operator is described

by the following decision steps:

Step 1 Calculate hi = LNCNWAA(hi1, hi2, ..., hin) or hi = LNCNWGA(hi1, hi2, ..., hin) (i = 1, 2, . . . , m)
by using Equation (5) or Equation (9) and obtain the collective overall LNCN hi for Qi (i = 1, 2,
. . . , m).
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Step 2 Calculate the values of S(hi) (H(hi) and/or C(hi) if necessary) (i = 1, 2, . . . , m) for each collective
overall LNCN hi (i = 1, 2, . . . , m) by Equation (1) (Equation (2) and/or Equation (3)).

Step 3 Rank the alternatives corresponding to the ranking method of Definition 5, and then select the
best one.

Step 4 End.

5. Illustrative Example

This section provides an illustrative example in order to demonstrate the application of the
proposed decision-making method under a linguistic neutrosophic cubic environment.

A manufacturing company needs to hire a mechanical designer. After all applicants are chosen
preliminarily by the human resources department, four potential candidates Q1, Q2, Q3, and Q4 need
to be further evaluated according to the three requirements/attributes: (1) R1 is the innovation skill;
(2) R2 is the design experience; (3) R3 is the self-confidence. A group of experts is required to conduct
the interview and to choose the most suitable candidate. Then, the weigh vector w = (0.45, 0.35, 0.2) is
considered as the importance of the three attributes. Herewith, the experts (decision-makers) need
to evaluate the four potential candidates/alternatives Qi (i = 1, 2, 3, 4) corresponding to the three
attributes Rj (j = 1, 2, 3) by the form of LNCNs based on the given linguistic term set S = {sj| j ∈ [0, p]},
where S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor, s4 = fair, s5 = slightly good,
s6 = good, s7 = very good, s8 = extremely good} for p = 8. Thus, all the LNCNs are given by the experts
and constructed as the following LNCN decision matrix D(hij)4×3:

D(hij)4×3 =


(〈[s4, s6], [s1, s2], [s1, s3]〉, 〈s5, s1, s2〉) (〈[s4, s6], [s1, s3], [s1, s3]〉, 〈s5, s2, s2〉) (〈[s4, s7], [s1, s3], [s2, s3]〉, 〈s6, s2, s3〉)
(〈[s3, s5], [s1, s2], [s1, s2]〉, 〈s4, s1, s1〉) (〈[s5, s7], [s1, s2], [s1, s2]〉, 〈s6, s1, s2〉) (〈[s4, s6], [s2, s3], [s1, s2]〉, 〈s5, s3, s1〉)
(〈[s4, s7], [s1, s2], [s2, s3]〉, 〈s5, s2, s3〉) (〈[s6, s7], [s1, s3], [s1, s3]〉, 〈s7, s2, s2〉) (〈[s5, s7], [s1, s3], [s2, s3]〉, 〈s5, s2, s3〉)
(〈[s6, s7], [s2, s3], [s2, s3]〉, 〈s7, s3, s3〉) (〈[s5, s7], [s1, s2], [s1, s2]〉, 〈s6, s1, s2〉) (〈[s4, s6], [s1, s2], [s1, s2]〉, 〈s5, s1, s1〉)


Thus, the proposed decision-making method can be applied to the decision-making problem with

LNCN information.
On the one hand, we can use the decision-making method based on the LNCNWAA operator,

which is described by the following decision steps:

Step 1 By using Equation (5), the collective overall LNCNs of hi for Qi (i = 1, 2, 3, 4) can be given
as follows:

h1 = (<[s4, s6.2589], [s1, s2.4997], [s1.1487, s3]>, <s5.2337, s1.4641, s2.1689>), h2 = ([s4.0011, s6.1167], [s1.1487,
s2.1689], [s1, s2]>, <s5.0371, s1.2457, s1.2746>), h3 = ([s5.0371, s7], [s1, s2.4997], [s1.5692, s3]>, <s5.9577, s2,
s2.6031>), and h4 = ([s5.3523, s6.8513], [s1.366, s2.4003], [s1.366, s2.4003]>, <s6.4122, s1.6395, s2.0896>).

Step 2 Calculate the score values of S(hi) (i = 1, 2, 3, 4) by Equation (1):

S(h1) = 0.7252, S(h2) = 0.7544, S(h3) = 0.7406, and S(h4) = 0.7688.
Step 3 The ranking order of the four alternatives is Q4 � Q2 � Q3 � Q1 based on the score values.

Thus, the candidate Q4 is the best choice among the four candidates.

On the other hand, we can also use the decision-making method based on the LNCNWGA
operator, which is described by the following decision procedures:

Step 1’ By using Equation (9), the collective overall LNCNs of hi for Qi (i = 1, 2, 3, 4) are given
as follows:

h1 = (<[s4, s6.1879], [s1, s2.5725], [s1.2125, s3]>, <s5.1857, s1.569, s2.2148>), h2 = (<[s3.7998, s5.8338], [s1.2125,
s2.2148], [s1, s2]>, <s4.8203, s1.4556, s1.3677>), h3 = (<[s4.8203, s7], [s1, s2.5725], [s1.6674, s3]>, <s5.6249, s2,
s2.6705>), and h4 = (<[s5.1906, s6.7875], [s1.4691, s2.4726], [s1.4691, s2.4726]>, <s6.2007, s1.9835, s2.2996>).

Step 2’ By using Equation (1), we calculate the score values of S(hi) (i = 1, 2, 3, 4) as follows:

S(h1) = 0.7195, S(h2) = 0.7389, S(h3) = 0.7296, and S(h4) = 0.7502.
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Step 3’ The ranking order of the four candidates is Q4 � Q2 � Q3 � Q1. Thus, the candidate Q4 is still
the best choice among the four candidates.

Obviously, the above two ranking orders based on the LNCNWAA and LNCNWGA operators
and the best candidate are identical.

Compared with existing currant linguistic neutrosophic decision-making methods [16,17],
the decision information in this study is LNCNs, while the decision information used in [16,17]
is linguistic neutrosophic numbers. As mentioned above, since LNCN is composed of its uncertain
neutrosophic number and its linguistic neutrosophic number, LNCN contains more information than
the unique linguistic neutrosophic number in [16,17]. However, existing linguistic neutrosophic
decision-making methods in [16,17] cannot handle such a decision-making problem with linguistic
neutrosophic cubic information in this paper. Therefore, the decision-making method proposed in
this paper can solve decision-making problems with both certain linguistic and uncertain linguistic
neutrosophic information. It can also provide a new way for hybrid linguistic decision-making
problems under certain and uncertain linguistic environments.

Due to no related studies in the existing literature, this is the first study to propose a new concept
of LNCN and a new linguistic neutrosophic cubic decision-making method. However, decision-makers
can select one of two weighted aggregation operators of LNCNs to solve linguistic neutrosophic cubic
decision-making problems according to their preference and actual requirements.

6. Conclusions

This paper originally proposed the concept of LNCN, including the internal LNCN and external
LNCN, and the operational laws of LNCNs, and introduced the score, accuracy, and certain
functions of LNCNs for comparing/ranking LNCNs. Then, we proposed the LNCNWAA and
LNCNWGA operators to aggregate LNCNs and discussed their properties. Next, we developed
a multiple attribute decision-making method based on the LNCNWAA or LNCNWGA operator for
solving multiple attribute decision-making problems with LNCN information. Finally, an example
illustrated the application of the developed method under a LNCN environment. The proposed
decision-making method can solve decision-making problems with determinate and uncertain
linguistic neutrosophic arguments.

Obviously, the main advantages of this study are summarized as follows:

(1) The LNCN expression is superior to existing linguistic expressions in the certain and uncertain
linguistic environment.

(2) The developed linguistic neutrosophic cubic decision-making method extends existing ones to
deal with linguistic neutrosophic cubic decision-making problems with the hybrid information of
both uncertain linguistic neutrosophic arguments and certain linguistic neutrosophic arguments.

(3) The developed new method enriches linguistic neutrosophic expressions and linguistic
neutrosophic decision-making methods.

In the future work, we shall further introduce new aggregation operators of LNCNs and
applications in group decision-making, pattern recognition, and medical diagnoses.
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