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                Abstract 

The groups of symmetry of regular polyhedra are considered. It is shown that a 

total number and types of gauge bosons in the Grand Unified Theory with the 

group SU(5) can be deduced from the structure of the cube rotation group. Possible 

connections of fundamental fermions with the icosahedral symmetry are discussed. 

From the author: This is a translation into English of the abridged version of an article 

published in the Russian popular science journal `Chemistry and Life` (2006, No 6): 

http://sc.tverobr.ru/dlrstore/4df74c8d-3fdd-5a12-6873-8b8d788c586e/38-41_06_2006.pdf 

=========================================== 

 

Introduction 

 

A well-known expert in high-energy physics Lev B. Okun wrote: "Physicists can be called 

hunters for symmetries: in a sense, they differ from other people in that they search in nature for 

ever more hidden and increasingly fundamental types of symmetries". 

This is clearly seen in the field of elementary particles, where it is the identification of 

symmetries that serves as an instrument that allows us to reduce the entire diversity of observed 

entities to the few underlying structures. On the other hand, in mathematics there are selected 

objects which possess a nontrivial, surprising symmetry. First of all, these are regular polyhedra, 

or Platonic solids, whose possible role in physics is yet to be revealed. 

As we know, in a three-dimensional space there are only five such polyhedra (Fig. 1): a 

tetrahedron (it has four faces), a cube (six), an octahedron (eight), a dodecahedron (twelve) and 

an icosahedron (twenty). They are called Platonic bodies, since mathematicians, close to Plato's 

Academy, first studied their entire set. 
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                                      Figure 1 

Ancient Greek natural philosophers connected the first four bodies to four elements (fire, 

air, earth, water), and the fifth (dodecahedron) – to quintessence in the form of the entire 

universe. Then interest in such figures arose in the Renaissance -- they were viewed by 

geometers and astronomers, architects and artists. Johannes Kepler tried to discover on their 

basis the principles of the structure of the solar system (the ratio of the distances of the planets 

from the Sun). Studies of Platonic solids by rigorous methods of mathematics began in the XIX 

century, when the theory of groups and other important branches of this science were developed. 

With such figures one can perform many different operations of rotation and reflection, in 

which they remain unchanged. At this moment we are interested only in rotations that form 

discrete finite groups. Note that by joining the centers of adjacent faces of any Platonic body, we 

get another, dual to it body from the same list -- the tetrahedron will go back to the tetrahedron, 

the cube to the octahedron (and back), the icosahedron to the dodecahedron (and back). Possible 

rotations of dual figures coincide, so there are only three different rotation groups: 1) of a 

tetrahedron; 2) of a cube (and octahedron); 3) of a icosahedron (and dodecahedron).  

Let's see what are the orders of these groups. A case of the tetrahedron is the simplest. 

How much rotation does it allow? This is easy to calculate, considering that any symmetry axis 

of the n-th order makes possible (n - 1) different rotations. In a tetrahedron there are four axes of 

the third order that pass through its vertices and the centers of the faces opposite to them, and 

also three axes of the second order connecting the midpoints of opposite (not having common 

vertices) edges. One should add the identical turn. Total: 4x2 + 3x1 + 1 = 12. Similarly, 

considering the possible rotations of cube and icosahedron, we find that the orders of their 

groups are 24 and 60, respectively. 

 

Rearrangement of items 

 

Now for a time let's forget about the Platonic bodies and we'll do all kinds of arrangements 

for N objects. The operations of their permutations also specify a group, which is denoted by Sn. 

How many will there be different situations? In the first place can be any of the N objects, on the 

second -- any of the remaining, that is (N-1), on the third -- any of (N-2) and so on. Multiplying, 

we obtain: Nx(N - 1) ..... 3x2x1, or N! (N-factorial).                                                                  

Note: 3! = 6; 4! = 24; 5! = 120; these are the orders of S3, S4 and S5. 
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In addition to the groups Sn of all permutations of N objects, there are also important 

groups of even permutations (they are denoted by An). The fact is that from one arrangement of 

objects to some other one, we can go not by one, so to speak, a large jump, but by several small 

steps -- successively changing only two elements each time (such substitutions are called 

transpositions). For example, if we have two sets of four digits 2-4-3-1 and 1-4-2-3, then from 

one to another we can go with two transpositions: 2-4-3-1 -> 3-4-2-1 -> 1-4-2-3. 

So the set of all arrangements of objects is divided into two equal classes: one is obtained 

from some initial by even number of transpositions, others -- by odd. Since the number of all the 

permutations N!, then of even and odd will be N!/2.                                                               

Hence, the order of the group A3 is 3, A4 -- 12, A5 -- 60.  

The groups of all permutations Sn are called symmetric (the notation S), and the groups An 

are alternating (or alternative, whence the symbol A). Why such names? This is due to the 

symmetry of the polynomials that these groups reflect. For example, let's take two functions 

from three variables: 

1) X1X2 + X2X3 + X1X3; 

2) (X1 -- X2)(X2 -- X3)(X1 -- X3). 

Let's give some concrete values to all variables Xi and see how the functions behave when 

pairwise X-renames (with transpositions). The first of them will retain its value for any 

permutations of the arguments, so the group S3 will describe it. And the second function changes 

sign at each transposition, that is, it is alternating, and in order for this polynomial to remain 

unchanged, we must make an even number of such substitutions; hence, there is a group of even 

permutations of three elements A3. 

The famous mathematician Felix Klein established an important fact: the rotation groups of 

Platonic solids are mathematically indistinguishable from certain groups of permutations --

symmetric or alternative: 

1) The tetrahedron. For rotations about third-order axes, one of its vertices remains 

stationary, and the three remaining ones are cyclically rearranged. And when you rotate around 

axes of the second order, the vertices change in pairs. All together they give 12 even 

permutations of four vertices (group A4). 

2) The cube (and the octahedron). For any rotation of the cube, its four large diagonals 

change places, and its rotation group coincides with S4, the group of all permutations of four 

elements. Its order is 24. 

3) The icosahedron (and the dodecahedron). The group of even permutations A5 (60 

operations). What are the five elements that change places? In this case, they are more difficult 

to see: it turns out that these are five octahedra inscribed in an icosahedron (or five cubes into a 

dodecahedron). In Fig. 2 shows a cube inscribed in the dodecahedron; it is clear that there can 

actually be five such cubes, because in each pentagonal face there are five diagonals that serve as 

ribs. 
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                       Figure 2   

 

 

 

On the path to unity 

 

Now it's time to look at the connection between the world of polyhedra and the world of 

elementary particles. In fact, such a relationship has long been established, but it remains 

somewhat unnoticed: the essence lies in the groups Sn and An, which describe, on the one hand, 

the rotation of the Platonic solids, and on the other, the systems consisted of micro-particles. 

When quantum chemistry arose in the 1930s, it began widely to use the theory of groups; even 

talked about the "group plague". And a lot of attention was paid to the groups of permutations. 

The cause is clear: in quantum mechanics a system of many particles is described by a 

single wave function, and the probability of an event is determined by the square of this wave 

function. The particles of the same name are indistinguishable, so if two of them are 

interchanged (transpose -- remember our polynomials), then the square of the wave function will 

not change. And this is possible in two cases: if the wave function retains its sign under 

transposition, that is, it is symmetric, or changes sign (antisymmetric). Depending on which 

option is implemented, all the particles are divided into two classes -- bosons and fermions (they 

differ in the value of the spin). Hence, bosons will be described by Sn groups, and fermions An 

(therefore such groups are used in nuclear and atomic physics, quantum chemistry and 

spectroscopy). 

Of course, the theory of groups plays a leading role in the study of the elementary particles 

themselves, describing the different symmetries in them. First of all, in accordance with this 

principle, it divides them into fermions and bosons. Fermions serve as the building blocks of the 

physical world, and bosons transfer interactions. 

Now we know 24 fundamental (to date -- structureless) fermions, which are three similar 

sets of eight particles in each -- three generations of them, differing by masses. Each generation 
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includes two leptons (an electron or its heavier analog, as well as a neutrino of one of three 

possible types) and two quarks, each of which is of three colors. Can in the future other such 

generations (the fourth, the fifth) be open? - this question is still open. 

On the agenda is the task of combining different physical forces, in other words, finding a 

group that would encompass all particles and their interactions. Electric and weak forces are 

already unified (Salam-Weinberg theory), and now physicists are fighting over the "Great 

Unification", which should include strong interaction. 

Here the model of Howard Georgie and Sheldon Glashow is popular. They formally, 

mechanically combined groups that correspond to separate known interactions (electroweak and 

strong), and included them in the most economical way in a wider, so-called SU(5) group. It 

describes fermions as a matrix five by five, then the number of bosons -- carriers of interactions 

is equal to the number of matrix elements minus one. Thus, the model explains the total number 

of bosons, namely, 24. It is important that this set of bosons realizing all fermions 

transformations is not subject to change (even if the number of fermions generations increases). 

What is this set? First, four particles carrying electroweak forces: photon, W+, W-, Z0. 

Secondly, there are eight gluons that ensure the color interaction of quarks. To these, we need to 

add two more sixes of hypothetical particles called X- and Y-particles, or leptoquarks. They, 

according to the Georgie--Glashow model, can transform quarks into leptons (X-particles – into 

an electron or its analogies, Y-particles – into different neutrinos) and vice versa at the very high 

energy (the possible instability of the proton is associated with them).  

The approach of Georgie and Glashow is just one of many possible. The main problem lies 

in finding the underlying physical reality group. Usually it is searched among various continuous 

groups (Lie groups) like SU(5). 

But maybe is it worth to look at the finite groups? And will not be the very fact of the 

presence in nature of two types of particles -- fermions and bosons -- to serve a clue to the 

problem? In accordance with the behavior of the wave function under transpositions, the 

fundamental fermions could be the realization of some alternating group, and the bosons -- of 

symmetric. As we have seen, in the cases of four or five permutable elements, these groups are 

isomorphic to the rotation groups of Platonic solids; what is more, the number of operations in 

them and the number of fundamental particles lie in the same boundaries.  

Perhaps a geometric principle that will allow us to reveal the inner logic of the world of 

elementary particles, to predict their composition and basic properties is hidden in the right 

polyhedra. 

 

Cube of bosons 

 

First, let's look from this point of view at bosons. As we said, there are 24 of them, but this 

is the order of the symmetric group S4 (it is also the group of rotation of the cube). We just 

wanted to compare the bosons to one of these groups and immediately rightly got their total 
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number. But that's not all. For a mathematician to understand the structure of a group means to 

identify its subgroups, to determine their type and the relationships between them (a special role 

is played by normal subgroups). Let's see the internal arrangement of the cube`s group. 

In it, there is a normal subgroup of the tetrahedron. After all, two tetrahedra can be 

inscribed into a cube (Fig. 3), which, intersecting, form a non-convex, star-shaped polyhedron, 

which Kepler named stella octangula (eight-pointed star). And each of the tetrahedra defines its 

normal subgroup. And the tetrahedron group, in turn, also has a normal subgroup. It consists of 

the identical rotation and three rotations on 180° around three axes of the second order -- the 

lines connecting the midpoints of the opposite edges (above we considered possible rotations of 

a tetrahedron); it is called quadratic, or Klein's group. 

 

 

     

               Figure 3 

 

 

I want to put forward the hypothesis: operations of the Klein group correspond to four 

carriers of electroweak interaction -- the photon, W+, W-, Z0. But the tetrahedron can still be 

rotated around the four axes of the third order, and there are eight such operations -- these will be 

eight gluons. Finally, there are 12 rotations of the cube that rearrange two tetrahedra in the stella 

octangula, and geometrically (in the type of rotation axes) such rotations are divided into two 

sixes, which it is logical to associate with six X- and six Y-particles. 

Then we see that the weak forces correspond to the Klein group, in which four elements 

are pairwise rearranged -- it is known that four fermions always participate in weak interactions. 

And the color forces between the quarks correspond to the rotations of the tetrahedron around the 

third-order axes when three elements are cyclically rearranged. One can fantasize that quarks and 

gluons are not observed in a free form because they are generated by subgroups that are not 

normal.  

As the result, the decomposition of the cube group (24 = 4 + 8 + 6 + 6) completely 

coincides with the sets of bosons carrying different physical forces in the SU(5) model. But here 

they arose directly from the structure of the group S4, that is, from the group of rotation of the 

cube. 
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Fermions and icosahedron 

 

It seems that the basic fermions are related to the icosahedron-dodecahedron. As Georgie 

and Glashow have discovered, symmetries of the fifth order manifest themselves in a multitude 

of these particles, and this is a characteristic feature of precisely such figures (see Glashow's 

book `The Charm of Physics`). 

We said that the final number of fermions generations is not yet known. Up to date we 

have 24 particles, but in order to obtain their total number, one must also take into account the 

antiparticles and different polarizations (two possible spin values). For one generation,         

8x2x2 = 32, but neutrinos are of only left polarization, and antineutrino are of the right 

polarization. Hence, only 30, and for three generations 90. 

However, if there are actually four generations (which is quite possible), there will be 120 

of them, and this quantity fits better in the "Platonic bed". This, as we recall, is the order of the 

group S5 (5-factorial), but now we are dealing with fermions, and therefore we are searching not 

a symmetric group, but an alternating one.  

The rotation group of the icosahedron A5 is of order 60, but it can be doubled: if we add 

reflection to one of the planes of symmetry of this polyhedron to admissible operations, then we 

go to the extended group A5. (Although it contains as many elements as S5, these are two 

completely different groups.) 

The tetrahedron also has an extended A4 group. And what an interesting effect: the A5 

group (the icosahedron rotation) has the subgroup A4 (the tetrahedron rotations), but in the 

extended group A5 the extended A4 group no longer serves as a subgroup. Instead of it, A5 has 

another subgroup (we denote it by *A4), consisting of a group of tetrahedron supplemented by a 

reflection operation with respect to its center. This subgroup corresponds to nothing else than 

stella octangula. 

Let's try to give the newly introduced operations a physical meaning. Reflection from the 

plane could correspond to a transition from a particle to an antiparticle, and reflection from the 

center to a different polarization. Let us also assume that the extended group A5 acts at the Grand 

Unification energies, and at lower ones its subgroup *A4 (as the theory of phase transitions 

teaches, it becomes less symmetrical upon cooling of the system). 

Then, with a drop in temperature, the equality of particles and antiparticles should have 

been violated. Hence, the properties of finite groups can give the solution of the observed 

asymmetry of nature -- the presence of the world, but not the anti-world. 

It was noticed (Georgie wrote about this) that every generation of fermions is well modeled 

by a cube. In fact, arrange the cube on a horizontal plane so that it stands on top (Fig. 4). We 

draw on the plane three axes A, B, C at 120° angles to each other -- they will represent the color 

charges; the value of the electric charge is plotted vertically. Then the lower and upper vertices 

of the cube correspond two leptons of one generation, say, neutrinos and positrons (their 

electrical charges are 0 and 1, and color charges are absent). The remaining six vertices form 
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regular triangles in two horizontal planes, displaying all the color states of the u-quark and the d-

antiquark. Their electric charges, as it should be, are fractional: 2/3 and 1/3. 

 

 

            

                          Figure 4 

 

 

But in fact such a cube can be replaced with an eight-pointed star inscribed in it, the ends 

of which are the same eight points as the cube's vertices. Two of its crossed tetrahedra that form 

it reflect the symmetry between two quadruples of particles in each fermions generation. 

Apparently, it corresponds to stella octangula -- a subgroup *A4  of the extended icosahedron 

group A5. 

 

Forward to Plato 

 

Of course, all of the above is not so much a solution as posing a problem. Fermions and 

bosons are not independent, and therefore both classes of particles must be interconnected. In 

addition, we need to reconcile these considerations with modern field theory. And yet it is 

difficult to get rid of the impression that the right polyhedra are really capable of shedding new 

light on the structure of matter. 

Among the Platonic solids, the icosahedron is most interesting, and it is encountered, 

sometimes quite unexpectedly, in the most diverse areas of mathematics (see a known book 

about icosahedron by F. Klein). This fact should serve as a heuristic when working on a unified 

theory of elementary particles -- indeed, in nature the most sophisticated abstract structure is 

certainly embodied. Its search is the Promethean task of our days. 

As Werner Heisenberg wrote, "the development of physics looks as if in the end very 

simple laws of nature will be found, such as Plato hoped to see them". It is not ruled out that 

these laws will be connected with regular polyhedra. Even when knowledge of physical reality 
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was still very scarce, there were thinkers (Plato, Kepler) who saw in these bodies the key to its 

understanding. They probably make up the rearguard, which is always ahead. 


