A note on a problem invoving a square in a curvilinear triangle

HIROSHI OKUMURA

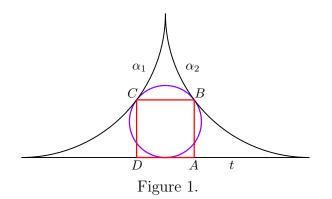
Abstract. A problem involving a square in the curvilinear triangle made by two touching congruent circles and their common tangent is generalized.

Keywords. square in a curvilinear triangle

Mathematics Subject Classification (2010). 01A27, 51M04

Let α_1 and α_2 be touching circles of radius *a* with external common tangent *t*. In this note we consider the following problem [1, 4, 5] (see Figure 1).

Problem 1. ABCD is a square such that the side DA lies on t and the points C and B lie on α_1 and α_2 , respectively. Show that 2a = 5|AB|.



If $\gamma_1, \gamma_2, \dots, \gamma_n$ are congruent circles touching a line *s* from the same side such that γ_1 and γ_2 touch and γ_i $(i = 3, 4, \dots, n)$ touches γ_{i-1} from the side opposite to γ_1 , then $\gamma_1, \gamma_2, \dots, \gamma_n$ are called congruent circles on *s*. The curvilinear triangle made by α_1, α_2 and *t* is denoted by Δ . The incircle of Δ touches α_1 and α_2 at *C* and *B*, respectively as in Figure 1. Indeed the problem is generalized as follows (see Figure 2):

Theorem 1. If $\beta_1, \beta_2, \dots, \beta_n$ are congruent circles on t lying in Δ such that β_1 touches α_1 at a point C and β_n touches α_2 at a point B and A is the foot of perpendicular from B to t, then the following relations hold. (i) n|AB| = |BC|. (ii) $2\alpha = \left(\left(\sqrt{n} + 1\right)^2 + 1\right) |AB|$

(ii) $2a = \left(\left(\sqrt{n}+1\right)^2 + 1\right)|AB|.$

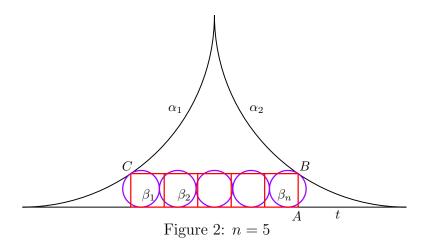
Proof. Let b be the radius of β_1 . By Theorem 5.1 in [2] we have

$$(1) a = (\sqrt{n}+1)^2 b.$$

Let d = |AB|. Since C divides the segment joining the centers of α_1 and β_1 in the ratio a : b internally, we have

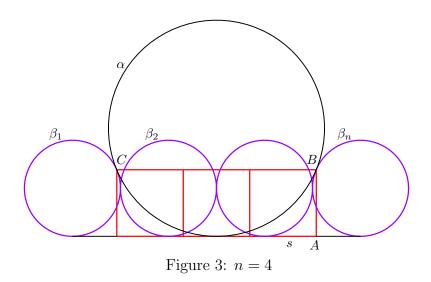
(2)
$$\frac{d-b}{b} = \frac{a-b}{a+b}$$

Eliminating b from (1) and (2), and solving the resulting equation for d, we get $d = 2a/(1 + (1 \pm \sqrt{n})^2)$. But in the minus sign case we get $2b - d = 2a(1 - 4\sqrt{n})/(n^2 - n + 2\sqrt{n} + 2) < 0$ by (1). Hence $d = 2a/(1 + (1 + \sqrt{n})^2)$. This proves (ii). Let |BC| = 2h. Then from the right triangle formed by the line BC, the segment joining the centers of α_1 and β_1 , and the perpendicular from the center of α_1 to BC, we get $(a - h)^2 + (a - d)^2 = a^2$. Solving the equation for h, we have $h = a - \sqrt{(2a - d)d} = an/(1 + (1 + \sqrt{n})^2)$. This proves (i).



The figure consisting of α_1 , α_2 , β_1 , β_2 , \cdots , β_n and t is denoted by $\mathcal{B}(n)$ and considered in [2]. Since the inradius of Δ equals a/4, the next theorem is also a generalization of Problem 1 (see Figure 3).

Theorem 2. Let $\beta_1, \beta_2, \dots, \beta_n$ be congruent circles on a line s. If a circle α of radius a touches s and β_1 and β_n externally at points C and B, respectively, A is the foot of perpendicular from B to s, then the following relations hold. (i) (n-1)|AB| = |BC|. (ii) $2a = ((n-1)^2 + 4)|AB|/4$.



Theorem 2 is proved in a similar way as Theorem 1 using the fact that the ratio of the radii of α and β_1 equals $(n-1)^2 : 4$ [3]. The figure consisting of α , β_1 , β_2 , \cdots , β_n and s is denoted by $\mathcal{A}(n)$ and considered in [2].

References

- [1] Aida ed., Sampō Tenshōhō, 1788, Tohoku Univ. WDB, http://www.i-repository.net/il/meta_pub/G0000398wasan_4100002292.
- [2] H. Okumura, Configurations of congruent circles on a line, Sangaku J. Math., 1 (2017) 24–34.
- [3] H. Okumura, Variatios of the ratio 1 : 4, Math. and Informatics Quarterly, 3(4) (1993) 162–166.
- [4] Enrui Tekitō Shū, Tohoku Univ. WDB, http://www.i-repository.net/il/meta_pub/G0000398wasan_4100003918.
- [5] Yōjutsu Kugōhyū, Tohoku Univ. WDB,
- http://www.i-repository.net/il/meta_pub/G0000398wasan_4100007186. Tohoku Univ. WDB is short for Tohoku University Wasan Material Database.