A note on a problem invoving a square in a curvilinear triangle

Hiroshi Okumura

Abstract. A problem involving a square in the curvilinear triangle made by two touching congruent circles and their common tangent is generalized.

Keywords. square in a curvilinear triangle
Mathematics Subject Classification (2010). 01A27, 51M04

Let α_{1} and α_{2} be touching circles of radius a with external common tangent t. In this note we consider the following problem $[1,4,5]$ (see Figure 1).

Problem 1. $A B C D$ is a square such that the side $D A$ lies on t and the points C and B lie on α_{1} and α_{2}, respectively. Show that $2 a=5|A B|$.

Figure 1.
If $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}$ are congruent circles touching a line s from the same side such that γ_{1} and γ_{2} touch and $\gamma_{i}(i=3,4, \cdots, n)$ touches γ_{i-1} from the side opposite to γ_{1}, then $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}$ are called congruent circles on s. The curvilinear triangle made by α_{1}, α_{2} and t is denoted by Δ. The incircle of Δ touches α_{1} and α_{2} at C and B, respectively as in Figure 1. Indeed the problem is generalized as follows (see Figure 2):

Theorem 1. If $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$ are congruent circles on t lying in Δ such that β_{1} touches α_{1} at a point C and β_{n} touches α_{2} at a point B and A is the foot of perpendicular from B to t, then the following relations hold.
(i) $n|A B|=|B C|$.
(ii) $2 a=\left((\sqrt{n}+1)^{2}+1\right)|A B|$.

Proof. Let b be the radius of β_{1}. By Theorem 5.1 in [2] we have

$$
\begin{equation*}
a=(\sqrt{n}+1)^{2} b . \tag{1}
\end{equation*}
$$

Let $d=|A B|$. Since C divides the segment joining the centers of α_{1} and β_{1} in the ratio $a: b$ internally, we have

$$
\begin{equation*}
\frac{d-b}{b}=\frac{a-b}{a+b} \tag{2}
\end{equation*}
$$

Eliminating b from (1) and (2), and solving the resulting equation for d, we get $d=2 a /\left(1+(1 \pm \sqrt{n})^{2}\right)$. But in the minus sign case we get $2 b-d=2 a(1-$ $4 \sqrt{n}) /\left(n^{2}-n+2 \sqrt{n}+2\right)<0$ by (1). Hence $d=2 a /\left(1+(1+\sqrt{n})^{2}\right)$. This proves (ii). Let $|B C|=2 h$. Then from the right triangle formed by the line $B C$, the segment joining the centers of α_{1} and β_{1}, and the perpendicular from the center of α_{1} to $B C$, we get $(a-h)^{2}+(a-d)^{2}=a^{2}$. Solving the equation for h, we have $h=a-\sqrt{(2 a-d) d}=a n /\left(1+(1+\sqrt{n})^{2}\right)$. This proves (i).

Figure 2: $n=5$
The figure consisting of $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \cdots, \beta_{n}$ and t is denoted by $\mathcal{B}(n)$ and considered in [2]. The next theorem also shows that the points B and C lies on the incircle of Δ in Figure 1 (see Figure 3).

Theorem 2. Let $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$ be congruent circles on a line s. If a circle α touches s and β_{1} and β_{n} externally at points C and B, respectively, A is the foot of perpendicular from B to s, then the following relations hold.
(i) $(n-1)|A B|=|B C|$.
(ii) $2 a=\left((n-1)^{2}+4\right)|A B| / 4$.

Figure 3: $n=4$
Theorem 2 is proved in a similar way as Theorem 1 using the fact that the ratio of the radii of α and β_{1} equals $(n-1)^{2}: 4[3]$. The figure consisting of $\alpha, \beta_{1}, \beta_{2}$, \cdots, β_{n} and s is denoted by $\mathcal{A}(n)$ and considered in [2].

References

[1] Aida ed., Sampō Tenshōhō, 1788, Tohoku Univ. WDB, http://www.i-repository.net/il/meta_pub/G0000398wasan_4100002292.
[2] H. Okumura, Configurations of congruent circles on a line, Sangaku J. Math., 1 (2017) 24-34.
[3] H. Okumura, Variatios of the ratio 1: 4, Math. and Informatics Quarterly, 3(4) (1993) 162-166.
[4] Enrui Tekitō Shū, Tohoku Univ. WDB, http://www.i-repository.net/il/meta_pub/G0000398wasan_4100003918.
[5] Yōjutsu Kugōhyū, Tohoku Univ. WDB, http://www.i-repository.net/il/meta_pub/G0000398wasan_4100007186.
Tohoku Univ. WDB is short for Tohoku University Wasan Material Database.

