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Abstract—Huygens’ principle (HP), extinction theorem (ET), 

and Franz’s / Franz-Harrington formulation (FHF, which is a 

mathematical expression of surface equivalence principle) are the 

important components of electromagnetic (EM) theory, and they 

are generalized from the following aspects. 

1) Traditional HP, ET, and FHF in homogeneous isotropic en-

vironment are generalized to inhomogeneous anisotropic lossy 

environment. 2) Traditional FHF for homogeneous isotropic ma-

terial system is generalized to inhomogeneous anisotropic lossy 

material system in this paper, and will be further generalized to 

metal-material combined system in future works. 3) The Huygens’ 

surface in traditional HP and ET is a single closed surface. In this 

paper, it is generalized to the “Huygens’ surface” which is con-

structed by multiple closed surfaces. In future works, it will be 

further generalized to the “Huygens’ boundary” which includes 

some lines and open surfaces. 4) For a material body, traditional 

FHF has only ability to express the external scattering field and 

the internal total field (the summation of scattering and incident 

fields) in terms of the equivalent sources on material boundary, 

and it is generalized to formulating the internal scattering and 

incident fields in this paper. 

In addition, the relationships among HP, ET, and FHF are 

studied, and it is proved that HP and ET are equivalent to each 

other. 

 

 
Index Terms—Action at a distance, equivalence principle, ex-

tinction theorem (ET), Franz’s formulation, Franz-Harrington 

formulation (FHF), Huygens’ principle (HP), inhomogeneous 

anisotropic lossy material, material body, Green’s theorem, su-

perposition principle, the law of causality, topological additivity. 

 

  

I. INTRODUCTION 

QUIVALENCE principle is an indispensable building block 

for classical electromagnetic (EM) theory. The principle 

provides the method to express the interesting EM fields in the 

interesting region by using equivalent sources instead of real 

sources, and there are some variations of the principle, such as 

volume equivalence principle (VEP) and surface equivalence 
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principle (SEP). The VEP expresses the interesting EM fields 

in terms of equivalent volume sources, and a detailed discus-

sion for it can be found in [1] and [2]. Compared with the VEP, 

the SEP is more philosophical, and has a longer history. To 

clarify some important concepts closely related to this paper, a 

brief review on the history of SEP is provided below. 

The earliest researches on SEP can be dated back to C. 

Huygens. In 1690, he published a seminal book on the propa-

gation of light, Traite de la Lumiere [3], and introduced a so-

phisticated principle, now known as Huygens’ principle (HP): 

“Each point on a primary wavefront can be considered to be a 

new source of a secondary spherical wave and that a secondary 

wavefront can be constructed as the envelope of these secondary 

spherical waves.” [4] 

Based on the principle, Huygens provided a geometrography to 

explain the propagation, reflection, and refraction phenomena 

of light, and his principle and geometrography are usually 

collectively referred to as Huygens’ construction. Huygens’ 

construction is a qualitative method instead of being quantita-

tive, and the earliest quantitative researches on HP started with 

T. Young and A. Fresnel. 

Around 1800, Young [5] did his famous double-slit inter-

ference experiment, and studied the diffraction phenomenon of 

light. To mathematically explain these new phenomena, Young 

introduced, in addition to the geometric-optical principle of 

propagation of locally-plane waves in the direction of rays, the 

notion of transverse transmission of the oscillation amplitudes 

directly along the wave-fronts [6], but his method cannot gen-

erally explain the diffraction for all cases. Until 1819, A. 

Fresnel [7] generally explained the diffraction by employing 

wave equation and boundary values, so the HP is also called as 

Huygens-Fresnel principle now. (In fact, it was shown by G. 

Maggi in 1888 [8] and by A. Rubinowicz in 1917 [9] and 1924 

[10] that the results obtained by Fresnel’s methods can be re-

duced by means of a mathematical transformation to the same 

form as predicted by Young [6], and the related theory is 

sometimes called as Young-Maggi-Rubinowicz theory [11].) 

However, Fresnel’s original theory cannot properly describe 

the propagation of light in free space, because it generates the 

backward waves which propagate towards wave source, and 

then it conflicts with the law of causality. To suppress the 
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backward waves, Fresnel introduced the oblique factor into his 

theory, so his theory is essentially a phenomenological theory. 

To establish the formulation of HP on a rigorous mathe-

matical foundation started with H. Helmholtz for steady-state 

(monochromatic) case in 1859 and G. Kirchhoff for 

time-dependent case in 1882. Now, the Helmholtz’s result [12] 

is also known as scalar Green’s second theorem, and the 

Kirchhoff’s result [13], [14] is also called as Fresnel-Kirchhoff 

diffraction integral formulation. Later on, by employing the 

first and second kinds of half-space scalar Green’s functions, 

Lord Rayleigh [15] and A. Sommerfeld [16] extended the 

Fresnel-Kirchhoff formulation to instrumental optics, and the 

extended formulations are now known as Rayleigh-Sommerfeld 

diffraction integral formulations [17]. Just based on the above 

famous works, the wave nature of light, which was hidden in 

Newton’s corpuscular theory for a long period, was revealed 

gradually, and a very comprehensive review for this history can 

be found in [18] and [19]. 

In fact, all the above-mentioned formulations are the scalar 

formulations of EM waves (EM waves are essentially vectorial), 

so they are usually collectively referred to as scalar diffraction 

formulations [17]. The attempt to formulate vectorial diffrac-

tion formulations directly based on the vectorial nature of EM 

waves originates from the establishment of famous Maxwell’s 

equations [20], and the earliest scholars focusing on this at-

tempt are A. Love (1901) [21] and H. MacDonald (1911) [22]. 

Love introduced the concept of equivalent surface current to act 

as the Huygens’ secondary source for the first time, and his 

work is now known as Love’s equivalence principle. In 1936, S. 

Schelkunoff [23] extended Love’s result to allow for an arbi-

trary EM field distribution on the both sides of a surface, and 

his result is now called as Schelkunoff’s equivalence principle 

(Schelkunoff pointed out that this particular formulation orig-

inated from J. Larmor [24]). In 1938, J. Stratton and L. Chu [25] 

provided a formulation to express EM field in terms of both the 

normal and tangential components of field on a closed surface 

by employing so-called vector Green’s second theorem, and the 

formulation is now called as Stratton-Chu formulation. In 1948, 

W. Franz [26] established so-called Franz’s formulation (or 

called as Kottler-Franz formulation due to [27]), which can 

express EM field in terms of only tangential surface field. Later 

on, C.-T. Tai [28] proved that the Stratton-Chu and Franz’s 

formulations are equivalent to each other, and pointed out that 

the Stratton-Chu formulation is essentially identical to the 

Larmor-Tedone formulation as described in [29]. A relatively 

comprehensive summarization for above vectorial diffraction 

formulations can be found in [2], [30], and [31]. 

Based on his studies on the Cauchy problem for partial dif-

ferential equations, J. Hadamard [32], an outstanding mathe-

matician, gave HP a mathematically rigorous and somewhat 

philosophical description, and revealed that the crucial building 

blocks of HP are the following three: i) the concept of action at 

a distance (this concept originates from M. Faraday and J. 

Maxwell [20]), ii) the law of causality, and iii) the principle of 

superposition. The first block implies that the formulation of 

HP needs to employ the field propagator (Green’s function), 

and the second block implies that the propagator should prop-

agate away from source rather than being towards source (i.e., 

the propagator should satisfy Sommerfeld’s radiation condition 

[33]), and the third block implies that the formulation of HP 

will be expressed as integral. Hence, all formulations men-

tioned above are the integral formulations basing on outgoing 

Green’s functions. 

Obviously, the establishment for HP and its mathematical 

formulation experienced an evolution from qualitative to 

quantitative and from scalar to vectorial. In classical electro-

magnetics framework, the Franz’s formulation reaches the peak 

of the evolution as stated by Prof. Tai that: 

“It seems obvious that the Franz formula is conceptually simpler 

since it requires only the tangential components of the field on 

the closed surface, while the Stratton-Chu formula requires the 

normal components as well. Most important of all, when the field 

has an edge singularity on the surface of integration the Lar-

mor-Tedone formula or Stratton-Chu formula must be modified 

as shown by Kottler in order to make the resultant field Max-

wellian.” [28] 

Because of this, the Franz’s formulation has been widely ap-

plied in EM engineering society. For example, the famous 

PMCHWT-based scattering integral equation (A. Poggio and E. 

Miller [34], Y. Chang and R. Harrington [35], W. Wu [36], and 

Tsai) and the PMCHWT-based characteristic mode (CM) 

formulation [35] for homogeneous isotropic material bodies 

were established basing on the Franz’s formulation. 

The formulation utilized by Chang and Harrington in [35] is 

essentially the Franz’s formulation, but the former is more 

advantageous than the latter in the following aspects. a) The 

former is more concise than the latter in mathematical form. b) 

The former expresses various fields in terms of an identical set 

of equivalent currents, i.e., the external scattering field and the 

internal total field of material body are simultaneously ex-

pressed as the functions of the equivalent surface currents de-

fined by using boundary tangential total fields. Based on these 

features, the former is more popular than the latter in compu-

tational electromagnetics and EM engineering, though the 

former is essentially the latter from the perspective of EM 

theory. In addition, Chang and Harrington provided their for-

mulation in [35] by directly citing Harrington’s classical book 

[31], so their formulation is particularly called as 

Franz-Harrington formulation (FHF) in this paper. 

Although FHF has had many successful applications as 

mentioned above, it also has some limitations, and this paper 

does some works to remove the limitations. 

The limitations on EM media 

The traditional HP and ET are only valid for homogeneous 

isotropic environment, and the traditional FHF is only valid for 

a homogeneous isotropic material body in homogeneous iso-

tropic environment. It is still an unsolved problem how to es-

tablish the HP, ET, and FHF of inhomogeneous anisotropic 

lossy material body in inhomogeneous anisotropic lossy envi-

ronment, and it is done in this paper. 

In the appendixes of this paper, the EM field in inhomoge-

neous anisotropic lossy environment is expressed in terms of its 

tangential components on a closed surface, based on general-
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ized vector-dyadic Green’s second theorem. The reason to 

utilize the vector-dyadic version of Green’s second theorem 

instead of the vector version used in [25] is based on Prof. Tai’s 

observation: 

“… the most compact formulation appears to be the one based on 

the dyadic Green’s function pertaining to the vector wave equa-

tion for E  and H  …” [28] 

The reason to utilize the generalized version of vector-dyadic 

Green’s second theorem instead of the traditional version used 

in [37] is that the traditional one is suitable for neither inho-

mogeneous media nor anisotropic media. Based on the results 

given in appendixes, the traditional HP, ET, and FHF are gen-

eralized in Secs. II-IV from the following aspects. 

• Based on the integral formulations given in appendixes, the 

traditional HP and ET are generalized to inhomogeneous ani-

sotropic lossy environment, and the traditional FHF is gener-

alized to an inhomogeneous anisotropic lossy body in inho-

mogeneous anisotropic lossy environment, in Secs. II and III. 

• Based on the results obtained in Secs. II and III, the FHF is 

further generalized to the piecewise inhomogeneous aniso-

tropic lossy body in inhomogeneous anisotropic lossy envi-

ronment, in Sec. IV. The adjective “piecewise” means that the 

material parameters are discontinuous on two sides of the in-

terface between two different media, as shown in Fig. 1 (d).  

The limitations on topological structure 

The Huygens’ surface used in traditional HP and ET is a 

single closed surface. The traditional FHF is only valid for the 

EM system mat

sysV  constructed by a simply connected material 

body mat

simV , i.e., mat mat

sys simV V= . In this paper, the traditional HP, ET, 

and FHF are generalized from the following aspects. 

• In Secs. III and IV, the Huygens’ surface is generalized to 

multiple closed surfaces. 

• In Sec. III, the EM system mat

sysV  constructed by a multiply 

connected material body mat

mulV  is considered, i.e., mat mat

sys mulV V= , 

and the FHF for mat

mulV  is derived. 

• The systems focused on by Secs. II and III are connected, 

and the results corresponding to these connected systems are 

further generalized to the non-connected system in Sec. IV. 

The above terminologies “connected, non-connected, simply 

connected, and multiply connected” are commonly used terms 

in point set topology, and their rigorous definitions can be 

found in [38]. The “non-connected” can be vividly understood 

as that there exist some different parts of system, such that the 

parts don’t contact with each other, as shown in Fig. 1 (c); if the 

system is not non-connected, it is connected, as shown in Fig. 1 

(a); the “simply connected” can be vividly understood as that 

there doesn’t exist any hole on material body, as shown in Fig. 

1 (a); the “multiply connected” can be vividly understood as 

that there exist some holes on material body, as shown in Fig. 1 

(b). 

The limitations on expressing EM field 

When a simply connected material body mat

simV  is considered, 

the whole three-dimensional Euclidean space 3  is divided 

into two parts (the interior of mat

simV  and the exterior of mat

simV ) by 

the material boundary mat

simV , as shown in Fig. 2. The traditional 

FHF [35] has only ability to express the external scattering field 
scaF+  and internal total field totF−

 (the summation of internal 

incident field incF−
 and internal scattering field scaF−

) in terms of 

an identical set of equivalent surface currents on mat

simV . In this 

paper, the traditional FHF is generalized from the following 

aspects. 

• In Sec. II-A, the FHF for incF−
 and scaF−

 are derived, and 

they are valuable for material CM theory as discussed in Sec. 

II-D and as exhibited in Sec. V. 

In addition, this paper also does some works in the following 

aspects. 

On mathematically formulating HP 

The traditional FHF of scaF+
 is usually viewed as the math-

ematical expression of scattering field HP, but it will generate 

backward waves in the interior of material body, so it conflicts 

with the law of causality. In fact, the backward wave problem 

also exists in traditional scalar diffraction theory as pointed out 

by D. Miller in [39]. In addition, the traditional FHF of totF−
 is 

sometimes classified into the extinction theorem (ET) family 

(ET is also known as Ewald-Oseen extinction theorem [40], 

[41], due to the works of C. Oseen [42] et al.). However, the 

FHF of totF−
 cannot guarantee the null result in whole exterior 

of material body, though it indeed generates null tangential 

field on the external surface of material boundary. 

To clarify the reasons leading to above problems, the rela-

tionships among HP, ET, FHF, and SEP are carefully studied in 

Sec. II, and it is found out that: 

• The mathematical formulation of HP is equivalent to ET. 

• The FHF of totF−
 satisfies so-called weak extinction theo-

rem, and it should not be classified into ET family. 

• HP is a special SEP, but SEP is not necessarily HP. 

• FHF is not the mathematical expression of HP, and it is 

only the mathematical expression of SEP. 

On topological additivity 

The EM systems mat

sysV  considered in Secs. II, III, and IV have 

different topological structures, i.e., mat mat

sys simV V=  in Sec. II, and 
mat mat

sys mulV V=  in Sec. III, and mat mat mat

sys sim mulV V V=  in Sec. IV. It is 

pointed out in Sec. IV-B that the mathematical formulation of 

HP and ET satisfy so-called topological additivity, i.e., the 

HP/ET of whole EM system equals to the summation of the 

mat

simV
mat

mulV

1 1 1, ,  

2 2 2, ,  

1

matV

2

matV
2

matV
1

matV

Interface

Hole

(a)                                                             (b)

(c)                                                             (d)  
Fig. 1. (a) A simply connected material body; (b) a multiply connected material 

body; (c) a non-connected system constructed by two material bodies; (d) 

piecewise inhomogeneous anisotropic lossy material body. 

 

tot inc scaF F F− − −= + tot inc scaF F F+ + += +

Interior of mat

simV Exterior of mat

simV

mat

simV
 

 

Fig. 2. Whole space is divided into two parts by the boundary of a simply 

connected material body. 
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HP/ET corresponding to all sub-systems, and this property is 

consistent with the principle of superposition. Then, the FHF of 
incF−

 and scaF+
 also satisfy topological additivity, because they 

are essentially the summation of incident field HP and scat-

tering field HP as pointed out in Sec. II-C. However, the FHF of 
totF−

 and scaF−
 don’t satisfy topological additivity. 

• To guarantee the topological additivity for the FHF of totF−
 

and scaF−
, a so-called piecewise Green’s function is proposed in 

Sec. IV-B. 

For the convenience of the following discussions, the sym-

bolic system of this paper is summarized here. The j te   con-

vention is used in this paper. The conductivity, permittivity, 

and permeability of material system are denoted as ( )r , 

( )r , and ( )r  respectively, and the conductivity, permittiv-

ity, and permeability of environment are denoted as ( )env r , 

( )env r , and ( )env r  respectively, and all these parameters are 

restricted to being symmetrical two-order tensors, because 

many commonly used anisotropic materials (such as crystal) 

have symmetrical material parameters [19], [43], [44]. Some 

concepts related to point set topology (such as the open set  , 

boundary  , closure cl , interior int , and exterior ext ) 

need to be utilized, and the rigorous mathematical definitions 

for the first four can be found in [38], and the last one is defined 

as that 3ext \ cl  . Obviously, both the int  and ext  

are open sets [38]. When an external excitation incF  incidents 

on EM system mat

sysV  ( mat mat mat

sys sim mulV V V= ), the scattering sources 

will be excited on simply connected body mat

simV  and multiply 

connected body mat

mulV , and then the scattering fields sca

simF  and 
sca

mulF  are generated by mat

simV  and mat

mulV  respectively. The sum-

mation of sca

simF  and sca

mulF  is just the total scattering field scaF  

generated by mat

sysV , i.e., sca sca sca

sim mulF F F= + . The summation of 
incF  and scaF  is total field totF , i.e., tot inc scaF F F= + =  
inc sca sca

sim mulF F F+ + , as shown in Fig. 3.  

In addition, we sincerely wish that the appendixes are read 

before reading the main body of this paper. 

 

 

II. A SINGLE SIMPLY CONNECTED INHOMOGENEOUS 

ANISOTROPIC LOSSY MATERIAL BODY 

The EM system mat

sysV  focused on by this section is a simply 

connected inhomogeneous anisotropic lossy body mat

simV , i.e., 
mat

mulV =   and mat mat

sys simV V= , as shown in Fig. 4. Hence, 0sca

mulF = , 

and sca sca

simF F= , and tot inc sca inc sca

simF F F F F= + = + . Based on the 

results given in appendixes, the traditional HP, ET, and FHF of 

a simply connected homogeneous isotropic material body in 

homogeneous isotropic environment are generalized to inho-

mogeneous anisotropic lossy case, in this section. 

A. Huygens’ principle and extinction theorem 

The integral formulations (C-5) and (C-7) given in Appendix 

C can be uniformly written as follows: 

 

( )

( ) ( )
( ) ( )

( ) ( )

ext , 0
ˆ,

int ,
ˆ,

mat
sim

mat
sim

mat

sim JF inc

envmat inc V

sim MF inc

env
V

r V
G r r n H r dS

r V F r
G r r E r n dS

−


−


 
   =    

     +   




 (1) 

 

where ,F E H= , and n̂−  is the inward normal vector of mat

simV . 

The ( ),JF

envG r r  and ( ),MF

envG r r  in (1) are the environment dy-

adic Green’s functions. Following the manner to express con-

volution integrals in [45], (1) is rewritten as the following (1') to 

compact the integral formulation, and the other convolution 

integrals appeared in this paper will be similarly expressed. 

 

 
( ) ( )

( ) ( )

ext : 0
ˆ ˆ

int :

ˆ ˆ

mat mat
sim sim

mat
sim

mat

JF inc MF incsim

env envmat inc
V V

sim
JF inc MF inc

env env
V

V
G n H G E n

V F

G n H G E n

− −
 

− −


    =   +      
 =   +  
 

 

  (1') 

 

where ,F E H= . The integral formulations (C-9) and (C-10) 

given in Appendix C can be uniformly written as follows: 

 

( ) ( )
ext :

ˆ ˆ
int : 0 mat

sim

mat sca

JF sca MF scasim

env envmat V
sim

V F
G n H G E n

V
+ +



  =   +    
 (2) 

 

where ,F E H= . In (2), n̂+  is the outward normal vector of 
mat

simV , and ˆ ˆn n+ −= −  on whole mat

simV . 

(1') and (2) imply that the equivalent secondary sources 

 ˆ ˆ,inc incn H E n− −   and  ˆ ˆ,sca scan H E n+ +   will establish the 

zero fields on whole ext mat

simV  and whole int mat

simV  respectively, 

i.e., they will not generate any backward wave, so they are 

usually called as extinction theorem. In fact, (1') and (2) are just 

the mathematical formulations of HP corresponding to incident 

field incF  and scattering field scaF  respectively. 

B. Generalized Franz-Harrington formulation and weak ex-

tinction theorem 

Because of that tot inc scaF F F= + , the difference between (1') 

and (2) is as follows: 

 

 
ext :

int :
mat

sim

mat sca

JF ES MF ESsim

env envmat inc V
sim

V F
G J G M

V F 

− 
 =  +   


 (3) 

 

where the ESJ  and ESM  are defined as follows: 

 

 ( ) ( ) ( ) ( )ˆ ,ES tot mat

sim
r r

J r n r H r r V− →
     (4.1) 

mat

mulV

mat

simV
sca

simF

sca

mulF

incFsca sca sca

sim mulF F F= +

mat mat mat

sys sim mulV V V=
 

 
Fig. 3. An external excitation field incidents on the material system which is 

constructed by a simply connected body and a multiply connected body. 

 

tot inc scaF F F− − −= + tot inc scaF F F+ + += +mat

simV

int mat

simV ext mat

simV

n̂+

n̂−

 
 

Fig. 4. Various domains and fields related to a simply connected material body. 
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 ( ) ( ) ( ) ( )ˆ ,ES tot mat

sim
r r

M r E r n r r V−→
      (4.2) 

 

in which int mat

simr V , and the superscript “ ES ” is the acronyms 

of term “equivalent surface”. Based on (4.1) and (4.2), (C-11) 

can be rewritten as follows: 

 

 int :
mat

sim

mat tot JF ES MF ES

sim sim sim
V

V F G J G M


 =  +    (5) 

 

where the ( ),JF

simG r r  and ( ),MF

simG r r  are the dyadic Green’s 

functions corresponding to the inhomogeneous anisotropic 

lossy material body mat

simV . Based on (3) and (5) and that 
sca tot incF F F= − , the following formulation for the scaF  on 

int mat

simV  can be obtained: 

 

 int :
mat

sim

mat sca JF ES MF ES

sim sim sim
V

V F G J G M


 =   +     (6) 

 

where 

 

 ( ) ( ) ( ), , ,JF JF JF

sim sim envG r r G r r G r r   −  (7.1) 

 ( ) ( ) ( ), , ,MF MF MF

sim sim envG r r G r r G r r   −  (7.2) 

 

for any , int mat

simr r V . 

In (3), (5), and (6), the internal incident field incF−
, internal 

scattering field scaF−
, internal total field totF−

, and external 

scattering field scaF+
 are simultaneously expressed in terms of 

an identical set of equivalent surface currents  ,ES ESJ M . (3), 

(5), and (6) are collectively referred to as generalized 

Franz-Harrington formulation (GFHF) of a simply connected 

inhomogeneous anisotropic lossy material body in inhomoge-

neous anisotropic lossy environment, and the reason to utilize 

adjective “generalized” is that the traditional FHF has only 

ability to express the scaF+
 and totF−

 corresponding to a simply 

connected homogeneous isotropic material body in homoge-

neous isotropic environment. In addition, the above GFHF for a 

simply connected body will be further generalized to multiply 

connected case in Sec. III and to non-connected case in Sec. IV. 

Sometimes, (5) is also called as extinction theorem just like 

calling (1') and (2). However, it should be emphasized that (5) 

cannot establish null field in whole region ext mat

simV , though it 

indeed can establish null tangential field on the external surface 

of mat

simV . The reason leading to this will be carefully discussed 

in the following Sec. II-C. Based on this observation, (5) is 

particularly called as weak extinction theorem to be distin-

guished from the extinction theorems (1') and (2). 

C. Relationships among Huygens’ principle, extinction theo-

rem, Franz-Harrington formulation, and surface equivalence 

principle 

Based on Hadamard’s work [32], the HP can be divided in 

the form of a syllogism as follows. 

Major Premise: The action of phenomena produced at the instant 

0t =  on the state of matter at the latter time 0t t=  takes 

place by the mediation of every intermediary instant 

t t= , … (here, 00 t t  ). 

Minor Premise: If we produce a luminous disturbance localized 

in a neighborhood of 0r = , its effect after an elapsed time 

0t  will be localized in a neighborhood of the spherical 

surface 0r ct= . 

Conclusion: In order to calculate the effect of our initial lumi-

nous phenomenon produced at 0r =  at 0t = , we may re-

place it by a proper system of disturbances taking place at 

t t=  and distributed over the spherical surface 0r ct= . 

In fact, Hadamard’s major premise is essentially the concept of 

action at a distance, i.e., the EM interaction is implemented by 

propagation; Hadamard’s minor premise is essentially the law 

of causality, i.e., the propagation of EM field should be away 

from real source instead of being towards real source; Hada-

mard’s conclusion is essentially the Huygens’ construction 

based on two premises and the principle of superposition. 

The relationships between HP and ET 

Obviously, the law of causality implies that the mathematical 

formulation of HP must establish null field in the backward 

direction of Huygens’ surface, so the mathematical formulation 

of HP must satisfy ET, such as the incident field HP (1') and the 

scattering field HP (2). 

It will be proved as below that: an extinction-type formula-

tion corresponds to the HP of a field. Let us consider the fol-

lowing extinction-type convolution integral: 

 

 ( ) ( )3 \

:
ˆ ˆ

\ cl : 0

JF MF

env env
S

F
G n H G E n



→ →


   =   +     
 (8) 

 

where ,F E H= . In (8),   is the boundary surface of open 

domain  , if   is a finite domain; S  is the boundary 

surface of open domain  , if   is an infinite domain. S  is a 

spherical surface at infinity. \ S  means that the integral 

domain of (8) is a limited closed surface, and then the field F  

and Green’s functions JF

envG  and MF

envG  in (8) must satisfy Som-

merfeld’s radiation condition, or the surface S  cannot be 

excluded from integral domain [40]. n̂→  is the normal vector 

of integral surface, and points to domain  . Due to the radia-

tion condition of field F , it can be concluded that the real 

sources  ,J M  of F  distribute in a limited region denoted as 

V , and then the F  has the following integral formulation: 

 

 3 : JF MF

env env
V

F G J G M =  +    (9) 

 

based on a similar method to deriving (C-4) from (C-1). 

If the Green’s functions used in (8) and (9) satisfy the fol-

lowing Maxwell’s equations: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

;, ,

, ,

JH JE

env env c env

JE JH

env env env

G r r I r r j r G r r

G r r j r G r r

 



    = − + 

   = − 
 (10.1) 

 
and 
 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

;, ,

, ,

MH ME

env env c env

ME MH

env env env

G r r j r G r r

G r r I r r j r G r r



 

   = 

    = − − − 
 (10.2) 

 

then (8) implies that the field F  satisfies the following ho-
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mogeneous Maxwell’s equations in region  : 

 

 
( ) ( ) ( )

( ) ( ) ( )
( )

;
,

env c

env

H r j r E r
r

E r j r H r





 = 


 = − 
 (11) 

 

i.e., the region   is source-free, where the derivation of (11) 

from (8) is completely similar to the inverse process of deriving 

(C-5) from (C-1). The (11) implies that the source  ,J M  must 

distribute in region 3 \  , i.e., 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ); 3, \

env c

env

H r J r j r E r
r

E r M r j r H r





 = + 
 

 = − − 
. (12) 

 

The above (11) and (12) imply that the   encloses all sources 

 ,J M . S  is always excluded from the integral surface in (8), 

even if S   , so it can be viewed as that the integral surface 

of (8) encloses all sources  ,J M . 

Just like deriving (1') from (C-1), the following ET can be 

derived from (12): 

 

( ) ( ):
ˆ ˆ

: 0
interesting interesting

i i
i

interesting

JF MFi

env envexcluded V V
S

i

V F
G n H G E n

V → →

  =   +     
 

  (13) 

 

for any 1,2,i = . In (13), iS  is a closed surface which encloses 

whole source region 3 \  , and 1iS +  encloses iS  for any 

1,2,i = , and interesting

iV  and excluded

iV  are respectively the inter-

esting and excluded regions restricted by surface iS , and the 

case that the source region 3 \   is a limited region is shown 

in Fig. 5. In fact, this (13) is just the mathematical expression of 

Hadamard’s syllogism, i.e., the EM field generated by a system 

is the superposition of the fields generated by all sub-sources 

(the principle of superposition), and the field will propagate 

(the concept of action at a distance) outward rather than being 

inward (the law of causality). Then, the extinction-type for-

mulation (8) must correspond to the HP of a field.  

Based on the above observations, it can be concluded that HP 

and ET are essentially equivalent to each other, i.e., the 

mathematical formulation of the HP for any field satisfies ET, 

and any ET (8) corresponds to the HP of a field.  

The necessary conditions to establish an extinction-type 

formulation 

Based on the process to derive (13) from (8), it is easy to find 

out that the necessary conditions (NCs) to establish an extinc-

tion-type formulation are as follows: 

NC-1, On real source of field: The (9) implies that the real 

source of interesting field must distribute in a limited re-

gion. 

NC-2, On Huygens’ surface: The (11) and (12) imply that the 

Huygens’ surface must enclose all real source of interesting 

field. As exhibited in (13), the reasonable Huygens’ surface 

is not unique, and the boundary of source region is a natural 

and the smallest one. 

NC-3.1, On interesting and excluded regions: Whole space is 

divided into two parts by Huygens’ surface as illustrated in 

(13). The interesting region must be the source-free one, 

and the other one is the excluded region, as illustrated in 

formulations (11)-(13) and Fig. 5. 

NC-3.2, On interesting field: The interesting field must satisfy a 

homogeneous Maxwell’s equations in interesting region, as 

illustrated in (11). At the same time, the interesting field 

must satisfy an inhomogeneous Maxwell’s equations in ex-

cluded region, as illustrated in (12). 

NC-4, On Huygens’ secondary source: The Huygens’ secondary 

source on Huygens’ surface must correspond to the inter-

esting field, as illustrated in (8) and (13). 

NC-5, On propagator / Green’s function: The Maxwell’s equa-

tions of propagators must have the same material parame-

ters as the ones which are satisfied by interesting field, as 

illustrated in (10). The propagators must satisfy the Som-

merfeld’s radiation condition, as concluded below the 

formulation (8). 

In fact, these conditions are also the necessary conditions to 

mathematically formulate HP, because the mathematical for-

mulation of HP must satisfy ET as concluded in the previous 

part of this subsection. In the following parts of this subsection, 

the relationships between HP and FHF will be clarified based 

on above conditions. 

The relationships between HP and FHF 

Based on above discussions in this section, it can be con-

cluded that: 

A) The FHF (3) is neither the mathematical formulation of 

HP corresponding to incF  nor the mathematical formulation of 

HP corresponding to scaF , because it doesn’t satisfy the con-

dition NC-4, i.e., the equivalent currents used in (3) correspond 

to neither incF  nor scaF . In fact, the FHF (3) is solely the dif-

ference between the incident field HP (1') and the scattering 

field HP (2), i.e., 

 

 ( ) ( ) ( )Formulation 3 Formulation 1 Formulation 2= − . (14) 

 

This is just the reason why (3) will generate some backward 

waves, i.e., why (3) conflicts with the law of causality. 

B) The FHF (5) is not the mathematical formulation of HP 

corresponding to internal total field totF−
, because it doesn’t 

satisfy the condition NC-2. Specifically, the real source of totF  

includes both the  ,inc incJ M  generating incF  and the 

 ,SV SVJ M  generating scaF , but the surface mat

simV  doesn’t 

enclose all these sources. To formulate the HP corresponding to 

 

 ,J MV

excluded

iV

interesting

iV

21 i SS SV S 

 
 
Fig. 5. The diagram of formulation (13). 
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totF , the Huygens’ surface should enclose both  ,inc incJ M  and 

 ,SV SVJ M . 

C) The FHF (6) is not the mathematical formulation of HP 

corresponding to internal scattering field scaF−
, because it 

doesn’t satisfy the conditions NC-3 and NC-4. In fact, (6) is 

solely the difference between (5) and (3), i.e., 

 

 ( ) ( ) ( )Formulation 6 Formulation 5 Formulation 3= − . (15) 

 

Summary 

Because of the above observations, the relationships among 

HP, ET, FHF, and SEP are illustrated in Fig. 6. From Fig. 6, it 

can be concluded that:  

• HP and ET are equivalent to each other. 

• HP is a special SEP, but SEP is not necessarily HP. HP can 

be particularly called as physical equivalence principle, be-

cause it simultaneously satisfies the concept of action at a dis-

tance, the law of causality, and the principle of superposition. 

• FHF is only the mathematical expression of SEP instead of 

the mathematical expression of HP, so the surface currents (4) 

used in FHF should be called as equivalent surface currents, 

but should not be viewed as Huygens’ secondary sources. 

• Compared with the incident field HP (1') and the scattering 

field HP (2), the values of FHF are mainly manifested in that 

various fields are uniformly expressed in terms of an identical 

set of currents  ,ES ESJ M , and this feature is very valuable for 

many engineering applications as pointed out in the following 

Sec. II-D and as exhibited in Sec. V.  

D. Applications of generalized Franz-Harrington formulation 

In this subsection, some typical engineering applications 

related to GFHF are simply mentioned. 

Application on solving EM scattering problem 

The well-known PMCHWT equation [34]-[36] is derived 

from FHF, and it is widely applied to solving EM scattering 

problem, but it is only suitable for a simply connected homo-

geneous isotropic body in homogeneous isotropic environment. 

Obviously, the traditional PMCHWT equation and its related 

applications can be easily generalized to the inhomogeneous 

anisotropic lossy case, by employing GFHF. In computational 

electromagnetics, the traditional FHF is usually written as the 

operator forms based on the  and  operators, if the envi-

ronment is homogeneous isotropic lossless. Taking the GFHF 

(3) as an example, it can be equivalently rewritten as follows: 

 

 ( ) ( )0 0 0

ext :

int :

mat sca

ES ESsim

mat inc

sim

V E
j J M

V E


− 
= − −


 (3.1') 

 ( ) ( )0 0 0

ext :

int :

mat sca

ES ESsim

mat inc

sim

V H
j M J

V H


− 
= − +


 (3.2') 

 

if the environment is vacuum. In (3.1') and (3.2'), the operators 

0  and 0  are defined as follows: [45] 

 

 ( ) ( ) ( )0 02

0

1
1 ,X G r r X r d

k 

 
  +    

 
  (16.1) 

 ( ) ( ) ( )0 0 ,X G r r X r d


     (16.2) 

 

where 0 0 0k   = , and ( ) 0

0 , 4
jk r r

G r r e r r
− − = − . 

Application on constructing CM 

Recently, it is clarified in [46] that: i) the physical essence of 

CM theory [35], [47]-[49] is to orthogonalize the power done 

by incident field on scattering current; ii) the arguments of the 

power operator in CM theory must be independent of each 

other; and iii) the equivalent currents ESJ  and ESM  on mat

simV  

depend on each other. 

Formulation (5) expresses the totF−
 in terms of  ,ES ESJ M , 

and then the scattering currents  ,SV SVJ M  can be expressed in 

terms of  ,ES ESJ M , because SV tot

cJ j E  −=    and 
SV totM j H  −=    [1], [2], [45]. Based on this observation and 

formulation (3), the power done by incident field on scattering 

current can be efficiently expressed in terms of  ,ES ESJ M . 

Because of the continuity of the tangential scaF  on mat

simV , the 
ESJ  and ESM  can be expressed in terms of each other, based on 

formulations (3) and (6) and the method given in [46]. Because 

of these above, it can be concluded that the GFHF is valuable 

for constructing the CM of inhomogeneous anisotropic lossy 

material body. 

 

 

III. A SINGLE MULTIPLY CONNECTED INHOMOGENEOUS 

ANISOTROPIC LOSSY MATERIAL BODY 

In this section, the results obtained in above Sec. II are gen-

eralized to the EM system mat

sysV  which is a multiply connected 

inhomogeneous anisotropic lossy material body mat

mulV , and the 
mat

mulV  is restricted to being 2-connected as shown in Fig. 7. The 

arbitrary l -connected case ( 2l  ) can be similarly discussed, 

and the corresponding formulations are identical to the 

2-connected case in form. Then, mat

simV =  , and mat mat

sys mulV V= , and 
sca sca

mulF F= , and tot inc sca inc sca

mulF F F F F= + = + , in this section.  

The whole boundary mat

mulV  and whole ext mat

mulV  can be de-

composed as follows: [38] 

 

 ; ;

mat mat mat

mul mul in mul outV V V =    (17.1) 

satisfy derive

is

FHF ofHP of ET of

HP of E FHF fT o of

scasca sca

inc ininc c

FF F

F F F−

+
⎯⎯⎯→ ⎯⎯⎯→⎯⎯⎯



is is is is

derive

satisfy

FHF of
FHF of

Weak ET of FHF of

inc

sca

tot tot

F
F

F F

−

−

− −


⎯⎯⎯→

⎯⎯⎯⎯ 

Surface Equivalence Principle

 
 
Fig. 6. The relationships among HP, ET, FHF, and surface equivalence prin-

ciple. 

 

int mat

mulV

; ;

mat

mul in

mat

m

mat

mul outul VV V =

n̂−

n̂+

n̂+ ;ext mat

mul outV

;ext mat

mul inV

n̂−

 
 
Fig. 7. Various domains related to a 2-connected material body. 
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; ;ext ext extmat mat mat

mul mul in mul outV V V=  (17.2) 

 

where 
;

mat

mul inV , 
;

mat

mul outV , 
;ext mat

mul inV , and 
;ext mat

mul outV  are shown in 

Fig. 7. In this section, it is restricted that the  ,inc incJ M  dis-

tribute on 
;ext mat

mul outV , and the case that  ,inc incJ M  distribute on 

;ext mat

mul inV  can be similarly discussed, and the final formulations 

of two different cases are identical to each other in form. The 

composite case corresponding to that  ,inc incJ M  simultane-

ously distribute on 
;ext mat

mul outV  and 
;ext mat

mul inV  can be viewed as the 

superposition of two simple cases, based on superposition 

principle [50], and the final formulations of composite case are 

identical to the simple cases in form. 

A. Generalized Huygens’ principle and extinction theorem 

Similarly to deriving (1') and (2), for multiply connected 

material system the following formulations can be derived: 

 

( ) ( )
;

;

;

ext : 0

ˆ ˆint : 0

ext :
mat

mul in

mat

mul out

mat JF inc MF inc

mul env env
V

mat inc

mul in

V

V G n H G E n

V F

− −



  =   +    
− 

  

  (18.1) 

( ) ( )
;

;

;

ext : 0

ˆ ˆint : 0

ext :
mat

mul in

mat

mul out

mat JF sca MF sca

mul env env
V

mat sca

mul in

V

V G n H G E n

V F

+ +



  =   +    



 

  (19.1) 

 

if the Huygens’ surface is selected as 
;

mat

mul inV ; the following 

formulations can be derived: 

 

( ) ( )
;

;

;

ext : 0

ˆ ˆint :

ext :
mat

mul out

mat

mul out

mat inc JF inc MF inc

mul env env
V

mat inc

mul in

V

V F G n H G E n

V F

− −



  =   +    



 

  (18.2) 

( ) ( )
;

;

;

ext :

ˆ ˆint : 0

ext : 0
mat

mul out

mat sca

mul out

mat JF sca MF sca

mul env env
V

mat

mul in

V F

V G n H G E n

V

+ +





 =   +    



 

  (19.2) 

 

if the Huygens’ surface is selected as 
;

mat

mul outV . The n̂+  and n̂−  

in (18) and (19) are shown in Fig. 7. The summation of (18.1) 

and (18.2) and the summation of (19.1) and (19.2) are that 

 

( ) ( )
ext : 0

ˆ ˆ
int : mat

mul

mat

JF inc MF incmul

env envmat inc
V

mul

V
G n H G E n

V F
− −



  =   +    
 (18') 

( ) ( )
ext :

ˆ ˆ
int : 0 mat

mul

mat sca

JF sca MF scamul

env envmat V
mul

V F
G n H G E n

V
+ +



  =   +    
 (19') 

 

in which (17) has been utilized to simplify the symbolic ex-

pressions of integral domain, interesting domain, and excluded 

domain. 

In Sec. II, it has been clarified that the physical essence of 

ETs (1') and (2) is the HP corresponding to a simply connected 

inhomogeneous anisotropic lossy material body. As the coun-

terparts of (1') and (2), the generalized extinction theorems 

(GETs) (18') and (19') can be viewed as the mathematical 

formulation of the generalized Huygens’ principle (GHP) of 

multiply connected case. The adjective “generalized” is due to 

that: the Huygens’ surface used in traditional HP and ET is a 

single closed surface; however, the “Huygens’ surface” in these 

generalized versions is constructed by multiple closed surfaces, 

as shown in Fig. 7. In fact, the “Huygens’ surface” will be 

further generalized to so-called “Huygens’ boundary” that 

includes some lines and open surfaces besides closed surfaces, 

in our future works. In addition, it should be emphasized that 

the GHP (18') and the GHP (19') satisfy Hadamard’s syllogism 

and all the conditions listed in Sec. II-C. 

B. Generalized Franz-Harrington formulation and weak ex-

tinction theorem 

Similarly to deriving (3) from (1') and (2), the following 

formulation (20) can be derived from the above (18') and (19'): 

 

 
ext :

int :
mat

mul

mat sca

JF ES MF ESmul

env envmat inc V
mul

V F
G J G M

V F 

− 
 =  +   


. (20) 

 

In (20), the ESJ  and ESM  are defined as (4), except that the 

material boundary should be replaced by mat

mulV . 

Similarly to generalizing (3) to (20), (5) can be generalized to 

the following (21): 

 

 int :
mat

mul

mat tot JF ES MF ES

mul mul mul
V

V F G J G M


 =  +    (21) 

 

where ( ),JF

mulG r r  and ( ),MF

mulG r r  are the Green’s functions 

corresponding to material body mat

mulV , and then 

 

 int :
mat

mul

mat sca JF ES MF ES

mul mul mul
V

V F G J G M


 =   +     (22) 

 

based on (20) and (21), where ( ),JF

mulG r r  and ( ),MF

mulG r r  are 

defined similarly to (7). 

 

 

IV. MULTIPLE CONNECTED INHOMOGENEOUS ANISOTROPIC 

LOSSY MATERIAL BODIES 

The above Secs. II and III only focus on the EM system mat

sysV  

which is constructed by a single material body. In this section, 

the mat

sysV  constructed by two bodies are considered, and the 
mat

sysV  constructed by arbitrary l  ( 2l  ) bodies can be similarly 

discussed. Some typical examples of two-body system mat

sysV  are 

shown in Fig. 8, and they include a simply connected body 
mat

simV  and a multiply connected body mat

mulV , i.e., mat mat mat

sys sim mulV V V= . 

The case that mat

sysV  is constructed by two simply connected 

bodies and the case that mat

sysV  is constructed by two multiply 

connected bodies can be similarly discussed, and their results 

are identical to the results of case mat mat mat

sys sim mulV V V=  in form. 

In the following subsections, the current decomposition 

method (CDM) is developed at first, and then the results ob-

tained in Secs. II and III are generalized to two-body system. 
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A. Current decomposition method 

The boundaries of mat

simV  and mat

mulV  can be decomposed as 

 

 
;0

mat mat mat

sim mul sim mulV V V =    (23) 

 

where 

 

 ( );0 cl \mat mat mat

sim mul sim mul mul simV V V    (24.1) 

 
;0

;0

\

\

mat mat mat

sim sim

mat mat

mul mul

V V V

V V

  

=  
 (24.2) 

 

as shown in Fig. 8. Obviously, the 
;0

mat

sim mulV  and matV  are 

disjoint, i.e.,  

 

 
;0

mat mat

sim mulV V  =  . (25) 

 

Based on (23) and (25), the equivalent surface currents on 
mat

simV  and mat

mulV  can be decomposed as follows: 

 

 ( ) ( ) ( ) ( );0 ; ,ES ES ES mat

sim mul sim mul sim mul sim mulC r C r C r r V= +   (26) 

 

where ,C J M= , and 

 

 ( )
( ) ( )

( )
;0

;0

,

0 ,

ES mat

sim mul sim mulES

sim mul mat

C r r V
C r

r V

 



 (27.1) 

 ( )
( )

( ) ( )
;0

;

0 ,

,

mat

sim mulES

sim mul ES mat

sim mul

r V
C r

C r r V






. (27.2) 

 

In (27), the ES

sim mulC  is defined similarly to (4), except that the 

material boundary in (4) should be replaced by mat

sim mulV . Be-

cause the polarization electric current and magnetization 

magnetic current models are utilized to depict the polarization 

and magnetization phenomena in this paper, there doesn’t exist 

any scattering [1], [45] and incident surface current on mat

sim mulV , 

and then the tangential components of total field totF  are con-

tinuous on matV . Hence, the following relationship exists for 

any ,C J M= : 

 

 ( ) ( ) ( ); ; ,ES ES mat

sim mulC r C r r V= −  . (28) 

 

B. Generalized Huygens’ principle, extinction theorem, and 

Franz-Harrington formulation: General case 

In this subsection, the results obtained in Secs. II and III are 

generalized to a general two-body inhomogeneous anisotropic 

lossy system in inhomogeneous anisotropic lossy environment. 

Generalized Huygens’ principle and extinction theorem 

Based on (1') and (2), we have that 

 

( ) ( )
;0

; ;

ext : 0

ˆ ˆint :

int : 0
mat mat

sim

mat

sys

mat inc JF inc MF inc

sim env sim env sim
V V

mat

mul

V

V F G n H G E n

V

− −
 


  =   +    



 

  (29.1) 

( ) ( )
;0

; ;

ext :

ˆ ˆint : 0

int :
mat mat

sim

mat sca

sys sim

mat JF sca MF sca

sim env sim sim env sim sim
V V

mat sca

mul sim

V F

V G n H G E n

V F

+ +
 




 =   +    



 

  (30.1) 

 

where ;
ˆ

simn −  and ;
ˆ

simn +  are the normal vectors of mat

simV , and 

respectively point to the interior and exterior of mat

simV . Based on 

(18') and (19'), we have that 

 

( ) ( )
;0

; ;

ext : 0

ˆ ˆint : 0

int :
mat mat

mul

mat

sys

mat JF inc MF inc

sim env mul env mul
V V

mat inc

mul

V

V G n H G E n

V F

− −
 


  =   +    



 

  (29.2) 

( ) ( )
;0

; ;

ext :

ˆ ˆint :

int : 0
mat mat

mul

mat sca

sys mul

mat sca JF sca MF sca

sim mul env mul mul env mul mul
V V

mat

mul

V F

V F G n H G E n

V

+ +
 




 =   +    



 

  (30.2) 

 

where ;
ˆ

muln −  and ;
ˆ

muln +  are the normal vectors of mat

mulV , and 

respectively point to the interior and exterior of mat

mulV . 

In addition, we also have that 

 

int mat

simV

int mat

mulV

matV

;

ES

simC ;

ES

mulC

;0

mat

simV

;0

mat

mulV

int mat

mulV

int mat

simV

mat mat

simV V = 

int mat

simV

int mat

mulV

;0

mat mat

sim simV V = 

;0

mat mat

mul mulV V = 

;0

ES ES

mul mulC C=
;0

ES ES

sim simC C=

;0

ES

simC

;

ES ES

sim simC C=

;

ES

mulC

(a)

(b)

(c)

ext mat

inV

ext mat

outV

ext mat

outV

ext mat

inV

;0

mat mat

sys mulV V = 

ext mat

sysV

;0

ES

mulC

;0

ES

mulC

 
 
Fig. 8. (a) Various domains related to a non-connected two-body system; (b) 

various domains related to a two-body system, in which a body contacts with 

but doesn’t submerge into another body; (c) various domains related to a 

two-body system, in which a body is submerged into another body. 
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( ) ( )
;0

; ;

ext : 0

ˆ ˆint :

int : 0
mat mat

sim

mat

sys

mat sca JF sca MF sca

sim mul env sim mul env mul sim
V V

mat

mul

V

V F G n H G E n

V

+ +
 


  − =   +    



 

  (30.3) 

( ) ( )
;0

; ;

ext : 0

ˆ ˆint : 0

int :
mat mat

mul

mat

sys

mat JF sca MF sca

sim env mul sim env sim mul
V V

mat sca

mul sim

V

V G n H G E n

V F

+ +
 


  =   +    
− 

 

  (30.4) 
 

based on the method similarly to deriving (1') and (18'). 

The summation of (29.1) and (29.2) gives that 
 

( ) ( )

( ) ( )
;0

;0

; ;

; ;

ext : 0

ˆ ˆint :

int :
ˆ ˆ

mat mat
sim

mat mat
mul

mat

sys

mat inc JF inc MF inc

sim env sim env sim
V V

mat inc

mul JF inc MF inc

env mul env mul
V V

V

V F G n H G E n

V F
G n H G E n

− −
 

− −
 


  =   +    

  +   +  

 

 

  (29') 
 

and the summation of (30.1)-(30.4) gives that 
 

( ) ( )

( ) ( )
;0

;0

; ;

; ;

ext :

ˆ ˆint : 0

int : 0
ˆ ˆ

mat mat
sim

mat mat
mul

mat sca

sys

mat JF sca MF sca

sim env sim env sim
V V

mat

mul JF sca MF sca

env mul env mul
V V

V F

V G n H G E n

V
G n H G E n

+ +
 

+ +
 




 =   +    

  +   +  

 

. 

  (30') 
 

The above (29') and (30') are called as the topological additivity 

of GHP and GET, i.e., the GHP/GET of whole EM system 

equals to the summation of the GHP/GET corresponding to all 

sub-systems as formulated in following (31) and (32), and this 

property is consistent with the principle of superposition. 
 

 
Scattering field GHP GET of whole material system

Scattering field GHP GET of material body matV
= 

 (31) 

 
Incident field GHP GET of whole material system

Incident field GHP GET of material body matV
= 

. (32) 

 

Generalized Franz-Harrington formulation 

Similarly to deriving (3) from (1') and (2) and deriving (20) 

from (18') and (19'), the following (33) can be derived from (29') 

and (30'): 
 

( ) ( )

( ) ( )
;0

;0

;0 ; ;0 ;

;0 ; ;0 ;

ext :

int :

int :
mat mat

sim

ma
mul

mat sca

sys

mat inc JF ES ES MF ES ES

sim env sim sim env sim sim
V V

mat inc

mul JF ES ES MF ES ES

env mul mul env mul mul
V

V F

V F G J J G M M

V F
G J J G M M

 



−


 =  + +  +  

  +  + +  +

  t matV

 

  (33) 
 

where (23) and (26) have been utilized. Obviously, the GFHF 

of internal incident field and external scattering field satisfy 

topological additivity (34.1) and (34.2) just like GHP and GET, 

because they are essentially the summation of incident field 

GHP and scattering field GHP as pointed out in Sec. II-C. 
 

 
Internal incident field GFHF of whole material system

Internal incident field GFHF of material body matV
= 

 (34.1) 

External scattering field GFHF of whole material system

External scattering field GFHF of material body matV
= 

. (34.2) 

 

However, the GFHF of internal total field and internal scat-

tering field don’t satisfy topological additivity, because they 

don’t satisfy GET. To resolve this problem, the following 

piecewise Green’s functions are proposed: 

 

( )
( ) ( )

( )

, , cl , cl
,

0 , ext , cl

JF mat mat

sim mul sim mul sim mulJF

sim mul mat mat

sim mul sim mul

G r r r V r V
G r r

r V r V

   
 

 

 (35.1) 

( )
( ) ( )

( )

, , cl , cl
,

0 , ext , cl

MF mat mat

sim mul sim mul sim mulMF

sim mul mat mat

sim mul sim mul

G r r r V r V
G r r

r V r V

   
 

 

. (35.2) 

 

Based on (35), (5) and (21) can be rewritten as follows: 

 

 
ext : 0

int : mat
sim

mat

JF ES MF ESsim

sim simmat tot
V

sim

V
G J G M

V F 

  =  +    
 (5') 

 
ext : 0

int : mat
mul

mat

JF ES MF ESmul

mul mulmat tot
V

mul

V
G J G M

V F 

  =  +    
 (21') 

 

and then (5') and (21') can be generalized to the following (36): 

 

( ) ( )

( ) ( )
;0

;

;0 ; ;0 ;

;0 ; ;0 ;

ext : 0

int :

int :
mat mat

sim

mul

mat

sys

mat tot JF ES ES MF ES ES

sim sim sim sim sim sim sim
V Vmat tot

mul JF ES ES MF ES ES

mul mul mul mul mul mul
V

V

V F G J J G M M

V F
G J J G M M

 




  =  + +  +   
  +  + +  +

  
0

mat matV

. 

  (36) 

 

In fact, (5'), (21'), and (36) can be called as artificial extinction 

theorems to be distinguished from extinction theorem and weak 

extinction theorem. 

Similarly, if the following delta piecewise Green’s functions 

are proposed: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

, , ,

, , , cl , cl

, , ext , cl

JF JF JF

sim mul sim mul env

JF JF mat mat

sim mul env sim mul sim mul

JF mat mat

env sim mul sim mul

G r r G r r G r r

G r r G r r r V r V

G r r r V r V

   −

   −  
= 

 −  

 

  (7.1') 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

, , ,

, , , cl , cl

, , ext , cl

MF MF MF

sim mul sim mul env

MF MF mat mat

sim mul env sim mul sim mul

MF mat mat

env sim mul sim mul

G r r G r r G r r

G r r G r r r V r V

G r r r V r V

   −

   −  
= 

 −  

 

  (7.2') 

 

(6) and (22) can be rewritten as follows: 

 

 
ext :

int : mat
sim

mat sca

JF ES MF ESsim sim

sim simmat sca
V

sim sim

V F
G J G M

V F 

  =   +     
 (6') 

 
ext :

int : mat
mul

mat sca

JF ES MF ESmul mul

mul mulmat sca
V

mul mul

V F
G J G M

V F 

  =   +     
 (22') 

 

and then (6') and (22') can be generalized to the following (37): 
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( ) ( )

( ) ( )
;0

;0 ; ;0 ;

;0 ; ;0 ;

ext :

int :

int :
mat mat

sim

mat sca

sys

mat sca JF ES ES MF ES ES

sim sim sim sim sim sim sim
V Vmat sca

mul JF ES ES MF ES ES

mul mul mul mul mul mul

V F

V F G J J G M M

V F
G J J G M M

 


  =   + +   +   
  +   + +   +


;0

mat mat
mulV V 



 

  (37) 

 

by summing (6') and (22'). 

Obviously, the piecewise-Green-function-based GFHF of 

internal total field and internal scattering field satisfy the fol-

lowing topological additivity (38) and (39) just like the GFHF 

of internal incident field and external scattering field. 

 

 
Internal total field GFHF of whole material system

Internal total field GFHF of material body matV
= 

 (38) 

 
Internal scattering field GFHF of whole material system

Internal scattering field GFHF of material body matV
= 

. (39) 

 

In fact, (34), (38), and (39) can be uniformly written as 

 

 
The GFHF of whole material system

The GFHF of material body matV
= 

. (40) 

 

(31), (32), and (40) are called as the topological additivity of 

GHP, GET, and GFHF. 

C. Generalized Huygens’ principle, extinction theorem, and 

Franz-Harrington formulation: Special cases shown in Fig. 8 

In this subsection, the results for a general two-body material 

system are specialized to some special cases. 

Case I: Two bodies don’t contact with each other 

In this case, the following relationships exist: 

 

 mat mat mat

sys sim mulV V V =    (41.1) 

 ext ext extmat mat mat

sys in outV V V=  (41.2) 

 int int intmat mat mat

sys sim mulV V V=  (41.3) 

 

where the mat

simV , mat

mulV , ext mat

inV , ext mat

outV , int mat

simV , and int mat

mulV  

are shown in Fig. 8 (a). 

Then, the incident field GHP (29') and scattering field GHP 

(30') are specialized to 

 

( ) ( )
ext : 0

ˆ ˆ
int : mat

sys

mat

sys JF inc MF inc

env envmat inc
V

sys

V
G n H G E n

V F
− −



  =   +    


 (42) 

( ) ( )
ext :

ˆ ˆ
int : 0 mat

sys

mat sca

sys JF sca MF sca

env envmat
V

sys

V F
G n H G E n

V
+ +



  =   +    


 (43) 

 

and the GFHF (33) is specialized to 

 

 
ext :

int :
mat

sys

mat sca

sys JF ES MF ES

env envmat inc V
sys

V F
G J G M

V F 

− 
 =  +   



 (44) 

 

and the GFHFs (36) and (37) are specialized to 

 

 
ext : 0

int : mat
sys

mat

sys JF ES MF ES

sys sysmat tot
Vsys

V
G J G M

V F 

  =  +    
 (45) 

 
ext :

int : mat
sys

mat sca

sys JF ES MF ES

sys sysmat sca
Vsys

V F
G J G M

V F 

  =   +     

 (46) 

 

where 

 

 ( )
( ) ( )

( ) ( )

, , cl
,

, , cl

JF MF mat

sim sim
JF MF

sys
JF MF mat

mul mul

G r r r V
G r r

G r r r V

  
 = 

  


 (47) 

 ( )
( ) ( )

( ) ( )

, , cl
,

, , cl

JF MF mat

sim sim
JF MF

sys
JF MF mat

mul mul

G r r r V
G r r

G r r r V

   
 = 

  


 (48) 

 

and 

 

 ( )
( ) ( )

( ) ( )

,

,

ES mat

sim simES

ES mat

mul mul

C r r V
C r

C r r V

  
 = 

 

 (49) 

 

in which ,C J M= . 

Case II: One body contacts with but doesn’t submerge 

the other body 

In this case, the following relationships exist: 

 

 
;0 ;0

mat mat mat

sys sim mulV V V =    (50.1) 

 ext ext extmat mat mat

sys in outV V V=  (50.2) 

 int int intmat mat mat mat

sys sim mulV V V V=   (50.3) 

 

where the 
;0

mat

simV , 
;0

mat

mulV , matV , ext mat

inV , ext mat

outV , int mat

simV , and 

int mat

mulV  are shown in Fig. 8 (b). 

Based on that ; ;
ˆ ˆ

sim muln n = −  on matV , the GHPs (29') and 

(30') are formally specialized to (42) and (43) respectively, and 

the GFHF (33) is formally specialized to (44). 

Case III: One body submerges the other body 

In this case, the following relationships exist: 

 

 mat mat

simV V =   (51.1) 

 
;0

mat

simV =   (51.2) 

 

and 

 

 
;0

mat mat

sys mulV V =   (52.1) 

 

int int int

int int

int cl

mat mat mat mat

sys mul sim

mat mat mat

mul sim sim

mat mat

mul sim

V V V V

V V V

V V

= 

= 

=

 (52.2) 

 

where the mat

simV , matV , mat

sysV , 
;0

mat

mulV , int mat

simV , and int mat

mulV  

are shown in Fig. 8 (c). 

Based on that ; ;
ˆ ˆ

sim muln n = −  on matV , the GHPs (29') and 

(30') are formally specialized to (42) and (43) respectively, and 

the GFHF (33) is formally specialized to (44). 
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V. APPLICATION OF GFHF: TO CONSTRUCT HARRINGTON’S 

CM OF INHOMOGENEOUS ANISOTROPIC LOSSY MATERIAL 

SYSTEM 

For metallic system, Harrington et al. [48] developed a 

mathematical scheme to construct CM by using SEFIE-MoM 

(surface electric field integral equation based method of mo-

ments). For isotropic material system, Harrington et al. con-

structed some kinds of CM by using VIE-MoM (volume inte-

gral equation based MoM) [49] and SIE-MoM (surface integral 

equation based MoM, also known as PMCHWT-based MoM) 

[35]. The physical essence of Harrington’s CM is to construct a 

series of orthogonal modes which have ability to orthogonalize 

objective EM power, for example: 

• For metallic system, Harrington’s SEFIE-based CM [48] 

orthogonalizes the following objective power: 

 

 ( ) ( )1 2 , 1 2 ,
met met met

SL inc SS inc

L S V
J E J E


+  (53) 

 

where the inner product is defined as ,f g f g d




    , and 
SLJ  is the scattering line electric current on metallic line metL , 

and SSJ  is the scattering surface electric current on metallic 

surface metS  and on the boundary of metallic body metV . 

• For homogeneous or inhomogeneous isotropic material 

system, Harrington’s VIE-based CM [49] orthogonalizes the 

following objective power: 

 

 ( ) ( )1 2 , 1 2 ,
mat mat

SV inc SV inc

V V
J E M H+ . (54) 

 

• For homogeneous isotropic material system, Harrington’s 

PMCHWT-based CM [35] orthogonalizes the following power: 

 

 ( ) ( )1 2 , 1 2 ,
mat mat

ES inc ES inc

V V
J E M H

 
− −  (55) 

 

where the minus signs originate from that the equivalent sur-

face currents in [35] are  ,ES ESJ M− − . 

Recently, [46] proves that the objective powers orthogo-

nalized by VIE-based CM and PMCHWT-based CM are iden-

tical to each other, i.e., 

 
1 1 1 1

, , , ,
2 2 2 2

mat mat mat mat

SV inc SV inc ES inc ES inc

V V V V
J E M H J E M H

 
+ = − −  (56) 

 

when material system is homogeneous isotropic. In this section, 

Harrington’s CM theory for a simply connected homogeneous 

isotropic material body [35], [49] is generalized to the EM 

system which is constructed by multiple inhomogeneous ani-

sotropic lossy material bodies and placed in VACUUM, and the 

bodies can be either simply or multiply connected. As a typical 

example, the two-body material system sys

matV  shown in Fig. 9 is 

specifically considered, and the formulations corresponding to 

any l -body material system can be similarly obtained.  

The reason to call the CM constructed below as “Harring-

ton’s CM” is that the CM orthogonalizes power operator 

 

 ( ) ( )
2

1
1 2 , 1 2 ,

mat mat
i i

Harrington SV inc SV inc

mat sys i ii V V
P J E M H

=
= +  (57) 

 

by following Harrington’s ideas in [49]. In (57), the subscript 

“ mat sys ” is to emphasize that the power operator Harrington

mat sysP  

corresponds to material system. 

A. Power characteristic of operator (57) 

Similarly to the discussions in our previous paper [46], the 

power characteristic of Harrington

mat sysP  in (57) can be expressed as 

follows: 

 

( )

 

, , , , , , ,

, Re ,
sys sys

mat mat

Harrington sca rad tot loss mat sca sto field tot sto mat

mat sys mat sys mat sys mat sys mat sys

inc inc sca inc

mat sys mat sys
V V

P P P j P P

j H H H H  

= + + +

 −   +  
  

 

  (58) 

 

where 

 

 ( ) ( ), 1 2sca rad sca sca

mat sys
S

P E H dS


 =  
    (59.1) 

 ( ), , , , , ,

; ;2sca sto field sca sto field sca sto field

mat sys mat sys m mat sys eP W W= −  (59.2) 

 ( ), , 1 2 ,
sys

mat

tot loss mat tot tot

mat sys mat sys
V

P E E=   (59.3) 

 ( ), , , , , ,

; ;2tot sto mat tot sto mat tot sto mat

mat sys mat sys m mat sys eP W W= −  (59.4) 

 

and 

 

 ( )
3

, ,

; 01 4 ,sca sto field sca sca

mat sys mW H H=  (60.1) 

 ( )
3

, ,

; 01 4 ,sca sto field sca sca

mat sys eW E E=  (60.2) 

 ( ), ,

; 1 4 ,
sys

mat

tot sto mat tot tot

mat sys m mat sys
V

W H H=    (60.3) 

 ( ), ,

; 1 4 ,
sys

mat

tot sto mat tot tot

mat sys e mat sys
V

W E E=    (60.4) 

 

where 0mat sys mat sys I   = − , and 0mat sys mat sys I   = − , and 

 

 ( )
( ) ( )

( ) ( )

1 1

2 2

,

,

mat

mat sys mat

r r V
r

r r V






 
= 



 (61) 

 

in which , ,   = . 

B. Surface formulation of operator (57) 

In this section, the surface formulation of Harrington’s 

power operator corresponding to a one-body material system is 

provided at first, and then the two-body case is discussed. 

matV

2

matV
1

matV

 
 

Fig. 9. The EM system constructed by two material bodies. 
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One-body case  

By doing some necessary vector operations and utilizing the 

definition of equivalent surface electric current on mat

iV , the 

following relation can be derived: 

 

 ( ),
mat mat

i i

ES inc inc tot

i
V V

J E E H dS


 

 =  
    (62) 

 

where 1,2i = . In addition, 

 

 

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

0

mat
i

mat
i

mat mat
i i

mat mat
i i

mat
i

inc tot

V

inc tot

V

inc tot inc tot

V V

inc tot inc tot

i
V V

inc tot

V

E H dS

E H dV

E H dV E H dV

j H H dV E j E dV

j H H dV E

 









 

 



  
  

 =   
  

=   −  

= −  −  

= −  −





 

 

 ( )

( )

( ) ( )

( )

0

0 0

mat
i

mat
i

mat mat
i i

mat
i

inc tot

V

inc tot

i
V

inc tot inc tot

V V

inc SV

i
V

j E dV

E j E dV

j H H dV j E E dV

E J dV



 

   





 





−   

= −  + 

− 





 



. (63) 

 

In (63), the first equality is due to Gauss’ divergence theorem; 

the second equality is based on that ( ) ( )a b a b  −   =  

( )a b   ; the third equality is because of the Maxwell’s 

equations of incident field and total field; the forth equality is 

due to that 
0i iI  = +  ; the fifth equality is based on that 

SV tot

i iJ j E =    [1], [45]. Then, 

 

0 0, , , ,
mat mat mat mat

i i i i

ES inc tot inc tot inc SV inc

i i
V V V V

J E j H H j E E J E   


= − + − . 

  (64.1) 

 

Similarly, it can be derived that 

 

0 0, , , ,
mat mat mat mat

i i i i

ES inc tot inc tot inc SV inc

i i
V V V V

M H j H H j E E M H   


= − − . 

  (64.2) 

 

The summation of (64.1) and (64.2) gives that 

 

, , , ,
mat mat mat mat

i i i i

SV inc SV inc ES inc ES inc

i i i i
V V V V

J E M H J E M H
 

+ = − − . (65) 

 

(65) is the generalization of the conclusion given in [46]. 

Two-body case 

Inserting (65) into (57), the Harrington

mat sysP  can be rewritten as 

 

( ) ( )

( ) ( )

( ) ( )
0 0

2

1

2

0 01

2

0 01

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

mat mat
i i

mat mat
i i

mat mat
i i

Harrington ES inc ES inc

mat sys i ii V V

ES ES inc ES ES inc

i i i ii V V

ES inc ES inc

i ii V V

P J E M H

J J E M M H

J E M H

=  

=  

=  

= − +

= − + + +

= − +







 

  (57') 

 

where the second equality is based on (26), and the third 

equality is based on (28). By utilizing GFHF (44), the surface 

formulation of power operator Harrington

mat sysP  can be expressed as 

 

( ) ( ) ( )
( ) ( ) ( ) 

0

0

2

0 0 0 10 20 0 10 201

0 0 0 10 20 0 10 20

1 2 , +

1 2 , +

mat
i

mat
i

Harrington ES ES ES ES ES

mat sys ii V

ES ES ES ES ES

i
V

P J j J J M M

M j M M J J





= 



= + +

+ − +


 

  (57'') 

 

where the 0  and 0  are defined as (16). The reason to call 

(57'') as surface formulation is that all arguments in this for-

mulation are surface currents. 

C. Discretization of operator (57'') 

In this subsection, the operator (57'') is transformed from 

current space to expansion vector space at first, and then the 

equivalent electric and magnetic currents are related to each 

other in expansion vector space [46]. 

From current space to expansion vector space 

If the currents 
0

ES

iC  and 
1

ESC  are expanded in terms of proper 

basis functions as follows: 

 

( ) ( ) ( )
0

0 0 0 0

0 0

1

,

ESC
i

ES ES ES ES
i i i iC C C CES mat

i iC r a b r B a r V 




=

= =    (66.1) 

( ) ( ) ( )1

1

,

ESC

ES ES ES ESC C C CES matC r a b r B a r V 




=

= =    (66.2) 

 

then 

 

( ) ( ) ( ) ( )2 1 ,
ES ESC CES ES matC r C r B a r V= − = −    (66.3) 

 

where ,C J M= , and 

 

 
1 2, , , X

X X X XB b b b


 =  
 (67.1) 

 1 2, , , X

T
X X X Xa a a a


 =    (67.2) 

 

for any 
10 20 1 2, , ,ES ES ES ESX C C C C= . 

Inserting (66) into (57''), the objective power Harrington

mat sysP  is 

discretized to the following matrix form: 

 

 

 ( )
   

10 20 10 20

10 20 10 20 10 20 10 20

, , , , ,

, , , , , , , , , ,

ES ES ES ES ES ES

ES ES ES ES ES ES ES ES ES ES ES ES

H
J J J M M MHarrington

mat sys mat sys

J J J M M M J J J M M M

mat sys mat sys

P a

P a

=

 

 (68) 

 

where 

 

 

10 10 10 20 10 10 10 20

20 10 20 20 20 10 20 20

10 20 10 20

10 10 10 20 10 10

, , , , ,

0 0

0 0 0 0 0 0

0 0

0

ES ES ES ES ES ES ES ES

ES ES ES ES ES ES ES ES

ES ES ES ES ES ES

ES ES ES ES ES E

J J J J J M J M

J J J J J M J M
J J J M M M

mat sys
M J M J M M

P P P P

P P P P
P

P P P
=

10 20

20 10 20 20 20 10 20 20

0

0 0 0 0 0 0

0 0

S ES ES

ES ES ES ES ES ES ES ES

M M

M J M J M M M M

P

P P P P

 
 
 
 
 
 
 
 
 
 
 

 

  (69.1) 
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 

10

20

10 20 10 20

10

20

, , , , ,

ES

ES

ES

ES ES ES ES ES ES

ES

ES

ES

J

J

J
J J J M M M

mat sys
M

M

M

a

a

a
a

a

a

a

 
 
 
 
 

=  
 
 
 
 
 

 (69.2) 

 

in which the elements of various submatrices are as follows: 

 

 ( ) ( )0 0 0 0

0

0 01 2 ,
ES ES ES ES
i l i l

mat
i

J J J J

V

p j b b  


=  (70.1) 

 ( ) ( )0 0 0 0

0

01 2 ,
ES ES ES ES
i l i l

mat
i

J M J M

V

p b b  
−

=  (70.2) 

 ( ) ( )0 0 0 0

0

0 01 2 ,
ES ES ES ES
i l i l

mat
i

M M M M

V

p j b b  


=  (70.3) 

 ( ) ( )0 0 0 0

0

01 2 ,
ES ES ES ES
i l i l

mat
i

M J M J

V

p b b  
−

= −  (70.4) 

 

for any , 1,2i l = , where the subscript “ − ” used in integral do-

main 0

mat

iV −  is to emphasize that the integral is done on the 

internal surface of boundary 0

mat

iV . 

To relate equivalent electric and magnetic currents in 

expansion vector space 

The equivalent electric and magnetic currents on material 

boundary satisfy the following relations: 

 

 
tan

ˆ: mat mat
i i

mat ES JH ES MH ES

i i mat i i mat i iV V
V J n G J G M

→ 
   =  +  

 (71.1) 

 
tan

ˆ: mat mat
i i

mat ES JE ES ME ES

i i mat i i mat i iV V
V n M G J G M

→ 
   =  +  

 (71.2) 

 

as illustrated in (4) and (45), where the JH

mat iG , MH

mat iG , JE

mat iG , and 
ME

mat iG  are the material Green’s functions of body mat

iV . If (71.1) 

is tested by 0{ }
ES
iMb  and { }

ESM

ib , then the expansion vectors 
0{ , }

ESES
i

MM
a a  can be expressed in terms of the expansion vectors 

0{ , }
ESES

i
JJ

a a  as follows: 

 

 
0 0

ES ES
i i

i i

ES ES

M J

J M

mat sys
M J

a a
T

a a

→
   
  =   
      

 (72) 

 

where 

 

 

0 00 0
0 0

0 0

1ES ESES ESM MM MES ESES ESi ii i
i i

i i

ES ESES ESM MM MES ESES ES
i ii i i i

b M b Jb M b J

J M

mat sys
b M b Jb M b J

T
  

−

→

   
      = 

   
         

 (73) 

 

in which the elements of various submatrices are as follows: 

 

 
0

0 0 0

0
0

,
ESM ES ES ESi

i i i

mat
mati

i

b M M MMH

mat i
V

V

b G b  
−




 = 
 

 (74.1) 

 
0

0

0

,
ESM ES ESESi

i

mat
mat

i

b M MM MH

i mat i
V

V

b G b   
−




 = 
 

 (74.2) 

 0 0

0

,
ESM ESES ES

i i i

mat
mati

Mb M MMH

i mat i
V

V

b G b


   
−




 = 
 

 (74.3) 

 ,
ESM ES ES ES

i

mat
mat

b M M MMH

mat i
V

V

b G b


  
−




 = 
 

 (74.4) 

 
0

0 0 0 0

0
0

ˆ,
ESM ES ES ES ESi

i i i i
mat

mati mati
i

b J M J JJH

mat iV
V

V

b b n G b   
−

→




 =  − 
 

 (74.5) 

 
0

0

0

,
ESM ES ESESi

i

mat
mat

i

b J JM JH

i mat i
V

V

b G b   
−




 = − 
 

 (74.6) 

 0 0

0

,
ESM ESES ES

i i i

mat
mati

Mb J JJH

i mat i
V

V

b G b


   
−




 = − 
 

 (74.7) 

 ˆ,
ESM ES ES ES ES

i

mat
mati

mat

b J M J JJH

mat iV
V

V

b b n G b


   
−

→




 =  − 
 

 (74.8) 

 

where 1,2i = , and 1 1 =  and 2 1 = − . In fact, the matrix i iJ M

mat sysT
→  

can be partitioned as follows: 

 

 
0 0 0

0

i i i i
ES ES ES ES
i i i

i i

i i i i
ES ES ES ES

i

J M J M

M J M JJ M

mat sys
J M J M

M J M J

T T
T

T T

→ →

→

→ →

 
 =
 
  

 (75) 

 

based on the partition way of the vectors in (72). Then, the 

following transformation from vectors 10 20{ , , }
ESES ESJJ J

a a a  to vec-

tors 10 20{ , , }
ESES ESMM M

a a a  can be easily established: 

 

 

10 10

20 20

ES ES

ES ES

ES ES

M J

M JJ M

mat sys

M J

a a

a T a

a a

→

   
   
   = 
   
   
   

 (76) 

 
where 
 

 

1 1 1 1

10 10 10

1 1 1 1

10

2 2 2 2

20 20 20

0

0

0

ES ES ES ES

ES ES ES ES

ES ES ES ES

J M J M

M J M J

J M J MJ M

mat sys M J M J

J M J M

M J M J

T T

T T T

T T

→ →

→ →→

→ →

 
 
 

=  
 
 
 

 (77) 

 
or alternatively 
 

 

1 1 1 1

10 10 10

2 2 2 2

20

2 2 2 2

20 20 20

0

0

0

ES ES ES ES

ES ES ES ES

ES ES ES ES

J M J M

M J M J

J M J MJ M

mat sys M J M J

J M J M

M J M J

T T

T T T

T T

→ →

→ →→

→ →

 
 
 

=  
 
 
 

. (78) 

 

Inserting (76) into (68), (68) becomes 

 

 
 ( )    10 20 10 20 10 20, , , , , ,ES ES ES ES ES ES ES ES ES

H
J J J J J J J J JHarrington

mat sys mat sys mat sys mat sysP a P a=    (79) 

 
where 
 

 
   10 20 10 20 10 20, , , , , , ,ES ES ES ES ES ES ES ES ES

H

J J J J J J M M M

mat sys mat sys
J M J M

mat sys mat sys

I I
P P

T T→ →

   
   =  
   
   

 (80.1) 

 
 

10

10 20

20

, ,

ES

ES ES ES ES

ES

J

J J J J

mat sys

J

a

a a

a

 
 
 =
 
 
 

  (80.2) 
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in which I  is the identity matrix whose order is the same as the 

number of the rows of 10 20{ , , }ES ES ESJ J J

mat sys
a . 

Similarly to establishing (76) by testing (71.1) with 0{ }
ES
iM

b  

and { }
ESM

ib , the following transformation from vectors 
10 20{ , , }

ESES ESMM M
a a a  to vectors 10 20{ , , }

ESES ESJJ J
a a a  can be easily estab-

lished: 

 

 

10 10

20 20

ES ES

ES ES

ES ES

J M

J MM J

mat sys

J M

a a

a T a

a a

→

   
   
   = 
   
   
   

 (81) 

 

by testing (71.2) with 0{ }
ES
iJb  and { }

ESJ

ib . Inserting (81) into 

(68), (68) becomes the following form: 

 

 
 ( )    10 20 10 20 10 20, , , , , ,ES ES ES ES ES ES ES ES ES

H
M M M M M M M M MHarrington

mat sys mat sys mat sys mat sysP a P a=    (82) 

 

where 

 

   10 20 10 20 10 20, , , , , , ,ES ES ES ES ES ES ES ES ES

H
M J M J

M M M J J J M M Mmat sys mat sys

mat sys mat sys

T T
P P

I I

→ →   
   =  
      

 (83.1) 

 

10

10 20

20

, ,

ES

ES ES ES ES

ES

M

M M M M

mat sys

M

a

a a

a

 
 
 =
 
 
 

.  (83.2) 

 

For the convenience of the following discussions, (79) and 

(82) are uniformly written as follows: 

 

 
 ( )    10 20 10 20 10 20, , , , , ,ES ES ES ES ES ES ES ES ES

H
C C C C C C C C CHarrington

mat sys mat sys mat sys mat sysP a P a=    (84) 

 

where ,C J M= . 

D. Harrington’s CM orthogonalizing operator (57) 

The power matrix 10 20{ , , }ES ES ESC C C
P  can be decomposed as 

 

 
     10 20 10 20 10 20, , , , , ,

; ;

ES ES ES ES ES ES ES ES ESC C C C C C C C C

mat sys mat sys mat sysP P j P+ −= +  (85) 

 

where [46] 

 

 
     ( )10 20 10 20 10 20, , , , , ,

;

1

2

ES ES ES ES ES ES ES ES ES
H

C C C C C C C C C

mat sys mat sys mat sysP P P+

 
= + 

 
 (86.1) 

 
     ( )10 20 10 20 10 20, , , , , ,

;

1

2

ES ES ES ES ES ES ES ES ES
H

C C C C C C C C C

mat sys mat sys mat sysP P P
j

−

 
= − 

 
. (86.2) 

 

Based on Harrington’s classical method [35], [48], [49], the 

CM can be obtained by solving characteristic equation 

 

       10 20 10 20 10 20 10 20, , , , , , , ,

; ; ; ; ;

ES ES ES ES ES ES ES ES ES ES ES ESC C C C C C C C C C C C

mat sys mat sys mat sys mat sys mat sysP a P a  − + =  . (87) 

 

In addition, the electromagnetic-power-based (EMP-based) 

CMT for the inhomogeneous anisotropic material system can 

be easily established by employing the GFHFs obtained in this 

paper and the formulations provided in paper [51], and it will 

not be repeated here. 

 

 

VI. CONCLUSIONS 

In this paper, the EM diffraction integral formulations in 

homogeneous isotropic media are generalized to inhomoge-

neous anisotropic lossy media. Then the traditional HP, ET, and 

FHF of a single simply connected homogeneous isotropic ma-

terial body in homogeneous isotropic environment are gener-

alized to the EM system which is constructed by several simply 

or multiply connected inhomogeneous anisotropic lossy mate-

rial bodies (the different bodies can either contact or be non-

contact with each other) and placed in an inhomogeneous ani-

sotropic lossy environment; the traditional FHF of external 

scattering field and internal total field are generalized to the 

internal incident field and internal scattering field, and the 

equivalent surface currents used to express these fields are the 

same. The generalized versions of HP, ET, and FHF satisfy 

so-called topological additivity, i.e., the GHP/GET/GFHF of 

whole EM system equals to the summation of the 

GHP/GET/GFHF corresponding to all sub-systems. 

The relationships among HP, ET, and FHF are studied, and it 

is found out that the mathematical formulation of HP and ET 

are essentially equivalent to each other; the FHF is not the 

mathematical expression of HP, and it is only the mathematical 

expression of SEP; HP is a special SEP, and SEP is not nec-

essarily HP; HP can be viewed as physical equivalence princi-

ple, because it simultaneously satisfies the action at a distance, 

the law of causality, and the principle of superposition. Based 

on these observations, the reason leading to the backward wave 

problem of FHF is clearly explained. 

Compared with the HP and ET, the FHF has not a clearer 

physical meaning, but it doesn’t imply that the FHF is useless. 

The values of FHF are mainly manifested in that various EM 

fields are uniformly expressed in terms of an identical set of 

currents, and this feature is very valuable for many engineering 

applications as exhibited in this paper. 

 

 

APPENDIX A: INTEGRAL EXPRESSIONS OF THE FIELDS IN AN 

INHOMOGENEOUS ANISOTROPIC OPEN DOMAIN   

In this appendix A, some integral expressions for the fields in 

inhomogeneous anisotropic environment are derived, and the 

expressions are based on EM dyadic Green’s functions ac-

cording to Prof. Tai’s observation “… the most compact for-

mulation appears to be the one based on the dyadic Green’s 

function pertaining to the vector wave equation for E  and 

H  … ” [28]. 

In any open domain   whose material parameters are 

 ,   , it is supposed that the EM fields  ,E H   and cur-

rents  ,J M   satisfy the following Maxwell’s equations: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H r J r j r E r

E r M r j r H r





   

   

 = + 

 = − − 
 (A-1) 

 

for any r  , where the terminology “open domain” means 

that int =   [38], and the subscripts “  ” used in various 

quantities mean that these quantities distribute on domain  . 

Various EM dyadic Green’s functions on domain   are de-

fined as follows: [1], [37], [45] 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

, ,

, ,

JH JE

JE JH

G r r I r r j r G r r

G r r j r G r r

 



  

  

   = − + 

  = − 
 (A-2.1) 

 

for the dyadic Green’s functions corresponding to electric-type 

unity dyadic point source, and 

 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, ,

MH ME

ME MH

G r r j r G r r

G r r I r r j r G r r



 

  

  

  = 

   = − − − 
 (A-2.2) 

 

for the dyadic Green’s functions corresponding to magnet-

ic-type unity dyadic point source. In (A-2), the I  is identity 

dyad, and the ( )r r −  is Dirac delta function, and ,r r . 

If   is a two-order complex symmetrical tensor, its inverse 
1−  is also symmetrical because of the following observation: 

 

 
( ) ( )

( ) ( )

1 1

1
1 1

T T
T T

T
T

I I   

  

− −

−
− −

 =  = =

 = =

 (A-3) 

 

Based on the identity ( ) ( ) ( )a b a b a b   =    −     [37] and 

the symmetry of 1− , the following (A-4) can be obtained: 

 

 
( ) ( ) 

( )  ( ) 

1 1

1 1

P Q P Q

P Q P Q

 

 

− −

− −

         +    
  

  =       −      
   

. (A-4) 

 

Appling divergence theorem to (A-4), the following general-

ized vector-dyadic Green’s second theorem can be derived: 

 

( )  ( ) ( )
( ) ( ) 

1 1

1 1ˆ

P Q P Q d

n P Q P Q dS

 

 

− −



− −

→


         −       
  

   =      +    
  




. (A-5) 

 

In (A-5), n̂→  is the unity normal vector of boundary  , and 

it points to the interior of domain  . 

Inserting ( )P E r=  and ( ),JEQ G r r
=  and ( )r =  into 

(A-5), and restricting that there doesn’t exist surface magneti-

zation magnetic current on   (the reasonability of this re-

striction will be explained in Appendix C), the following rela-

tion can be derived: 

 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )  ( )

( ) ( ) ( ) 

2

2

1

1

,

,

,

,

ˆ

JE

JE

JE

JE

JE

j E r I r r d

j J r G r r d

E r r G r r d

r E r G r r d

r M r G r r d

j n r r H r G r

 



 

 



  




 


  


  


−

  


−

→    

−  − 

+  

 +    

  −    

  +      

 = −     











( )

( ) ( ) ( ) ( ) 

( ) ( ) ( ) 

1

1

,

ˆ ,

ˆ ,

JH

JE

r dS

j n E r r r G r r dS

n r M r G r r dS

  





−

→    


−

→   


 
 

  −      

  −    







 (A-6) 

 

where the integrals on boundary surface   are defined as 

( ) ( ), lim ,A r r dS A r r dS
 →

   , and    . The last term in the 

left-hand side of (A-6) can be rewritten as follows: 

 

 

( ) ( )  ( )

( ) ( ) ( ) 
( ) ( ) ( )

( ) ( ) ( ) 
( ) ( ) ( )

1

1

1

1

1

,

ˆ ,

,

ˆ ,

,

JE

JE

JE

JE

JH

r M r G r r d

n r M r G r r dS

r M r G r r d

n r M r G r r dS

j r M r r G r









  

−

  


−

→   


−

  


−

→   


−

   

       

  = −    

   +        

  = −    

 −    









( )r d


   

 (A-7) 

 

where the first equality is based on the identity ( )a b   =

( ) ( )a b a b  −    and Gauss’ divergence theorem [37], and 

the second equality is based on (A-2.1). Because the dot 

product of two dyads satisfies the associative property [37] and 

the    is symmetrical, then 

 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ,

,

JE JE

JE

E r r G r r E r r G r r

r E r G r r

 



     

  

      =    

  =   

. (A-8.1) 

 

Similarly, it can be derived that 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 , ,JH JHr M r r G r r M r G r r −

     
       =      (A-8.2) 

 ( ) ( ) ( )  ( ) ( ) ( )1 , ,JE JEr r H r G r r H r G r r −

     
      =    (A-8.3) 

 ( ) ( ) ( ) ( )  ( ) ( )1 , ,JH JHE r r r G r r E r G r r −

     
     =    (A-8.4) 

 

based on the symmetry of   and 1 −

 . Inserting (A-7) and 

(A-8) into (A-6) and utilizing the property that 

( ) ( ) ( )E r E r I r r d 


 =  −  , (A-6) can be simplified as 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

ˆ ,

ˆ ,

JE

JH

JE

JH

E r J r G r r d

M r G r r d

n H r G r r dS

n E r G r r dS

  


 


→  


→  


 =  

−  

 +   

 +   









. (A-9) 
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Based on the identity ( ) ( ) ( )a b c b c a c a b  =   =   , (A-9) 

can be further rewritten as 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

ˆ ,

ˆ ,

JE

JH

JE

JH

E r J r G r r d

M r G r r d

n H r G r r dS

E r n G r r dS

  


 


→  


 → 


 =  

−  

  +   

  −   









. (A-10) 

 

Interchanging the position vectors r  and r  in (A-10), the 

following integral formulation of E
 is derived: 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

ˆ ,

ˆ ,

JE

JH

JE

JH

E r J r G r r d

M r G r r d

n H r G r r dS

E r n G r r dS

  


 


→  


 → 


  =  

  −  

   +   

   −   









 (A-11) 

 

for any r  . If the following boundary currents are intro-

duced: 

 

 ( ) ( ) ( ) ( )ˆ ,
r r

J r n r H r r →  →
     (A-12.1) 

 ( ) ( ) ( ) ( )ˆ ,
r r

M r E r n r r  →→
      (A-12.2) 

 

where intr   and r  tends to r , then (A-11) can be rewrit-

ten as follows: 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

,

,

JE

JH

JE

JH

E r J r G r r d

M r G r r d

J r G r r dS

M r G r r dS

  


 


 


 


  =  

  −  

  + 

  − 









. (A-13) 

 

If ( )P H r=  and ( ),MHQ G r r
=  and ( )r =  are inserted 

into (A-5), the following integral expression for the magnetic 

field H
 at any position r  in   can be obtained similarly: 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

,

,

ME

MH

ME

MH

H r J r G r r d

M r G r r d

J r G r r dS

M r G r r dS

  


 


 


 


  = −  

  +  

  − 

  + 









 (A-14) 

 

for any r  . 

 

 

APPENDIX B: THE SYMMETRY OF THE DYADIC GREEN’S 

FUNCTIONS CORRESPONDING TO AN INHOMOGENEOUS 

ANISOTROPIC OPEN DOMAIN   

Based on (A-2.2), it can be concluded that the magnetic-type 

identity vector point source ( )ˆ r r −  and its fields 

( ) ( ) ; ;, , ,ME MHG r r G r r  
   satisfy the following Maxwell’s 

equations: 

 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

; ;

; ;

, ,

ˆ, ,

MH ME

ME MH

G r r j r G r r

G r r r r j r G r r

 

 



 

  

  

  = 

   = − − − 
 (B-1) 

 

in which , ,x y z = , and 

 

 ( ) ( ) ( ) ( ); ; ; ;
ˆ ˆ ˆ, , , ,MF MF MF MF

x y zG r r xG r r yG r r zG r r      
   = + +  (B-2) 

 

where ,F E H= . 

If the currents in (A-13) are as follows: 

 

 ( ) ( )   , 0J r J r  =  (B-3.1) 

 ( ) ( )  ( ) ˆ,M r M r r r 
= −  (B-3.2) 

 

then (A-13) gives that 

 

 

( ) ( ) ( )

( ) ( )

( )

;

;

;

ˆ, ,

,

,

ME JH

JH

JH

G r r r r G r r d

r r G r r d

G r r











 
 


 



     = − −  
 

   = − − 

= −



  (B-4) 

 

where 

 

 ( ) ( ) ( ) ( ); ; ; ;
ˆ ˆ ˆ, , , ,JH JH JH JH

x y zG r r xG r r yG r r zG r r      
   = + + . (B-5) 

 

In fact, (B-4) is equivalent to saying that 

 

 ( ) ( ), ,
T

ME JHG r r G r r 
  = −    (B-6.1) 

 ( ) ( ), ,
T

JH MEG r r G r r 
  = −    (B-6.2) 

 

where the superscript “ T ” is the transpose of a dyad. 

Similarly to (A-5), the following generalized vector-vector 

Green’s second theorem exists: 

 

( )  ( ) ( )
( ) ( ) 

1 1

1 1ˆ

P Q P Q d

n P Q P Q dS

 

 

− −



− −

→


         −       
  

   =      +    
  




. (B-7) 

 

It is supposed that the EM fields  ,
a aJ JE H 

 
/ ,

b bJ JE H 

 
 and 

current aJ
/ bJ

 satisfy the following Maxwell’s equations: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

a b a b

a b a b

J Ja b

J J

H r J r j r E r

E r j r H r





 

 

   

  

  = + 

  = − 
 (B-8) 

 

for any r  . Inserting ( )
aJP E r

=  and ( )
bJQ E r

=  and 

( )r =  into (B-7), the following relation can be derived: 
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( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )  ( )

2

2

1ˆ

ˆ

a

b

a b

a b

a b

a

J b

Ja

J J

J J

J J

J

j E r J r d

j J r E r d

E r r E r d

r E r E r d

j n r r H r E r dS

j n E





 

 

  







 

 

 



 


 


  


  


−

→    


→ 

−  

+  

 +   
 

 −   
 

  = −    
   

− 











( ) ( ) ( ) ( ) 1 bJr r r H r dS  −

  


    
   

. (B-9) 

 

Due to the symmetry of ( )r , ( )r , and ( )1 r −

  and the 

associative property corresponding to the dot product of two 

dyads, the following relationship exists: 

 

 ( ) ( ) ( ) ( ) ( ) ( )
a b a bJ J J JE r r E r r E r E r    

     
     =  
   

 (B-10.1) 

 ( ) ( ) ( ) ( )1 a aJ Jr r H r H r   −

   
   =
 

 (B-10.2) 

 ( ) ( ) ( ) ( )1 b bJ Jr r H r H r   −

   
   =
 

. (B-10.3) 

 

Inserting (B-10) into (B-9), (B-9) can be simplified as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ

ˆ

a a b

b a b

J J Jb

J J Ja

E r J r d E r n H r dS

J r E r d n H r E r dS

  

  

   → 
 

  →  
 

   +  
 

 =   +  
 

 

 
. (B-11) 

 

Similarly to (A-12), the following boundary currents are de-

fined: 

 

 ( ) ( ) ( ) ( )ˆ ,
aJa

r r
J r n r H r r

 → 
→

  
 

 (B-12.1) 

 ( ) ( ) ( ) ( )ˆ ,
bJb

r r
J r n r H r r

 → 
→

  
 

. (B-12.2) 

 

Inserting (B-12) into (B-11), (B-11) becomes the following 

form: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a a

b b

J Jb b

J Ja a

E r J r d E r J r dS

J r E r d J r E r dS

 

 

   
 

   
 

  + 

=   + 

 

 
. (B-13) 

 

If the currents in (B-13) are as follows: 

 

 ( ) ( )  ( ) ˆ,a a

aJ r J r r r  = −  (B-14.1) 

 ( ) ( )  ( ) ˆ,b b

bJ r J r r r  = −  (B-14.2) 

 

where , , ,x y z  = , then 

 

 
( ) ( )

( ) ( ) ( )

;

; ; ;

,

ˆ ˆ ˆ, , ,

aJ JE

a

JE JE JE

x a y a z a

E r G r r

xG r r yG r r zG r r



  



 

  

=

= + +
 (B-15.1) 

 
( ) ( )

( ) ( ) ( )

;

; ; ;

,

ˆ ˆ ˆ, , ,

bJ JE

b

JE JE JE

x b y b z b

E r G r r

xG r r yG r r zG r r



  



 

  

=

= + +
. (B-15.2) 

 

Inserting (B-14) and (B-15) into (B-13), the following rela-

tionship is derived: 

 

 

( ) ( ) ( )

( ) ( )

( )

; ;

;

;

ˆ, ,

ˆ ,

,

JE JE

b a a b

JE

a b

JE

a b

G r r G r r r r d

r r G r r d

G r r

 









 
 


 



 =  − 
 

 = −  
 

=



 . (B-16) 

 

Thus, the following symmetry of Green’s function ( ),JEG r r
  is 

obtained: 

 

 ( ) ( ), ,
T

JE JEG r r G r r 
  =   . (B-17) 

 

Similarly, the following symmetry of Green’s function 

( ),MHG r r
  can also be obtained: 

 

 ( ) ( ), ,
T

MH MHG r r G r r 
  =   . (B-18) 

 

Based on the symmetries (B-6), (B-17), and (B-18), (A-10) 

and (A-11) can be alternatively written as follows: 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

ˆ,

ˆ,

JE

ME

JE

ME

E r G r r J r d

G r r M r d

G r r n H r dS

G r r E r n dS

  


 


 → 


  →


  =  

  +  

   +   

   +   









 (A-10') 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

ˆ,

ˆ,

JH

MH

JH

MH

H r G r r J r d

G r r M r d

G r r n H r dS

G r r E r n dS

  


 


 → 


  →


  =  

  +  

   +   

   +   









 (A-11') 

 

for any r  . In fact, the above (A-10') and (A-11') can be 

uniformly written as follows: 
 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

ˆ,

ˆ,

JF

MF

JF

MF

F r G r r J r d

G r r M r d

G r r n H r dS

G r r E r n dS

  


 


 → 


  →


  =  

  +  

   +   

   +   









 (B-19) 

 

for any r  , where ,F E H= . Following the manner to ex-

press convolution integrals in [45], (B-19) can be rewritten as 

the following (B-19') to compact the integral formulations 

appeared in this paper. 
 

 

( )

( )

( ) ( )

ˆ:

ˆ

ˆ ˆ

JF JF

MF MF

JF MF

JF MF

F G J G n H

G M G E n

G J G M

G n H G E n

    → 
 

    →
 

   


 →    →


   =  +     

  +  +     

 =  +  

 +   +  
 

 (B-19') 
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for any field point in  , where ,F E H= . 

 

 

APPENDIX C: INTEGRAL EXPRESSIONS OF THE FIELDS RELATED 

TO A SIMPLY CONNECTED INHOMOGENEOUS ANISOTROPIC 

LOSSY MATERIAL BODY 
mat

simV  

In this Appendix C, a simply connected inhomogeneous an-

isotropic lossy material body mat

simV , which is placed in inho-

mogeneous anisotropic lossy environment and excited by in-

cident field incF , is considered. The material boundary mat

simV  

divides the whole Euclidean space 3  into two parts, the inte-

rior of mat

simV  (denoted as int mat

simV ) and the exterior of mat

simV  (de-

noted as ext mat

simV ) as shown in Fig. 4, and they are open sets 

obviously [38]. When the polarization electric current and 

magnetization magnetic current models are employed to depict 

the polarization and magnetization phenomena of material 

body, there doesn’t exist any scattering surface current on ma-

terial boundary [1], and the scattering volume polarization 

electric current and the scattering volume magnetization mag-

netic current on material body are denoted as ,

SV

mat polJ  and 

,

SV

mat magM  respectively, where the superscript “ SV ” is the acro-

nyms of term “scattering volume”. The scattering volume 

ohmic electric current is denoted as ,

SV

mat ohmJ . To simplify the 

symbolic system of this paper, the summation of ,

SV

mat polJ  and 

,

SV

mat ohmJ  is denoted as SVJ , i.e., , ,

SV SV SV

mat pol mat ohmJ J J+ ; the 

,

SV

mat magM  is simply denoted as SVM , i.e., ,

SV SV

mat magM M . In this 

paper, it is restricted that the currents  ,inc incJ M , which lead to 

the incident field incF , distribute on domain ext mat

simV , i.e., the 

 ,inc incJ M  don’t distribute on material body. 

The incident field incF  satisfies Maxwell’s equations 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

;

inc inc inc

env c

inc inc inc

env

H r J r j r E r

E r M r j r H r





 = + 

 = − − 
 (C-1) 

 

for any 3r  . In (C-1), ( ); 1env c env envj   + ; env , env , and 

env  are the permittivity, permeability, and conductivity of 

environment. The scattering field scaF  satisfies the following 

Maxwell’s equations: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

;

sca SV sca

env c

sca SV sca

env

H r J r j r E r

E r M r j r H r





 = + 

 = − − 
 (C-2) 

 

for any 3r  . In (C-2), SV tot

cJ j E =   , and 
SV totM j H =   ; 

;c c env c   − , and env   − , and 

( )1c j   + ;  ,  , and   are the permittivity, permea-

bility, and conductivity of material body mat

simV . The total field 
totF  on int mat

simV  satisfies the following Maxwell’s equations: 

[1] 

 

 
( ) ( ) ( )

( ) ( ) ( )

tot tot

c

tot tot

H r j r E r

E r j r H r





 = 

 = − 
 (C-3) 

 

for any int mat

simr V . 

Inserting (C-1) into (B-19'), and letting the   be whole 

space 3 , and employing the Sommerfeld’s radiation condition 

for the fields and various Green’s functions [37], the following 

integral expression for incF  is obtained: 

 

 3

ext
:

mat
sim

inc JF inc MF inc

env env
V

F G J G M =  +    (C-4) 

 

where ,F E H= , and the subscripts “ env ” on various Green’s 

functions represent that these Green’s functions are the envi-

ronment Green’s functions. Inserting (C-1) into (B-19'), and 

letting the   be int mat

simV , the following integral expression for 

the incF  on int mat

simV  is obtained: 

 

( ) ( )

( ) ( )

ˆ ˆint :

ˆ ˆ

mat
sim

mat
sim

mat inc JF inc MF inc

sim env env
V

JF inc MF inc

env env
V

V F G n H G E n

G n H G E n

− − − −


− −


 =   +  
 

 =   +  
 

 (C-5) 

 

where ,F E H= , and n̂−  is the inward normal vector of mat

simV . 

The subscript “ − ” in the right-hand side of the first equality in 

(C-5) is to emphasize that the corresponding fields distribute on 

the internal surface of mat

simV ; the second equality in (C-5) is 

due to the continuity of incF  on mat

simV , because the source of 
incF  doesn’t distribute on mat

simV . Inserting (C-1) into (B-19'), 

and letting the   be ext mat

simV , and employing the radiation 

condition, the following integral expression for the incF  on 

ext mat

simV  is obtained: 

 

( ) ( )

ext
ext :

ˆ ˆ

mat
sim

mat
sim

mat inc JF inc MF inc

sim env env
V

JF inc MF inc

env env
V

V F G J G M

G n H G E n+ +


 =  +  

 +   +  
 

 (C-6) 

 

where ,F E H= , and n̂+  is the outward normal vector of mat

simV . 

Comparing (C-4) with (C-6), it can be derived that 

 

( ) ( )

( ) ( )

ˆ ˆext : 0

ˆ ˆ

mat
sim

mat
sim

mat JF inc MF inc

sim env env
V

JF inc MF inc

env env
V

V G n H G E n

G n H G E n

+ +


− −


 =   +  
 

 = −   +  
 

 (C-7) 

 

where the second equality is due to that ˆ ˆn n− += −  on mat

simV . 

Similarly to deriving the above (C-4)-(C-7) from (B-19') and 

(C-1), the following integral formulations corresponding to 

scattering filed can be derived from (B-19') and (C-2): 

 
3

int
:

mat
sim

sca JF SV MF SV

env env
V

F G J G M =  +    (C-8) 

( ) ( )ˆ ˆext :
mat

sim

mat sca JF sca MF sca

sim env env
V

V F G n H G E n+ +


 =   +  
 

 (C-9) 

( ) ( )ˆ ˆint : 0
mat

sim

mat JF sca MF sca

sim env env
V

V G n H G E n+ +


 =   +  
 

 (C-10) 

 

where ,F E H= . In the process to derive (C-9) and (C-10), the 

conclusion that the tangential components of scaF  are contin-

uous on mat

simV  has been utilized, and this conclusion is based 

on that there is not scattering surface current on mat

simV  [1]. 

In addition, the following integral formulation corresponding 

to the total filed totF  on int mat

simV  can be derived from (B-19') 

and (C-3): 
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( ) ( )ˆ ˆint :
mat

sim

mat tot JF tot MF tot

sim sim sim
V

V F G n H G E n− −


 =   +  
 

 (C-11) 

 

where ,F E H= , and the Green’s functions are the ones cor-

responding to material body mat

simV . 
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