Spatial Distance and the Theory of Relativity

Edigles Guedes

June 9, 2017

Abstract. We derive the element of spatial distance in terms of the time coordinate and a new tensor related to the Kronecker delta.

Keywords: special relativity, classical theory of fields, spatial distance, space, time.

PACS Numbers: 03.30.+p, 03.50.-z.

1. Introduction

Landau and Lifshitz, in The Classical Theory of Fields (First english edition 1951) [1, p. 234, paragraph 84], deduced the following formula ${ }^{1}$
where

$$
\mathrm{d} l^{2}=\left(-g_{i j}+\frac{g_{0 i} g_{0 j}}{g_{00}}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}
$$

$$
\begin{equation*}
h_{i j}=-g_{i j}+\frac{g_{0 i} g_{0 j}}{g_{00}} \tag{1}
\end{equation*}
$$

is the three-dimensional metric tensor, determining the metric, i. e., the geometric properties of the space ${ }^{2}$.

In this paper, we derive mathematically the formula
where

$$
\mathrm{d} l^{2}=\left(-g_{00}+\frac{g_{0 i} g_{0 j}}{g_{i j}}\right)\left(\mathrm{d} x^{0}\right)^{2}
$$

$$
\begin{equation*}
t_{i j}=-g_{00}+\frac{g_{0 i} g_{0 j}}{g_{i j}} . \tag{2}
\end{equation*}
$$

[^0]By analogy of the previous paragraph, we can say that $t_{i j}$ is the time metric tensor, determining the metric, i. e., the geometric properties of the time.

This will be the subject of the second Section.
In third Section, we derive a new tensor related to the Kronecker delta, from the idea of Landau and Lifshitz [1, p. 235, (84.8)].
2. The element d l of spatial distance in terms of the time COORDINATE

In special relativity, the interval $\mathrm{d} s$ is defined by

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{\alpha \beta} \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta} \tag{3}
\end{equation*}
$$

If we consider s to be a function of x^{α} and x^{β}, i. e., $s=f\left(x^{\alpha}, x^{\beta}\right)$, then we can rewrite the interval $\mathrm{d} s$ as

$$
\begin{equation*}
\mathrm{d} s=\frac{\partial s}{\partial x^{\alpha}} \mathrm{d} x^{\alpha}+\frac{\partial s}{\partial x^{\beta}} \mathrm{d} x^{\beta} \tag{4}
\end{equation*}
$$

by a definition of differential calculus, see [2, p. 946, (7)]. The squaring of (4), give us

$$
\begin{equation*}
\mathrm{d} s^{2}=\left(\frac{\partial s}{\partial x^{\alpha}} \mathrm{d} x^{\alpha}\right)^{2}+2 \frac{\partial s}{\partial x^{\alpha}} \frac{\partial s}{\partial x^{\beta}} \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta}+\left(\frac{\partial s}{\partial x^{\beta}} \mathrm{d} x^{\beta}\right)^{2} . \tag{5}
\end{equation*}
$$

On the other hand, in [1, p. 233, (84.4)], separating the space and time coordinates, we have for the interval

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}+2 g_{0 i} \mathrm{~d} x^{0} \mathrm{~d} x^{i}+g_{00}\left(\mathrm{~d} x^{0}\right)^{2} \tag{6}
\end{equation*}
$$

Comparing term by term between (5) and (6), we can deduce that

$$
\begin{gather*}
\frac{\partial s}{\partial x^{\beta}} \mathrm{d} x^{\beta}=\sqrt{g_{00}} \mathrm{~d} x^{0} \tag{7}\\
\frac{\partial s}{\partial x^{\alpha}} \frac{\partial s}{\partial x^{\beta}} \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta}=g_{0 i} \mathrm{~d} x^{0} \mathrm{~d} x^{i} \tag{8}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial s}{\partial x^{\alpha}} \mathrm{d} x^{\alpha}\right)^{2}=g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} \tag{9}
\end{equation*}
$$

From (7), we obtain

$$
\begin{equation*}
\frac{\partial s}{\partial x^{\beta}}=\sqrt{g_{00}} \frac{\mathrm{~d} x^{0}}{\mathrm{~d} x^{\beta}} . \tag{10}
\end{equation*}
$$

Substituting the right hand side of (10) into the left hand side of (8), we encounter

$$
\begin{gather*}
\frac{\partial s}{\partial x^{\alpha}}\left(\sqrt{g_{00}} \frac{\mathrm{~d} x^{0}}{\mathrm{~d} x^{\beta}}\right) \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta}=g_{0 i} \mathrm{~d} x^{0} \mathrm{~d} x^{i} \\
\Rightarrow \frac{\partial s}{\partial x^{\alpha}}=\frac{g_{0 i}}{\sqrt{g_{00}}} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} x^{\alpha}} . \tag{11}
\end{gather*}
$$

We set the right hand side of (11) into the left hand side of (6), and find

$$
\begin{gather*}
\left(\frac{g_{0 i}}{\sqrt{g_{00}}} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} x^{\alpha}} \mathrm{d} x^{\alpha}\right)^{2}=g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} \tag{12}\\
\Rightarrow \mathrm{~d} x^{j}=\frac{\left(g_{0 i}\right)^{2}}{g_{i j} g_{00}} \mathrm{~d} x^{i}
\end{gather*}
$$

We put the right hand side of (12) in the right hand side of (6) and encounter

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{\left(g_{0 i}\right)^{2}}{g_{00}}\left(\mathrm{~d} x^{i}\right)^{2}+2 g_{0 i} \mathrm{~d} x^{0} \mathrm{~d} x^{i}+g_{00}\left(\mathrm{~d} x^{0}\right)^{2} \tag{13}
\end{equation*}
$$

Let $\mathrm{d} s \rightarrow 0$ in (13), solve and obtain

$$
\begin{equation*}
\mathrm{d} x^{i}=-\frac{g_{00}}{g_{0 i}} \mathrm{~d} x^{0} \tag{14}
\end{equation*}
$$

Obviously, substituting (14) into (12), we get

$$
\begin{equation*}
\mathrm{d} x^{j}=-\frac{g_{0 i}}{g_{i j}} \mathrm{~d} x^{0} \tag{15}
\end{equation*}
$$

The element $\mathrm{d} l$ of spatial distance is given by [1, p. 234]

$$
\begin{equation*}
\mathrm{d} l^{2}=\left(-g_{i j}+\frac{g_{0 i} g_{0 j}}{g_{00}}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j} \tag{16}
\end{equation*}
$$

where

$$
h_{i j}=-g_{i j}+\frac{g_{0 i} g_{0 j}}{g_{00}} .
$$

From (14), (15) and (16), it follows that

$$
\begin{equation*}
\mathrm{d} l^{2}=\left(-g_{00}+\frac{g_{0 i} g_{0 j}}{g_{i j}}\right)\left(\mathrm{d} x^{0}\right)^{2} \tag{17}
\end{equation*}
$$

where

$$
t_{i j}=-g_{00}+\frac{g_{0 i} g_{0 j}}{g_{i j}} .
$$

this is the sought expression, which defines the element $\mathrm{d} l$ of spatial distance in terms of the time coordinate.

Now, we will derive a relation between the two tensors, $h_{i j}$ and $t_{i j}$.
From (1), we find

$$
\begin{align*}
h_{i j} & =-g_{i j}+\frac{g_{0 i} g_{0 j}}{g_{00}} \\
\Leftrightarrow \frac{g_{00}}{g_{i j}} h_{i j} & =\frac{g_{00}}{g_{i j}}\left(-g_{i j}+\frac{g_{0 i} g_{0 j}}{g_{00}}\right) \tag{18}\\
= & -g_{00}+\frac{g_{0 i} g_{0 j}}{g_{i j}}
\end{align*}
$$

Replace the left hand side of (2) into the right hand side of (18)

$$
\begin{equation*}
\frac{g_{00}}{g_{i j}} h_{i j}=t_{i j} \Rightarrow h_{i j}=\frac{g_{i j}}{g_{00}} t_{i j} . \tag{19}
\end{equation*}
$$

3. On a new tensor related to the Kronecker delta

Notice that, surely, from $g^{i j} g_{j l}=\delta_{l}^{i}$, we obtain

$$
\begin{equation*}
g^{i j} g_{j l}+g^{i 0} g_{0 l}=\delta_{l}^{i}, g^{i j} g_{j 0}+g^{i 0} g_{00}=0, g^{0 j} g_{j 0}+g^{00} g_{00}=1, \tag{20}
\end{equation*}
$$

see [1, p. 235, formulas (84.8)]. If we choice the two first equations from (20), it becomes a system of equations

$$
\left\{\begin{array}{l}
g^{i j} g_{j l}+g^{i 0} g_{0 l}=\delta_{l}^{i} \tag{21}\\
g^{i j} g_{j 0}+g^{i 0} g_{00}=0
\end{array}\right.
$$

Assuming $g^{i j}$ and $g^{i 0}$ as variables and solving (21), we encounter the solutions

$$
\begin{equation*}
g^{i j}=\frac{g_{00} \delta_{l}^{i}}{g_{j l} g_{00}-g_{0 l} g_{j 0}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{i 0}=\frac{g_{j 0} \delta_{l}^{i}}{g_{0 l} g_{j 0}-g_{j l} g_{00}} \tag{23}
\end{equation*}
$$

Rearranging the terms of (22) and (23), and seeing that $g_{j 0}=g_{0 j}$, we find

$$
\begin{equation*}
-g^{i j}\left(-g_{j l}+\frac{g_{0 l} g_{0 j}}{g_{00}}\right)=\delta_{l}^{i} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
-g^{i 0}\left(-g_{0 l}+\frac{g_{j l} g_{00}}{g_{0 j}}\right)=\delta_{l}^{i} \tag{25}
\end{equation*}
$$

Hereinafter, we define the following tensors

$$
\begin{equation*}
h_{j l}=-g_{j l}+\frac{g_{0 l} g_{0 j}}{g_{00}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{j l}=-g_{0 l}+\frac{g_{j l} g_{00}}{g_{0 j}} \tag{27}
\end{equation*}
$$

The tensor $h_{j l}$ was studied by Landau and Lifshitz, in The Classical Theory of Fields [1, p. 234ss], and it is associated with the spatial distance. The eminent physicist, Abraham Zelmanov, used the tensor $h_{j l}$ in his theory of Chronometric Invariants [2, p. 14ss]. It is worth noting that in the physical or mathematical literature there is no mention of the tensor $z_{j l}$.

Now, we will derive a relation between the two tensors, $h_{j l}$ and $z_{j l}$. From (27), we find

$$
\begin{gather*}
z_{j l}=-g_{0 l}+\frac{g_{j l} g_{00}}{g_{0 j}} \\
=\frac{g_{00}}{g_{0 j}}\left(g_{j l}-\frac{g_{0 l} g_{0 j}}{g_{00}}\right) \tag{28}\\
=-\frac{g_{00}}{g_{0 j}}\left(-g_{j l}+\frac{g_{0 l} g_{0 j}}{g_{00}}\right) .
\end{gather*}
$$

Replace the left hand side of (26) into the right hand side of (8)

$$
\begin{equation*}
z_{j l}=-\frac{g_{00}}{g_{0 j}} h_{j l} \Rightarrow h_{j l}=-\frac{g_{0 j}}{g_{00}} z_{j l} . \tag{29}
\end{equation*}
$$

4. Conclusion

Now, it all boils down to looking for applications of these formulas, presented in this paper.

References

[1] Landau, L. D. and Lifshitz, M., The Classical Theory of Fields, Third Revised English Edition, Pergamon Press, 1971.
[2] Leithold, Louis, O Cálculo com Geometria Analítica, Volume 2, 3. ${ }^{a}$ Edição, Editora Harbra Ltda., 1994.
[3] Zelmanov, Abraham, Chronometric Invariants - On Deformations and the Curvature of Accompanying Space, 1944, American Research Press, 2006.

[^0]: 1. Henceforward, we consider the Greek indices can be $0,1,2,3$ and Latin indices only $1,2,3$.
 2. In The Classical Theory of Fields, Landau and Lifshitz used the symbol $\gamma_{\alpha \beta}$ instead of $h_{i j}$, such as Zelmanov (Chronometric Invariants) and we did here.
