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Abstract

We try to give a formulation of Strominger-Yau-Zaslow conjec-
ture on mirror symmetry by studying the singularities of special La-
grangian submanifolds of 3-dimensional Calabi-Yau manifolds. In this
paper we’ll give the description of the boundary of the moduli space
of special Lagrangian manifolds.

We do this by introducing special Lagrangian cones in the more
general Kähler manifolds. Then we can focus on the almost Calabi-
Yau manifolds. We consider the behaviour of the Lagrangian man-
ifolds near the conical singular points to classify them according to
the way they are approximated from the asymptotic cone. Then we
analyze their deformations in Calabi-Yau manifolds.

1 Conifold geometry. Some definitions
We formally want to introduce the categories of Riemannian manifolds which
we are going to analyze and we give the necessary definitions.

Definition 1.1. Let Lm be a smooth manifold. L is a manifold with ends if
the following conditions are satisfied:

• There exists compact subsets K ⊂ L such that S := L \ K has a finite
number of connected components S 1, ..., S e, that is S =

∪e
i=1 S i.

• For every S i there exists a compact m − 1-manifold Σi without border
and a diffeomorphism ϕi : Σi × [1,∞)→ S̄ i.
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The S i are called ends of L and the manifolds Σi are the links of L.

Definition 1.2. Let L be a manifold with ends. Let g be a Riemannian metric
on L. We choose an end S i and the corresponding link Σi. S i is a conically
singular (CS) end if the following conditions holds:

• Σi is equipped with a Riemannian metric g′. We call (θ, r) the generic
point on the product manifold Ci := Σi × (0,∞) and g̃i := dr2 + r2g′i is
the conical metric on Ci.

• There exist a constant νi > 0 and a diffemorphism ϕi : Σi × (0, ϵ] → S̄ i

such that, when r → 0 and for every k ≥ 0,

|∇̃k(ϕ∗i g − g̃i)|g̃i = O(rνi−k),

in which ∇̃ is the Levi-Civita connection on Ci defined by g̃i.

S i is an asimptotically conical (AC) end if:

• Σihas a Riemannian metric g′i . As in the case of the other singularities,
(θ, r) is the generic point on the product manifold Ci := Σi × (0,∞) and
g̃i := dr2 + r2g′i is the conical metric on Ci.

• There exist a constant νi < 0 and a diffeomorphism ϕi : Σi× [R,∞)→ S̄ i

such that, for r → ∞ and for every k ≥ 0,

|∇̃k(ϕ∗i g − g̃i)|g̃i = O(rνi−k),

in which ∇̃ is the Levi-Civita connection on Ci defined by g̃i.

In the situation described here νi is called rate of convergence of S i. 1

Definition 1.3. Let (L̄, d) be a metric space. L̄ is a Riemannian manifold with
conical singularities (CS manifold) if it satisfies the following:

• There exist points {x1, ..., xe} ∈ L̄ such that L := L̄ \ {x1, ..., xe} has the
structure of smooth m-manifold with ends e. We can find a real number
ϵ, with 0 < 2ϵ < supi, jd(xi, x j), such that the S i := {x ∈ L : 0 < d(x, xi) <
ϵ} are the ends of L with respect to some links Σi.

1The difference between AC and CS is that a CS manifold has isolated singularities and
every singuarity defines a cone. An AC manifold tL instead converges to the cone with
a parameter t which goes to 0. Both of them define the way in which, given a manifold
L and a parameter t, tL converges to the cone for t which goes to 0. So the singularities
modelled on cones can be studied as the limits of non-singular manifolds.
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• There exists a Riemannian metric g on L which induces the distance d.

• Every end is CS with respect to g.

Every CS manifold is compact.
The points xi are the singularities of L̄.

Definition 1.4. Let (L, g) be a Riemannian manifold. L is a Riemannian
manifold with ends asimptotically conical (AC) if the following are satisfied:

• L is a smooth manifold with ends S i and connected links Σi.

• Every end S i is AC.

Definition 1.5. Let (L̄, d) be a metric space. We define L̄ to be a Riemannian
CS/AC manifold if satisfies:

• There exist finite points {x1, ..., xs} and a number ℓ such that L :=
L̄ \ {x1, ..., xs} has the structure of a smooth m-manifold with s+ ℓ ends.

• There exists a metric g on L that induces the distance d.

• There are neighbourhoods of the points xi that has the structure of CS
ends. These are called “small” ends. The remaining are the “big”, that
is they have AC structure.

We call Σ0 the union of the CS links, while the ends and the links related
to the AC structure will be called Σ∞, S∞.

Definition 1.6. Let’s use the generic term conifold to call the CS,AC e CS/AC
manifolds. If (L, g) is a conifold and C :=

∪
Ci is the union of the related

cones, equipped with the metric g̃, we say that (L, g) is asymptotic to (C, g̃).

The models of CS/AC manifolds are cones in Rn.

Definition 1.7. A subset C̄ ⊂ Rn is a cone if it is invariant for expansions of
Rn, that is if t · C̄ ⊆ C̄ for every t ≥ 0. A cone of Rn is identified by its link
Σ := C̄ ∩ Sn−1. We introduce C := C̄ \ 0. The cone is regular if Σ is smooth.
In this paper we’ll consider regular cones.
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2 Lagrangian conifolds. Other definitions
Let us now strengthen the hypothesis on the CS/AC manifolds by assuming
that in every singularity and in every end there is a specific asymptotic cone.
The definitions we are going to give will focus the attention on Lagrangian
submanifolds in Kähler manifolds.

Definition 2.1. Let Lm be a smooth manifold. Given a Lagrangian immersion
ι : L → Cm, this with a standard structure J̃, ω̃. L is an asymptotically
conical special Lagrangian submanifold with rate λ if satisfies:

• There exists a compact subset K ⊂ L such that S := L \ K has a finite
number of connected components S 1, ..., S e.

• There exist Lagrangian cones Ci ⊂ Cm with smooth connected links
Σ := Ci ∩ S2m−1. Let ιi : Σi × (0,∞) → Cm be the natural immersions
which parametrize Ci.

• We give a e-tuple of rate of convergence λ = (λ1, ..., λe) with λi < 2,
centers pi ∈ Cm and diffeomorphisms ϕi : Σ × [R,∞) → S̄ i for some
R > 0 such that, for r → ∞ and k ≥ 0,

|∇̃k(ι ◦ ϕi − (ιi + pi)| = O(rλi−1−k)

with respect to the conical metric g̃i on Ci.

The restriction λi < 2 guarantees that the cone is unique but is weak
enough to allow submanifolds to converge to a translated copy of the cone
Ci + p′i , or to slowly move away from the cone. 2

Definition 2.2. Let L̄m be a smooth manifold except for a finite number of
singular points {x1, ..., xe}. We say that L̄ is a conically singular Lagrangian
submani- fold whit rate µ if satisfies:

• There exist connected open neighbourhoods S i of xi.

• There exist Lagrangian cones Ci ⊂ Cm with smooth connected open
links Σ := Ci∩S2m−1. Let ι : Σi× (0,∞)→ Cm be the natural embedding
that parametrizes Ci.

2By the word move away here we want to show the behaviour of tL with t parameter,
when t goes to 0 or ∞
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• There exist a e-tuple of rates of convergence µ = (µ1, ..., µe) with µi > 2,
centers pi ∈ Cm and diffeomorphisms ϕi : Σi× (0, ϵ]→ S̄ i \ {xi} such that,
for r → 0 and k ≥ 0,

|∇̃k(ι ◦ ϕi − (ιi + pi)| = O(rµi−1−k)

with respect to the conical metric g̃i on Ci. It should be noticed that
ι(xi) = pi.

It’s easy to see that AC Lagrangian submanifolds, equipped with the
induced metric, satisfy the definition 1.4 with νi = λi − 2. The same thing
happens for the CS Lagrangian submanifolds.

Definition 2.3. Let L̄m be a smooth manifold except for a finite number of
singular points {x1, ..., xs} and with ℓ ends. Let’s consider a continuous map
ι : L̄ → Cm which shrinks to a smooth Lagrangian embedding of L := L̄ \
{x1, ..., xs}. We say that L̄ (or L) is a CS/AC Lagrangian submanifold with
rates (µ, λ) if in a neighbourhood of the points xi it has the structure of
CS manifold with rates µi and in a neighbourhood of the remaining ends it
has the structure of AC manifold with rates λi. Let’s use the generic term
Lagrangian conifold to define CS,AC or CS/AC Lagrangian submanifolds.

Now we can generalize the definitions of CS Lagrangian submanifolds to
Kähler. The standard complex structure on Cm here is called J̃, ω̃.

Definition 2.4. Let (M2m, J, ω) be a Kähler manifold and L̄m a smooth manifold
except for a finite number of singular points {x1, ..., xe}. Given a continuous
map ι : L̄ → M which shrinks to smooth Lagrangian embeddings of L :=
L̄ \ {x1, ..., xe}. L̄ (or L) is a Lagrangian submanifold with conical singularities
(CS Lagrangian submanifold) if it satisfies the following conditions:

• There exist isomorphisms vi : Cm → Tι(xi)M such that v∗iω = ω̃ e v∗i J = J̃.
According to Darboux Theorem, there exists an open ball BR in Cm

(with small radius R) and diffeomorphisms Υi : BR → M such that
Υ(0) = ι(xi), dΥi(0) = vi and Υ∗iω = ω̃.

• There exist open neighbourhoods S i of xi in L̄. If we assume that the
S i are small, then the compositions

Υ−1
i ◦ ι : S i → BR
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are well-definied.
Moreover, there exist Lagrangian cones Ci ⊂ Cm with smooth connected
links Σi := Ci∩S2m−1. Let ιi : Σi×(0,∞)→ Cm be the natural embedding,
which parameterizes Ci.

• We give an e-tuple of rates of convergence µ = (µi, ..., µe) with µi ∈ (2, 3)
and diffeomorphisms ϕi : Σi × (0, ϵ] → S̄ i \ {xi} such that, when r → 0
and for every k ≥ 0,

|∇̃k(Υ−1
i ◦ ι ◦ ϕi − ιi)| = O(rµi−1−k) (2.1)

with respect to the conical metric g̃i on Ci.

We call xi the singularities of L̄ and vi the identifications.

In the remaining part of this paper we’ll study only CS Lagrangian
submani- folds.

3 Deformation of Lagrangian conifolds: Lagrangian neigh-
bourhood theorem

We now analyze how to parameterize the deformations of a Lagrangian coni-
fold L ⊂ M.Since the Lagrangian condition is invariant under reparameter-
izations of L, we’ll work with non-parameterized submanifolds in order to
simplify the notation; to say it in other words, we’ll work with equivalence
classes of embedded submanifolds, in which two embeddings are equivalent
if they differs for a reparameterization. Then, to reparameterize the defor-
mations of L, we need only the Lagrangian neighbourhood theorem. Before
we state it, let’s make some preparatory considerations.

Let NL be the normal bundle. By using the tubular neighbourhood the-
orem we define a natural injection

Λ0(NL)→ Imm(L,M)/Di f f (L).

In the tipical situations, this defines a local omeomorphism between the
topologies of these spaces.

To study the theory of Lagrangian neighbourhood we have to build a
linear algebric structure.
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Let W be a real vector space of finite dimension. Then W ⊕W∗ admits a
canonical symplectic structure ω̂ defined by

ω̂(wi + α1,w1 + α2) := α2(w1) − α1(w2). (3.1)

If (V, ω)is a symplectic vector space and if W ⊂ V is a Lagrangian subspace,
we can choose Z ⊂ V such that V = W ⊕ Z. One can easily verify that the
restriction of ω to Z defines an isomorphism

ω|Z : Z → W∗, z 7→ ω(z, ·) (3.2)

and, by using this isomorphism, we can build an isomorphism γ : (W ⊕
W∗, ω̂) ≃ (V, ω). Moreover, γ is uniquely defined if we impose that it is equal
to the identity on W. By adding this condition, γ is defined in an unique
way by the choice of Z.

We can do the same construction even for the manifolds. It will be
enough to notice that, given a manifold L, the cotangent bundle T ∗L admits
a canonical symplectic structure ω̂. Let’s now consider the tautologic 1-form
on T ∗L defined as

λ̂[α](v) := α(π∗(v)), (3.3)
in which π : T ∗L → L is the natural projection. Then ω̂ := −dλ̂. Let’s
remember that the section of T ∗L is a 1-form α on L. The graph Γ(α) is
Lagrangian if and only if α is closed. The null section L ⊂ T ∗L is Lagrangian.
Moreover, every fiber π−1(p) = T ∗pL is a Lagrangian submanifold. Every 1-
form α defines a transition map

τα : T ∗L→ T ∗L, τα(x, η) := (x, α(x) + η). (3.4)

If α is closed, this is a symplectomorphism.
Let’s now show the Lagrangian neighbourhood Theorem

Theorem 3.1. Let (M, ω) be a symplectic manifold and L ⊂ M a compact
Lagrangian submanifold. Then there exist a neighbourhood N (L0) ⊂ T ∗L
of the null section, a neighbourhood V ⊂ M of L, and a diffeomorphism
ϕ : N (L0)→ V such that

ϕ ∗ ω = −dα ϕ|L = id, (3.5)

in which α is the canonical 1-form on T ∗L
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Proof. The proof is based on the fact that the normal bundle of L to M is
isomorphic to the tangent bundle. To define an explicit isomorphism, we
can use the complex structure J on the tangent bundle T M. The subspace
JT L ⊂ T M is the orthogonal completion of T L with respect to the metric gJ

induced by J, and it’s a Lagrangian subspace of (T M, ω). Let ϕ : T L → T L
be the isomorphism induced by gJ:

gJ(ψ(v∗), v) = v∗(v) (3.6)

for v ∈ T L. We can now consider the map ϕ : T ∗L → M given by the
exponential map of the metric gJ:

ϕ(q, v∗) = expq(Jqψq(v∗)).

Then, for v = (v0, v∗1) ∈ TqL ⊕ T ∗q L = T(q,0T ∗L, we have

dϕq,0(v) = v0 + Jqψq(v∗1),

and so

ϕ∗ω(q,0)(v,w) = ωq(v0 + Jqψq(v∗1),w0 + Jqψq(w∗1))
= ωq(v0, Jqψq(w∗1)) − ωq(w0, Jqψq(v∗1))
= gJ(v0, ψq(w∗1)) − gJ(w0, ψq(v∗1))
= w∗1(v0) − v∗1(w0)
= −dλ(q,0)(v,w).

This shows that the 2-form ϕ∗ω ∈ Ω2(T ∗L) corresponds to the canonical form
−dλ on the null section. If two closed 2-forms ω0, ω1 on a submanifold Q ⊂ M
are identical and non degenerate on T M, then there exist neighbourhoods
N0,N1 of Q and a diffeomorphism ψ : N0 → N1 such that

ψ|Q = id ψ∗ω1 = ω0.

By applying it to our case we can obtain the proof of the theorem. �

4 Deformations of Lagrangian conifolds
Deformations of Lagrangian cones in Cm

LetC be a Lagrangian cone in Cm with link (Σ, g′) and conical metric g̃.We
want to give a deformation theory similar to the one we have in the case of
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smooth deformations. For this manifold, we give a correspondance between
closed 1- forms inC∞(µ−1,λ−1)(Λ

1) and Lagrangian deformations of C with rates
(µ, λ).

Let θ be the generic point of Σ. We identify Σ × (0,∞) with C using the
immersion:

ι : Σ × (0,∞)→ Cm, (θ, r) 7→ rθ. (4.1)
Observation 4.1. Let θ(t) be a curve in Σ such that θ(0) = θ. Let r(t) be a
curve in R+ such that r(0) = r. By differentiating ι in the point (θ, r), we
obtain identifications

ι∗ : TθΣ ⊕ R→ TrθC ⊂ Cm

(θ′(0), r′(0)) 7→ d/dt(r(t)θ(t))|t=0 = r′(0)θ + rθ′(0) ∈ Cm (4.2)

This give the general equation ι∗|θ,r(v, a) = aθ + rv.
We can now give the identification ΨC of T ∗C with Cm as follows.
The metric g̃ gives an identification

T ∗C → TC , (θ, r, α1 + α2dr) 7→ (θ, r, r−2A1 + α2∂r), (4.3)

in which g′(A1, ·) = α1. So, for the Observation 4.1, the correspondant vector
in Cm is ι∗(r−2A1 + α2∂r) = α2θ + r−1A1. Moreover, the equation (4.3) defines
an isometry of vector bundles on C . Let ∇̃ be the standard connection on
the tangent bundle of Cm. Since C has the induced metric, the Levi-Civita
connection on TC corresponds to the tangent projection ∇̃T . Let’s assume
that T ∗C has the induced Levi-Civita connection. Then the equation (4.3)
defines an isomorphism between the two connections.

In the Lagrangian cone C the complex structure gives an identification:

J̃ : TC ≃ NC . (4.4)

The perpendicular component of ∇̃⊥ defines a connection on NC . Since Cm is
Kähler, ∇̃J̃ = J̃∇̃. So ∇̃⊥ J̃ = J̃∇̃⊥. The equation (4.4) defines an isomorphism
between the two connections.

The Riemannian tubular neighbourhood gives another explicit identifica-
tion

NC → Cm, v ∈ NrθC 7→ rθ + v. (4.5)
Now let’s put all together and we obtain the requested identification

ΨC : U ⊂ T ∗C → Cm, (θ, r, α1 + α2dr) 7→ rθ + J̃(α2θ + r−1A1). (4.6)
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Now, if we consider α 1-form on C , then by the identifications introduced
before, ΨC ◦ α − ι ≃ α. This shows that, if α ∈ C∞(µ−1,λ−1)(U ) for some µ >
2, λ < 2, then ΨC ◦ α is a CS/AC submanifold in Cm asymptotic to C with
rates (µ, λ).

We see in addition that

ΨC (θ, tr, t2α1 + tα2dr) = tΨC (θ, r, α1 + α2dr). (4.7)

Deformation of CS/AC Lagrangian submanifolds in Cm

Let ι : L→ Cm be an AC Lagrangian submanifold with rate λ, centers pi and
ends S i. Using the notation introduced before, the map ΦCi + pi : t∗Ci → Cm

identifies ι(S i) ⊂ Cm with the graph Γ(αi) of some closed 1-forms αi. This
defines a construction of a coordinate system ϕi by imposing the relation

ϕi : C → S i, ι ◦ ϕi = ΦCi ◦ αi.

Let (dϕi)∗ : T ∗S i → T ∗Ci be the identification between cotangent bundles,
that identifies the null section Ci with the null section S i.

We can now use the symplectomorphism defined in (3.4) to join these
identifications and to obtain a symplectomorphism

ΦS i : Ui ⊂ T ∗S i → Cm, ΦS i := ΦCi ◦ ταi ◦ (dϕi)∗ + pi (4.8)

which shrinks to the identity on S i. These maps give a Lagrangian neigh-
bourhood for every end of L. By using these maps, we obtain a symplecto-
morphism

ΦL : U ⊂ T ∗L→ Cm (4.9)
that shrinks to the identity on L and allows us to parameterize the AC
deformations of L with rate λ in terms of closed 1-forms in the space C∞λ−1(U ).

Deformations with moving singularities
Until now we have seen that the deformations of Lagrangian submanifolds
have been considered by taking the singular points fixed. We now want to
deform these manifolds by moving the points with the space. In the same
way, we want the Lagrangian cones Ci to be allowed to rotate in Cm.

Let’s now consider the case of CS Lagrangian submanifolds ι : L → M
with singularities{x1, ..., xs} and identifications vi defined as follows. These
construction has been done by Joyce.(see [9] and [10]
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We define

P := {(p, v) : p ∈ M, v : Cm → TpM tale che v∗ω = ω̃, v∗J = J̃}. (4.10)

P is an U(m)principal bundle on M with the action

U(m) × P→ P, M · (p, v) := (p, v ◦ M−1). (4.11)

P is a smooth manifold of dimension m2 + 2m.
We now have to use a copy of P to parameterize the position of every

singular point pi = ι(xi) ∈ M and the direction of the correspondant cone
Ci ⊂ Cm: the action of the group will allow the cone to rotate but will mantain
the singular point fixed. Since we are studying the little deformations of L,
we analyze an open neighbourhood of the couple (pi, vi) ∈ P. Ci in general
has a symmetry group Gi ⊂ U(m), that is by Gi the cone remain fixed.

To remove unnecessary parameter, we must focus on a part of the neigh-
bourhood, specifically on a smooth submanifold transversal to the orbit of
Gi. We call this little submanifold εi: it’s a subset of P that contains (pi, vi)
and has dimension m2 + 2m− dim(Gi). Now we set ε = ε1 × ...× εs. The point
e := ((p1, v1), ..., (ps, vs)) ∈ ε is the starting point.

We now want to extend (L, ι) to a family of Lagrangian submanifolds
(L, ιẽ, parameterized by ẽ = (( p̃1, ṽ1), ..., ( p̃s, ṽs)) ∈ ε. Every (L, ιẽ) must satisfy
ιẽ(pi) = p̃i and admit identifications ṽi and cones Ci. We want also that ιe = ι
globally and that ιẽ = ι out of a neighbourhood of the singularities.

The construction of this family is immediate: we use the maps Υi and all
the construction is only a choice of appropriate family of symplectomorphisms
with compact support of Cm.

We choose an open neighbourhood U ⊂ T ∗L and immersions Φẽ
L : U →

M which, far from singularities, correspond to the embeddings ΦL introduced
before. The final result is that the moduli space of CS Lagrangian deforma-
tions of L with rate µ and moving singularities can be parameterized by
couples (ẽ, α) in which ẽ ∈ ε and α is a closed 1-form of L which belongs to
the space C∞µ−1(U ).

Special Lagrangian cones
We define AC,CS and CS/AC Lagrangian submanifolds exactly as in the
definition already given for the Lagrangian manifolds, adding the condition
that these will be special. The cones Ci will be special Lagrangian in Cm. To
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define CS Lagrangian submanifolds in a Calabi-Yau manifold M we have to
add to the definition given above the requirement that v∗iΩ = Ω̃. We use the
term special Lagrangian conifold for these manifolds.

5 A deformation problem
If ι : L → M is a special Lagrangian conifold we can refine the analysis
and study the special Lagrangian deformations of L. Since the Lagrangian
condition is invariant for reparameterization, if L is smooth and compact,
the moduli space ML of special Lagrangian deformations is the connected
component containing L of the subset of special Lagrangian submanifolds
Lag(L,M)/Di f f (L), in which Lag(L,M)are the Lagrangian submanifolds of
L in M. If L is an AC,CS or CS/AC Lagrangian submanifold, we obtain
the moduli space of special Lagrangian de- formations by simply considering
the closed 1-forms on L that satisfies the same conditions of growth or decay.
The purpose is to show that the moduli space of special Lagrangian conifolds
admits a smooth natural structure with respect to whom the conifolds are
finite-dimensional manifolds. To achieve this result, it’s enough to show that
ML is locally the locus of the zeroes of some smooth map F defined on the
space of the 1-forms C∞(U ).We use then the theorem of implicit functions
to prove that this set of zeroes is smooth.

Let’s now give the definitions on the smooth compact special Lagrangian
manifolds, then we’ll extend this to the conifolds. Let’s start with a result
by Souriau (in [11]).

Theorem 5.1. Let (M, ω) be a symplectic manifold. Let L ⊂ M be a smooth
Lagrangian manifold. Then, tehere exists a neighbourhood U of the null
section of L in its cotangent bundle T ∗L and an immersion ΦL : U → M,
such that ΦL|L = Id : L→ L and Φ∗Lω = ω̂.

Here we omit the proof, but it can be found in Weinstein ([?]).
Let L ⊂ M be a smooth special Lagrangian submanifold with metric

induced by g. Let’s consider the pull-back Φ∗L(ImΩ), defined on U , with Φ
defined as in 5.1. Given a closed form α ∈ C∞(U ), the Γ(α) is the submanifold
in U defined by its graph. It’s diffeomorphic to L with the projection π :
T ∗L → L. The pull-back shrinks to a m-form Φ∗|L(ImΩ)|Γ(α) on Γ(α). Γ(α) is
special Lagrangian if and only if this form vanishes. Let’s now pull-back this
form to L with α, obtaining a real m-form on L: so Γ(α) is special Lagrangian
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if this form vanishes on L. Lastly, let ⋆ be the Hodge operator defined on L
by g and by the orientation. By using it, we can reduce every m-form to a
function.

Let DL be the space of the closed 1-forms on L which have the graph in
U . We define the map F:

F : DL → C∞(L), α 7→ ⋆(α∗(Φ∗LImΩ) = ⋆((ΦL ◦ α)∗ImΩ). (5.1)

Proposition 5.2. The non-linear map F has the following properties:

• The set F−1(0) parameterizes the space of the special Lagrangian de-
formations of L that are C1-close to L.

• For every α ∈ DL,
∫

L
F(α)volg = 0.

• The linearization dF[0] of F in 0 corresponds to the operator d∗, so:

dF[0](α) = d∗α (5.2)

Proof. We use the notations introduced before in the paper. To simplify the
notation, we identify U with its image in M by ΦL. We write:

F(α) = ⋆(π∗(ImΩ|Γ(α). (5.3)

We identify L with the null section of T ∗L. The first property follows from
the definition of F and from the results on the smooth manifolds already
considered. Precisely, the first property says that, by the compositions with
ΦL, F−1(0) corresponds to the set of special Lagrangian submanifolds that
admits a parameterization which is C1-close to some parameterization ofL.

To prove the second point, we note that
∫

L
F(α)volg =

∫
Γ(α)

ImΩ. The fact
that Ω is closed implies that ImΩ is closed. Moreover, the submanifold Γ(α)
is homologous to the null section of L. So∫

Γ(α)
ImΩ =

∫
L

ImΩ = 0,

because L is special Lagrangian. The fact that it is smooth is clear from the
definition.

To prove equation (5.3), we fix α ∈ Λ1(L) and let v be the normal vector
field on L caused by having imposed α(·) ≡ ω(v, ·). We can now extend
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v to a global vector field v on M. Let phiS be a one-parameter family of
diffeomorphisms of M such that d/ds(ϕS (x))|s=0 = v(x).

Then the two one-parameter families of m-forms on L, (sα)∗(ImΩ) =
π∗(ImΩ|Γ(sα)) and (ϕS ImΩ)|L, are the same at the first order. As a matter
of fact, the calculation of Lie derivative shows

sF[0](α)volg = d/ds(F(sα)volg)|s=0

= d/ds(ϕ∗S ImΩ)|L;s=0

= (LvImΩ)|L = (divImΩ)|L,

in which in the last equality we use the Cartan formula Lv = div+ ivd and the
fact that ImΩ is closed.

Now we say that (ivImΩ)|L = − ⋆ α on L. This is a statement of linear
algebra that can be easily proved. We can assume that v is a unit vector in
that point.

We fixed x ∈ L and an isomorphism TxM ≃ Cm and doing so we identify
the Calabi-Yau structures on TxM with the standard structures on Cm. This
map identifies TxL with a special Lagrangian plane Γ in Cm. We consider
the action of S U(m) on the Grassmanian of m-planes in Cm, then S U(m)
acts transitively on the subset of the special Lagrangian planes of dimension
mand the isotropy subgroup corresponding to the distinct special Lagrangian
planes in Rm := span{∂x1, ..., ∂xm} is S O(m) ⊂ S U(m). In other words, the
set of the special Lagrangian planes in Cm corresponds to the homogeneous
spaces S U(m)/S O(m). Let’s assume Γ = Rm. Unless rotations in S O(m), we
assume that v(x) = ∂y1. We can now write

ImΩ = dy1 ∧ dx2 ∧ ... ∧ dxm + (...).

It follows that (ivImΩ)|Rm = dx2 ∧ ... ∧ dxm. On the other side α = −dx1, that
proves the last point of the theorem. �

Extension to special Lagrangian cones
After obtaining some basic results on smooth manifolds, we can generalize
them to special Lagrangian cones in Cm. With the same notation used until
now, we define:

- C is a special Lagrangian cone, with conical metric g̃ and orientation;

14



- ΦC : U → Cm as defined above;

- µ, λ such that µ > 2, λ < 2;

- DC the space of the closed 1-forms in C∞µ−1,λ−1(Λ1) the graph of which
is in U .

- Given α ∈ DC , F(α) is like in equation (5.1)

Proposition 5.3. The non-linear map F has the following properties:

• The set F−1(0) parameterizes the space of all the special Lagrangian
deformations of C that are C1-close to L and asymptotic to C with
rates (µ, λ).

• F is a well defined smooth map

F : DC → C∞(µ−2,lambda−2)(C ).

In particular, for every α ∈ DC , F(α) ∈ C∞(µ−2,λ−2)(C ).

• The linearization corresponds to the operator d∗, that is

dF[0](α) = d∗α. (5.4)

Proof. The first point follows immediately from the definition of F.
For the second point, let’s consider:

F(α) = ⋆ (α∗(Φ∗C ImΩ̃)) = ImΩ̃((ΦC ◦ α)∗(e1), ..., (ΦC ◦ α)∗(em))

= ImΩ̃((ΨC ◦ α)∗(e1) + (R ◦ α)∗(e1), ..., (ΨC ◦ α)∗(em) + (R ◦ α)∗(em))

= ImΩ̃((ΨC ◦ α)∗(e1), ..., (ΨC ◦ α)∗(em) + ...,

in which ei is a local orthonormal g̃-base of TC . When r → ∞, the first term
is of the form ImΩ̃(e1, ..., em) + O(rλ−2. Since C is a special Lagrangian cone,
the first term vanishes and only the term O(rλ−2) remains. For the reasons
we have seen before, the remaining terms in F(α) are of the form O(r2λ−4).
We apply analogous methods for r → 0, and we have F(α) ∈ C0

(µ−2,λ−2)(C ).
To study the derivatives of F(α), we put on U the metric and the Levi-

Civita connnection ∇ pulled back from Cm with ΦC , so we have ∇(Φ∗C ImΩ̃) =
ΦC (∇̃ImΩ̃) = 0. Let g be the metric induced on Γ(α). Then C can be
equipped both with the metric g̃ and the connection ∇̃, and the metric α∗g
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and the induced connection ∇. If α∗g is asymptotic to g̃, we have that the
tensor A := ∇ − ∇̃ satisfies to |A| = O(rλ−3), when r → ∞. Note that:

F(α)volg̃ = (ΦC ◦ α)∗ImΩ̃

thus, considering the derivatives,

∇(F(α)volg̃) = ∇((ΦC ◦ α)∗ImΩ̃) = (ΦC ◦ α)∗(∇̃ImΩ̃) = 0.

It follows

|(∇F(α)) ⊕ volg̃| = |F(α) · ∇(volg̃)| = O(rλ−2)|∇(volg̃|.

Let volg̃ = e∗1 ⊕ ...⊕ e∗m, then ∇(volg̃) = ∇e∗1 ⊕ ...⊕ e∗m + e∗1 ⊕ ...⊕∇e∗m. We assume
that ∇̃e∗i = 0. Then ∇e∗i = (∇ − ∇̃)e∗i = Ae∗i , from which |∇(volg̃)| = O(rλ−3).
This shows that F(α) ∈ C1

(µ−2,λ−2)(C ). Other calculation of the same type
applied to the higher order derivatives shows that F(α) ∈ C∞(µ−2,λ−2)(C ). It’s
clear that F is smooth.

The third point can be proved as in the previous theorem. �

We avoid to extend the problem to the CS/AC Lagrangian submanifolds,
because for these manifolds we can use the same technique used in the cases
seen up until now, except for the fact that in this case we have to modify some
definitions to understand how one can parameterize the special Lagrangian
deformations of L in which singularities move in the general space. Starting
from the definition of CS/AC special Lagrangian submanifolds given in this
chapter, we can build a principal S U(m)-bundle on M and repeat the method
used for the case already analyzed, making the right modification.

For a study of this case one can refer to [20]

6 Some results on Laplace operator on conifolds
Let’s talk about some analytical results on Laplace operator on confifolds.

Definition 6.1. Let (Σ, g′) be a compact Riemannian manifold. Let’s consider
the cone C := Σ× (0,∞) equipped with the conical metric g̃ := dr2+ r2g′. Let
∆g̃ be the corresponding Laplace operator.

For every component (Σ j, g′j) of (Σ, g′) and every γ ∈ R, let’s consider the
space of the homogeneous function

V j
γ := {rγσ(θ) : ∆g̃(rγσ) = 0}. (6.1)
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Let m j := dim(V j
γ). We show that m j

γ > 0 if and only if γ satisfies

γ =
(2 − m) ±

√
(2 − m)2 + 4e j

n

2
, (6.2)

for some eigenvalues e j
n of ∆g′j on Σ j. Given the weight γ ∈ Re, we put

m(γ) :=
∑e

j=1 m j(γ j). Let D ⊂ Re be the set of the weights γ such that
m(γ) > 0. We call these the exceptional weights of ∆g̃. 3

Definition 6.2. Let X and Y be two Banach spaces and let T : X → Y be
a bounded linear operator. T is called Fredholm operator if the following
holds:

• the kernel of T is finite-dimensional;

• the rank of T is closed;

• the corank of T is finite-dimensional.

If T is Fredholm we define the index of T as dim(ker(T )) − dim(Coker(T )).

Let (L, g) be a conifold. Let’s assume (L, g) to be asymptotic to the cone
(C , g̃) in the sense specified in the definitions given above. Intuitively, the fact
that g is asymptotic to g̃ implies that the Laplace operator ∆g is asymptotic
to ∆g̃. By applying the Definition 6.1 to C we define the weights D ⊆ Re:
these are the exceptional weights of ∆g.

Definition 6.3. Given a metric couple (E,∇), a vector β = (β1, ..., βe) ∈ Re, we
define the weighted Sobolev spaces as:

W p
k,β(E) := the completion of Banach spaces {σ ∈ C∞(E) : ∥σ∥W p

k,β
< ∞},

(6.3)
with the norm ∥σ∥W p

k,β
:= {∑k

j=0

∫
L
|ρ−β+ j∇ jσ|pρ−mvolg)1/p, in which ρ is the

radius function already defined.
The weighted spaces of section Ck are defined by

Ck
β(E) := {σ ∈ Ck(E) : ∥σ∥Ck

β
< ∞}, (6.4)

where we use the norm ∥σ∥Ck
β

:=
∑k

j=0 supx∈L|ρ−β+ j∇ jσ|. These also are Banach
spaces.

3For a complete definition of poids, see [19]
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Let’s give now a result related to weighted spaces.

Theorem 6.4. Let (L, g) be a conifold with e ends. Let D be the exceptional
weights of ∇g. Then D is a discrete subset of Re and the Laplace operator

∆g : W p
k,β(L)→ W p

k−2,β−2(L)

is Fredholm if and only if β < D .

7 Moduli spaces of special Lagrangian conifolds
Let’s remember the Implicit functions theorem.

Theorem 7.1. Let F : E1 → E2 be a smooth map between Banach spaces such
that F(0) = 0. Let’s assume that P := dF[0] is surjective and Ker(P) admits
a closed completion Z, so that E1 = Ker(P)⊕ Z. Then, there exists a smooth
map Φ : Ker(P) → Z such that F−1(0) locally coincides with the graph Γ(Φ)
of Φ. In particular, F−1(0) locally is a smooth Banach submanifold of E1.

So we have the following result

Proposition 7.2. Let F : E1 → E2 be a smooth map between Banach spaces
such that F(0) = 0. Let’s assume that P := d f [0] is Fredholm. We put
I = Ker(P) and choose Z such that E1 = I ⊕Z. Let O be a finite-dimensional
subspace of E2 such that E2 = O ⊕ Im(P). Let’s define:

G : O ⊕ E1 → E2, (γ, e) 7→ γ + F(e).

We identify E1 with (0, E1) ⊂ O ⊕ E1. Then:

• The map dG[0] = Id ⊕ P is surjective and Ker(dG[0]) = Ker(P).Then,
for the Implicit function theorem, there exists Φ : I → O ⊕ Z such
that G−1(0) = Γ(Φ).

• F−1(0) = {(i,Φ(i)) : Φ(i) ∈ Z} = {(i,Φ(i)) : πO ◦ Φ(i) = 0} in which
πO : O ⊕ Z → O is the standard projection map.

• Let πI : I ⊕ Z → I be the standard projection. Then πI is a
continuous open map and shrinks to an omeomorphism

πI : F−1(0)→ (πO ◦ Φ)−1(0)
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between F−1(0) and the zero set 4 of the smooth map πO ◦Φ : I → O,
which is defined between finite-dimensional spaces.

Now we have all the tools to prove smoothness results in the special
Lagrangian moduli space by extending McLean theorem.

We’ll do the following steps. We can view the moduli space as the zero
set of a map F. The next step is to use the regularity to show that one can
consider in the same way the zero set of another map F̃. The domain of F̃ is
of the form K × Xp

k,(µ,λ)(L) in which K is a finite-dimensional vector space. So,
the differential dF̃ is a finite-dimensional pertubation of the Laplace operator
∆g. The second step is to analyze the linearized operator, by showing that,
under the right condition, it is surjective. The third step is to identify the
ker of dF̃[0] and to apply the implicit function Theorem.

We want to study the problem on the AC special Lagrangian, for the CS
and the CS/AC, refer to [20], [14] e [8]

AC Special Lagrangian submanifolds
An extension of McLean theorem to the AC special Lagrangian submanifolds
has been poved by Pacini and Marshall. Let’s give a version of the proof,
starting by the regularity theorems proved by Joyce (in [10]).

Lemma 7.3. Let C be a special Lagrangian cone in Cm, with a metric g̃ and
an orientation. Let’s define ΦC : U → Cm and the map F as introduced
before. We fix µ > 2 and λ < 2, with λ , 0. We consider a closed 1-fom
α ∈ C1

(µ−1,λ−1)(U ) which satisfies F(α) = 0. We write α = α′ + dA in which α′

has compact support on little ends and translation invariant on the big ones,
and A ∈ C1

(µ,λ)(L). Then α′ is smooth and A ∈ C∞(µ,λ)(L), so α ∈ C∞(µ−1,λ−1)(U ).
5. Starting from this lemma and from the regularity which descends from

it, we can prove the results we have anticipated:

Theorem 7.4. Let L be a special Lagrangian submanifold of Cm with rate λ.
Let ML be the moduli space of the special Lagrangian deformations of L with
rate λ. Let’s consider the operator

∆g : Wk,λ(L)→ W p
k−2,λ−2(L). (7.1)

4Given an open set U, the zero set of a function F is the set Z := {z ∈ U : f (z) = 0}
5for the proof of the lemma, see Joyce [10]
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• If λ ∈ (0, 2) is a non-exceptional weights for ∆g, then ML is a smooth
manifolds of dimension

• If λ ∈ (2 − m, 0), then ML is a smooth manifold of dimension b1
C (L).

Proof. We choose k ≥ 3 and p > m such that W p
(k−1,λ−1)(Λ

1) ⊂ C1
λ−1(Λ1). Let

DL be the space of the closed 1-forms in W p
(k−1,λ−1)(Λ

1) that have the graph
Γ(α) in U . Let’s consider the map

F : DL → W p
(k−2,λ−2)(L), α 7→ ⋆(π∗((Φ∗LImΩ̃)|Γ(α))). (7.2)

We assume λ < 2. Since W p
(k−2,λ−2) is closed by multiplication, we have that

F is a smooth map between Banach spaces that is locally well defined, with
differential dF[0](α) = d∗α. We assume F(α) = 0. For the lemma 7.3, α ∈
C∞λ−1(Λ1), so F−1(0) is locally omeomorphic, using the ΦL already introduced,
to ML.

We now assume λ ∈ (0, 2). Every α ∈ F−1(0) is of the form α = β + d f ,
for β ∈ H (by using H we point to a finite dimensional vector space of closed
1-forms on L) and f ∈ C∞λ (L). Let’s define D̃L as the space of the couples
(β, f ) in H × W p

(k,λ)(L) such that α := β + d f ∈ DL. From here we have that
D̃Lis an open neighbourhood of the origin.

Then D̃L is the domain of a smooth map between Banach spaces locally
defined:

F̃ : H ×W p
(k,λ)(L)→ W p

(k−2,λ−2)(L), F̃(β, f ) := F(β + d f ) (7.3)

with dF̃[0](β, f ) = d∗β + ∆g f and translation invariant in R. Let F̃(β, f ) = 0.
From the lemma 7.3 we have that f ∈ C∞λ (L). This shows that ML is locally
omeomorphic, using ΦL, to the quotient space F̃−1(0)/R.

To finish, we only have to show that F̃−1(0) is smooth. To do this, we
have to assume that λis not exceptional. In this case, in view of the things
said for the Laplacian operator, 7.1 is surjective, so dF̃[0] is surjective. Let βi

be a base of H. For every βi, the equation dF̃[0](βi, f ) = 0 admits a solution
fi. Other solutions are given by the couples β = 0, f ∈ Ker(∆g). Let’s notice
that these ones gives a basis for the kernel of dF̃[0]. By applying the implicit
function Theorem we can conclude saying that F̃−1(0) is smooth of dimension
dim(H ⊕ Ker(∆g)). So, ML is smooth and has the asserted dimension.

Let’s finally assume that λ ∈ (2 − m, 0). In this case, we can write every
α ∈ F−1(0) as α = β + dv + d f , in which β ∈ H̃ (H̃ and here the spaces of
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translation invariant 1-forms), dv ∈ dE.We have called E the vector space
spanned by the smooth functions fi on L, such that fi ≡ 1 on the end S i and
fi ≡ 0 on the other ends. Moreover, ∑ fi ≡ 1. d f is an element of d(C∞λ (L)).

We can use the regularity of the lemma 7.3,as done before, to prove that
ML is locally omeomorphic to the quotient space F̃−1(0)/R for the map

F̃ : H̃ × E ×W p
k,λ(L)→ W p

k−2,λ−2(L), F̃(β, v, f ) = F(β + dv + d f ). (7.4)

We can conclude that F̃−1(0) is smooth of dimension dim(H̃ ⊕ E). �
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