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Abstract

Recently, solutions to the nonlinear Bohm-Poisson (BP) equation were found
with relevant cosmological applications. We were able to obtain an exact analytical
expression for the observed vacuum energy density, and explain the origins of its
repulsive gravitational nature. In this work we provide further results which include
two possible extensions of the Bohm-Poisson equation to the full relativistic regime;
explain how Bohm’s quantum potential in four-dimensions could be re-interpreted
as a gravitational potential in five-dimensions, and which explains why the presence
of dark energy/dark matter in our 4D spacetime can only be inferred indirectly,
but not be detected/observed directly. We conclude with some comments about the
Dirac-Eddington large numbers coincidences.

1 Dark Energy and the Bohm-Poisson Equation

In physical cosmology and astronomy, dark energy is an unknown form of energy which is
hypothesized to permeate all of space, tending to accelerate the expansion of the universe
[1] . Assuming that the standard model of cosmology is correct, the best current mea-
surements indicate that dark energy contributes 68.3 percent of the total energy in the
present-day observable universe. The mass-energy of dark matter and ordinary (bary-
onic) matter contribute 26.8 and 4.9 percent respectively, and other components such
as neutrinos and photons contribute a very small amount. The density of dark energy
much less than the density of ordinary matter or dark matter within galaxies. However,
it dominates the mass-energy of the universe because it is uniform across space [1]. Two
proposed forms for dark energy are the cosmological constant, [2] representing a con-
stant energy density filling space homogeneously, and scalar fields such as quintessence or
moduli, dynamic quantities whose energy density can vary in time and space.

The nature of dark energy is more hypothetical than that of dark matter, and many
things about the nature of dark energy remain matters of speculation [1]. Dark energy
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is thought to be very homogeneous, not very dense and is not known to interact through
any of the fundamental forces other than gravity. In the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric, it can be shown that a strong constant negative pressure in
all the universe causes an acceleration in universe expansion if the universe is already
expanding, or a deceleration in universe contraction if the universe is already contracting.
This accelerating expansion effect is sometimes labeled “gravitational repulsion”.

A major outstanding problem is that quantum field theories predict a huge cosmo-
logical constant, more than 100 orders of magnitude too large. This would need to be
almost, but not exactly, cancelled by an equally large term of the opposite sign. Some
supersymmetric theories require a cosmological constant that is exactly zero, which does
not help because supersymmetry must be broken. Nonetheless, the cosmological constant
is the most economical solution to the problem of cosmic acceleration. Thus, the current
standard model of cosmology, the Lambda-CDM (cold dark matter) model, includes the
cosmological constant as an essential feature [1].

The evidence for dark energy is heavily dependent on the theory of general relativity.
Therefore, it is conceivable that a modification to general relativity also eliminates the
need for dark energy. There are very many such theories, and research is ongoing [3], [4].
The measurement of the speed of gravity with the gravitational wave event GW170817
ruled out many modified gravity theories as alternative explanation to dark energy [1].

In quintessence models of dark energy, the observed acceleration of the scale factor
is caused by the potential energy of a dynamical field, referred to as quintessence field.
Quintessence differs from the cosmological constant in that it can vary in space and time.
In order for it not to clump and form structure like matter, the field must be very light so
that it has a large Compton wavelength. This class of theories attempts to come up with
an all-encompassing theory of both dark matter and dark energy as a single phenomenon
that modifies the laws of gravity at various scales. This could for example treat dark
energy and dark matter as different facets of the same unknown substance, a “dark fluid”
[5], or postulate that cold dark matter decays into dark energy.

The Schrödinger-Newton equation has had a long history since the 1950’s [6], [7]. It is
the name given to the system coupling the Schrödinger equation to the Poisson equation.
In the case of a single particle, this coupling is effected as follows: for the potential energy
term in the Schrödinger equation take the gravitational potential energy determined by the
Poisson equation from a matter density proportional to the probability density obtained
from the wave-function. For a single particle of mass m the coupled system of equations
leads to the nonlinear and nonlocal Newton-Schrödinger integro-differential equation

ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) + V (~r, t) Ψ(~r, t) −

(
Gm2

∫ |Ψ(~r′, t)|2

|~r − ~r′|
d3r′

)
Ψ(~r, t)

(1)

Bohm’s quantum potential VQ = − h̄2

2m
(∇2√ρ/√ρ) has a geometrical description as

the Weyl scalar curvature produced by an ensemble density of paths associated with one,
and only one particle [8]. This geometrization process of quantum mechanics allowed
to derive the Schroedinger, Klein-Gordon [8] and Dirac equations [9]. Most recently, a
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related geometrization of quantum mechanics was proposed [10] that describes the time
evolution of particles as geodesic lines in a curved space, whose curvature is induced by the
quantum potential. This formulation allows therefore the incorporation of all quantum
effects into the geometry of space-time, as it is the case for gravitation in the general
relativity.

Based on these results we proposed in [11] the following nonlinear quantum-like Bohm-
Poisson equation for static solutions ρ = ρ(~r)

∇2VQ = 4πGmρ ⇒ − h̄2

2m
∇2 (

∇2√ρ
√
ρ

) = 4πGmρ (2)

such that one could replace the nonlinear Newton-Schrödinger equation for the above
non-linear quantum-like Bohm-Poisson equation (2) where the fundamental quantity is
no longer the wave-function Ψ (complex-valued in general) but the real-valued probability
density ρ = Ψ∗Ψ. Eq-(2) is based on Bohm’s quantum potential

VQ ≡ −
h̄2

2m

∇2√ρ
√
ρ

(3)

If one wishes to introduce a temporal evolution to ρ via a Linblad-like equation, for
instance, this would lead to an overdetermined system of differential equations for ρ(~r, t).
Replacing ∇2 in eqs-(1,2) for the D’Alambertian operator 2 = ∇µ∇µ, µ = 0, 1, 2, 3 has
the caveat that in QFT ρ(xµ) = ρ(~r, t) no longer has the interpretation of a probability
density but is now related to the particle number current. Despite this caveat we will
propose an eq-(10) below involving the D’Alambertian 2 operator and a proper mass
density (mass per proper four-volume).

For the time being we shall just focus on static solutions ρ(~r). The de Sitter space
metric can be written in static coordinates in the form gtt(r) = −(1 − Λ

3
r2); grr(r) =

−(gtt)
−1, · · ·, and given in terms of the cosmological constant Λ = (3/R2

H), where RH is
the Hubble radius. Hence, there is no inconsistency in focusing for now on static solutions
ρm(~r) for the probability density.

Since almost 95 percent of the energy/mass content of the Universe is comprised of dark
energy/dark matter, in a recent manuscript we envisioned the Universe’s dark energy/dark
matter (dark-fluid) density distribution as being proportional to a QM probability density
obeying the Bohm-Poisson (BP) equation [12], in the same vain that one can view an
electron orbiting the Hydrogen nucleus as an “electron probability cloud” surrounding
the nucleus, permeating all of space, and whose mass density distribution is ρ = meΨ

∗Ψ,
where Ψ(~r) are the stationary wave-function solutions to the Schrödinger equation, and
me is the electron’s mass.

The density ρm = mρ of dark energy/dark matter (dark-fluid) permeating all of space
was postulated to be a solution to the nonlinear quantum-like Bohm-Poisson (BP) equa-
tion. It is straightforward to verify that a spherically symmetric solution to eq-(2) in a
3D spatially flat background 1 is given by

1For the time being we shall not discuss solutions in curved backgrounds
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ρm(r) =
A

r4
, A = − h̄2

2πGm2
< 0 (4)

At first glance, since ρm(r) ≤ 0 one would be inclined to dismiss such solution as being
unphysical. Nevertheless, we can bypass this problem by focusing instead on the shifted
density ρ̃m(r) ≡ ρm(r)− ρ0 obeying the Bohm-Poisson equation

− h̄2

2m
∇2 (

∇2
√
ρ̃m√
ρ̃m

) = 4πGmρ̃m, ∇2f(r) ≡ r−2∂r(r
2∂rf(r)). (5)

and whose solution for the shifted mass density is given by

ρ̃m = A/r4 = ρm(r) − ρo ≤ 0, ⇒ ρm(r) =
A

r4
+ ρ0, A = − h̄2

2πGm2
(6)

One may notice that by shifting the density ρm → ρm − ρo = ρ̃m, and the (radial)
pressure p → p + po = p̃, one can eliminate the cosmological constant in the Einstein’s
field equations with a cosmological constant, when ρo = po = (Λ/8πG).

For example, given a Friedman-Lemaitre-Robertson-Walker (FLRW) model with a
metric ds2 = −(dt)2 + a2(t)(dΣ)2, the resulting Einstein’s field equations (in units c = 1)
lead to the Friedmann equations

(
ȧ

a
)2 +

k

a2
− Λ

3
=

8πG

3
ρm (7a)

2ä

a
+ (

ȧ

a
)2 +

k

a2
− Λ = − 8πG p (7b)

where k = 1, 0,−1 is the spatial curvature index. A simple inspection of eqs-(7a,7b)
reveals that that the cosmological constant can be reabsorbed into a mere redefinition of
ρm and p as follows

ρm → ρm −
Λ

8πG
= ρ̃m, p → p +

Λ

8πG
= p̃ (8)

consequently, if ρm, p appear in the Friedmann equations (7a,7b) with a cosmological
constant Λ, then ρ̃m = ρm−ρo, and p̃ = p+po (such that ρo = po = Λ/8πG), will appear in
eqs-(7a, 7b) without the cosmological constant Λ. Furthermore, the cosmological equation
of state associated to the dark energy permeating all of space

ρ̃m = − p̃ ⇔ ρm = − p (9)

remains invariant.
To sum up, given an actual solution ρ̃m of the BP equation, the shifting provided in

eq-(8) will allow us to focus on the domain of values where ρm(r) ≥ 0. And, in doing so,
it will permit us to show that the value of ρ0 can be made to coincide exactly with the
(extremely small) observed vacuum energy density, by simply introducing an ultraviolet
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length scale l that is very close to the Planck scale, and infrared length scale L equal to
Hubble scale RH .

A covariant extension of the BP equation, for signature (−,+,+,+), may be defined
in terms of the D’Alambertian operator, and a proper mass density σ(~r, t) of physical

dimensions (length)−5, such that m =
∫
σ(~r, t)

√
|g| d4x, as follows

− 2

2
√
σ(~r, t)√
σ(~r, t)

 = 4πGm σ(~r, t), 2 ≡ 1√
|g|
∂µ(

√
|g| gµν ∂ν), h̄ = c = 1 (10)

Focusing for now on the static solutions (6) of the BP equation, the ultraviolet scale
l is chosen at the node of ρm(r) such that

ρm(r = l) = − h̄2

2πGm2

1

l4
+ ρo = 0 ⇒ ρo =

h̄2

2πGm2

1

l4
(11)

The domain of physical values of r must be r ≥ l in order to ensure a positive-definite
density ρm(r) ≥ 0.

In natural units of h̄ = c = 1, introducing the infrared scale L = RH in the normal-
ization condition (otherwise the mass would diverge) it yields

m =
∫ RH

l
ρ(r) 4πr2 dr =

∫ RH

l
(
A

r4
+ ρ0) 4πr2 dr =

∫ RH

l

(
− 1

2πGm2

1

r4
+ ρ0

)
4πr2 dr

(12)
Upon performing the integral in eq-(12), after plugging in the value of ρ0 derived from
eq-(11), with the provision that when RH >> l the dominant contribution to the integral
stems solely from ρo, one ends up with the following relationship

4πR3
H

3
ρo =

4πR3
H

3

1

2πGm2l4
= m ⇒ m3 =

2

3

R3
H

Gl4
(13)

solving for m one gets

m = (
2

3Gl4
)1/3 RH (14)

One can verify that when the ultraviolet scale l is chosen to be very close to the Planck
scale, and given by

l4 =
4

3
L4
P ⇒ l = (

4

3
)1/4 Lp = 1.0745 Lp (15)

then upon inserting the values for m and l obtained in eqs-(14,15) into the expression for
ρo derived in eq-(11), after setting L2

p = 2G, 2 it gives in natural units of h̄ = c = 1

2Some authors absorb the factor of 2 inside the definition of Lp, we define the Planck scale such that
the Compton wavelength coincides with the Schwarzschild radius
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ρo =
1

2πGm2

1

l4
=

1

2πG
(
3 G l4

2
)2/3 1

R2
H l4

=
3

8πG

L4
p

R2
H L4

p

=
3

8πGR2
H

(16)

which is precisely equal to the observed vacuum energy density ρ = (2Λ/16πG) associated
with a cosmological constant Λ = (3/R2

H) and corresponding to a de Sitter expanding
universe whose throat size is the Hubble radius RH ( = c/Ho, Ho is today’s value of the
Hubble parameter).

The physical reason behind the choice of the ultraviolet scale l in eq-(15) is based
on re-interpreting ρo as the uniform energy (mass) density inside a black hole region of
Schwarzschild radius R = 2Gm

ρbh =
m

(4π/3)R3
=

3

8πGR2
, L2

P = 2G, h̄ = c = 1 (17)

In the regime R = 2Gm >> l, when the dominant contribution to the integral (12)
stems from the ρo term, we may equate the expression for ρo in eq-(11) to ρbh in eq-(17)
giving

1

2πGm2l4
=

1

2πl4
(2G)2

GR2
=

1

2πl4
L4
p

GR2
=

3

8πGR2
⇒ l = (

4

3
)1/4 Lp, h̄ = c = 1 (18)

and leading once again to the value of l = 1.0745Lp in eq-(15). Therefore, when R =
2Gm >> l, the value of l is always very close to the Planck scale, and independent of
R = 2Gm, because the scale R has decoupled in eq-(18).

In this way, one can effectively view the observable universe as a “black-hole” whose
Hubble radius RH encloses a mass MU given by 2GMU = RH . From eq-(14) it follows
that when R = RH , the black hole density ρbh = ρo = ρobs coincides with the observed
vacuum energy density. It is well known that inside the black hole horizon region the
roles of t and r are exchanged due to the switch in the signature of the gtt, grr metric
components. Cosmological solutions based on this t ↔ r exchange were provided by the
Kantowski-Sachs metric.

To sum up the results in [12] : After applying the Bohm-Poisson equation to the
observable Universe as a whole, and by introducing an ultraviolet (very close to the Planck
scale) and an infrared (Hubble) scale, one can naturally obtain a value for the vacuum
energy density which coincides exactly with the extremely small observed vacuum energy
density. It is remarkable that the Bohm-Poisson equation chooses for us a lower scale to
be basically equal to the Planck scale. It was not put it in by hand, but is a direct result
of the solutions to the Bohm-Poisson equation. The only assumption made was to choose
the Hubble scale RH for the infrared cutoff, and which makes physical sense since RH

is the cosmological horizon. Is it a numerical coincidence or design ? Because Bohm’s
formulation of QM is by construction non-local, it is this non-locality which casts light
into the crucial ultraviolet/infrared entanglement of the Planck/Hubble scales which was
required in order to obtain the observed values of the vacuum energy density.
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Furthermore, one can also explain the origins of its repulsive gravitational nature.
The Bohm-Poisson’s (BP) equation is invariant under ρ̃m → −ρ̃m, and G → −G. Con-
sequently −ρ̃m ≥ 0 is a solution to a BP equation associated to a negative gravitational
coupling −G < 0 which is tantamount to repulsive gravity. This is perhaps the most
salient feature of the results in [12].

2 Asymptotic Safety and Covariant Extensions of the

BP Equation

The Renormalization Group (RG) improvement of Einstein’s equations is based on the
possibility that Quantum Einstein Gravity might be non-perturbatively renormalizable
and asymptotically safe due to the presence of interacting ultraviolet fixed points [19].
In this program one has k (energy) dependent modifications to the Newtonian coupling
G(k), the cosmological constant Λ(k) and energy-dependent spacetime metrics gij,(k)(x).

In D = 4 there is a nontrivial interacting (non-Gaussian) ultraviolet fixed point
G∗ = G(k)k2 6= 0. The fixed point G∗ by definition is dimensionless and the running
gravitational coupling has the form [20], [19]

G(k) = GN
1

1 + [GNk2/G∗]
(19)

The scale dependence of Λ(k) in the de Sitter case was found to be [20]

Λ(k) = Λ0 +
b G(k)

4
k4, Λ0 > 0 (20)

where b is positive numerical constant.
In D = 4, the dimensionless gravitational coupling has a nontrivial fixed point G =

G(k)k2 → G∗ in the k → ∞ limit, and the dimensionless variable Λ = Λ(k)k−2 has also
a nontrivial ultraviolet fixed point Λ∗ 6= 0 [20]. The infrared limits are Λ(k → 0) = Λ0 >
0, G(k → 0) = GN . Whereas the ultraviolet limit is Λ(k =∞) =∞;G(k =∞) = 0.

Let us choose now an actual positive-definite solution ρ̂m ≡ −ρ̃m = |A|/r4 ≥ 0;
|A| = h̄2/2πGm2, of the BP equation associated to repulsive gravity−G < 0, as explained
earlier

− h̄2

2m
∇2 (

∇2
√
−ρ̃m√
−ρ̃m

) = 4π (−G) m (−ρ̃m) (21)

The mass density solution of (21) to focus on (in h̄ = c = 1 units) is

ρ̂m(r) = − ρ̃m(r) =
1

2πGm2r4
≥ 0 (22)

If one selects m = (1/RH) to coincide with the Compton mass of a particle corresponding
to the Hubble scale RH , then at the Hubble scale r = RH one has
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ρ̂m(r = RH) =
1

2πGm2R4
H

=
1

2πG (RH)−2 R4
H

∼ (LPRH)−2 ∼ 10−122M4
Planck (23a)

and which agrees with the observed vacuum energy density. It is well known (to the
experts) that such extremely small value is of the same order of magnitude as (mneutrino)

4.
The problem arises when one evaluates ρ̂m(r) at Lp, given m = 1/RH . One gets a

huge value

ρ̂m(r = Lp) ∼
1

Gm2L4
p

= (
RH

Lp
)2 L−4

p ∼ 10122 M4
p (23b)

We will see how the Asymptotic Safety scenario comes to our rescue by realizing that
a Renormalization Group flow of G and m2 solves the problem. The key idea, based on
dimensional grounds, is simply to postulate that the flow of m2(k) has the same functional
form as the flow of Λ(k) in eq-(20)

m2(k) = m2
o +

b G(k)

4
k4, m2

o > 0 (24)

The only thing remaining is to related the scale r in eq-(17) with the energy (momentum)
scale k. The authors [20] expressed k as the inverse of d(r) where d(r) was a proper
distance derived from the Schwarzschild metric. If one opts for the simplest choice k = 1/r,
eq-(22) can be rewritten as

ρ̂m(r) =
1

2π

1

G(k) m2(k) r4
=

1

2π

k4

G(k)m2(k)
(25)

note that strictly speaking eq-(25) is not a solution to the BP equation, because if it
were one must have that G(k)m2(k) = constant, for all values of k, which is not the
case. Similarly, the renormalization-group-improved black hole solutions of [20] are not
solutions to the Einstein vacuum field equations [17]. Nevertheless, from eqs-(19,24) one
learns that

limk→0 (G(k) m2(k)) = GN m2
o (26a)

limk→∞ (G(k) m2(k)) =
b

4
(G∗)

2 (26b)

whereas at the Planck scale k = Mp

limk→Mp (G(k) m2(k)) ∼ b

4
(G∗)

2 (27)

Consequently, eqs-(25,27) lead to

ρ̂m(r = Lp) ∼
1

2π G(k = Mp) m2(k = Mp) L4
p

∼ 2

bπ
(G∗)

−2 L−4
p ∼ M4

p (28)
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which is the expected result for the vacuum energy density at the Planck scale.
To sum up, the renormalization group machinery (Asymptotic Safety) can be imple-

mented such that eq-(23a) furnishes the observed vacuum energy density at the Hubble
scale, while eq-(28) is the expected vacuum energy density at Planck scale. Naturally,
one needs to generalize the BP equation to the fully relativistic regime as described by
eq-(10). The key question is what is the “particle” represented by the mass m in the BP
equation (21) ? i.e. a mass that experiences a renormalization group flow (24) similar to
the flow experienced by Λ (20).

We emphasized earlier the key role that −G < 0 plays in all of this and which stems
directly from the invariance of the BP equation under ρ → −ρ;G → −G. Our solutions
for ρ̂m(r) ≥ 0 correspond to −G < 0, thus the “particle” in question exerts a repulsive
gravitational force which mimics “dark energy”. The RG flow behavior of G displayed
in eq-(19) shows that G grows as k decreases. Meaning that G increases with distance,
so that the magnitude of the repulsive force exemplified by −G < 0 becomes larger, and
larger, as the universe expands. This is what is observed. Next we shall provide a different
view of our findings so far.

Matter Creation from the Vacuum

The second interpretation of the solution (22) to the BP equation (21) is that involving
matter creation from the vacuum, as advocated by Hoyle long ago. Imagine one pumps
matter out of the vacuum in lumps/units of Planck masses. Let us assume that the
Universe expands in such a way that matter is being replenish from the vacuum so that
the mass at any moment is linearly proportional to the size of the Universe. As the mass
of the universe grows the vacuum energy density decreases since the vacuum is being
depleted. In this scenario, at the Hubble scale RH , one has MU ∼ RH .

This result is also compatible with Mach’s principle. By equating GmMU/RH to the
rest mass m of a particle one arrives at GMU = RH , which once again is very close to the
Schwarzschild radius 2GMU . Hence, one arrives at the scaling relation

Mp

LP
=

MU

RH

(29)

which we interpreted long ago [18] as equating the proper forces (after re-introducing c)
MUc

2/RH = Mpc
2/Lp and leading to some sort of maximal/minimal acceleration duality.

Inserting the values of MP ,MU , and r = LP , into the solution (22) of the BP equation
gives

ρ̂(r = Lp;m = Mp) =
1

2πGM2
P L4

p

∼ L−4
p = M4

p , L2
p = 2G (30a)

which is compatible with the large density at the Planck scale, and

ρ̂(r = Lp;m = MU) =
1

2πGM2
U L4

p

∼ G

2πR2
H L4

p

∼ (Lp RH)−2 (30b)

which agrees with the observed vacuum energy density at the Hubble scale and obtained
above in eq-(11). Before concluding we add some important remarks.
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Does Dark Energy Resides in the Bulk of a 5D spacetime ?

Evaluating Bohm’s quantum potential (3) for ρ(r) given by eq-(4) yields

VQ = − h̄2

mr2
(31)

and which is reminiscent of an effective gravitational potential in 4 spatial dimensions (a
5D spacetime). The “quantum” force FQ = −∂rVQ corresponding to VQ in eq-(31) scales
as FQ ∼ −r−3 which has the same behavior as the gravitational force between two masses
m1,m2 in 5D

F = − G5
m1 m2

r3
(32)

since the 5D gravitational constant G5 has dimensions of (length)3. Despite the possi-
bility, we are not going to speculate at the moment as to whether or not the “quantum”
force originating from Bohm’s quantum potential is the “fifth” force. The main point
is that one should consider the possibility that Bohm’s quantum potential in 3 spatial
dimensions (4D spacetime) mimics classical gravity in 4 spatial dimensions (5D space-
time), and for this reason one can only indirectly infer the gravitational effects of dark
energy/dark matter in our 4D universe without directly detecting it because such dark
energy/dark matter resides in 5D, which is reminiscent of the brane-world scenarios.

Finsler-Relativistic Extension of the Bohm-Poisson equation

If one wishes to introduce a temporal dependence to ρ̂m we should extend the BP
equation to full the relativistic regime. It is interesting that a simple exchange of r ↔ t
as it occurs in the Schwarzschild metric leading to the Kantowski-Sachs metric, yields
ρ̂m(t) = |A|t−4, and similar findings are obtained for the values of the vacuum energy
density, simply by exchanging Lp ↔ ctp;RH ↔ ctH in the equations. tp, tH are the Planck
and Hubble times, respectively. Upon doing so it leads to a Big-Bang-like singularity at
t = 0, ρ̂m(t = 0) = ∞. This combined with the repulsive gravitational feature of our
model, implies naturally that an expansion would follow.

Besides eq-(10), another relativistic generalization of the BP equation can be con-
structed from the Lagrange-Finsler geometrical formulation of QM recently advocated by
[10]. He described the time evolution of particles as geodesic lines in a curved space,
whose curvature is induced by the quantum potential. This formulation incorporates all
quantum effects into the geometry of space-time, as it is the case for gravitation in the
general relativity.

The explicit expression of the metric components in terms of the quantum potential
VQ were provided by [10]. This is not the first time where the metric components are
expressed in terms of a potential. In General Relativity (GR) we learned that in the
linearized weak gravity limit, and for slow moving bodies, the temporal metric component
g00 ∼ η00 +2VN (c = 1), can be expressed in terms of the Newtonian potential VN . Hence,
given the explicit expressions [10] of the metric gµν = gµν(VQ) in terms of Bohm’s quantum
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potential, one can write down the curvature tensors, and the Einstein tensor leading to
the field equations

Rµν(VQ) − 1

2
gµν(VQ) R(VQ) = 8πG Tµν (33)

where the stress energy tensor is the one associated with a dark energy/dark matter fluid
permeating all of space and given in terms of ρ, p. In particular, the BP equation (2) can
be generalized to

R00(VQ) − 1

2
g00(VQ) R(VQ) = 8πG T00 (34)

where T00 = ρ̂m = mρ. Solutions to eq-(33) will be provided in future investigations as
well as the study of these equations in higher dimensions.

3 Conclusions

To conclude we add some remarks pertaining the Dirac-Eddington large numbers coin-
cidences. Nottale [16] found long ago a direct relationship between the fine structure
constant α and the cosmological constant Λ. In h̄ = c = 1 units, α = e2 = 1/137, the
expression is

Λ ' (Lp)
4

(re)6
=

(me)
6 (Lp)

4

(α)6
= 10−56 cm−2 (35)

the classical electron radius re is defined in terms of the charge e, and electron mass me,
as

e2

re
=

α

re
= me (36)

This important relation between Λ and α [16] warrants further investigation within the
context of the Bohm-Poisson equation and the Dirac-Eddington large number coinci-
dences.

We should mention that of the many articles surveyed in the literature pertaining the
role of Bohm’s quantum potential and cosmology, [13], [14], [15] we did not find any related
to the Bohm-Poisson equation proposed in this work.3 The authors [14], for instance,
have shown that replacing classical geodesics with quantal (Bohmian) trajectories gives
rise to a quantum corrected Raychaudhuri equation (QRE). They derived the second
order Friedmann equations from the QRE, and showed that this also contains a couple of
quantum correction terms, the first of which can be interpreted as cosmological constant
(and gives a correct estimate of its observed value), while the second as a radiation term
in the early universe, which gets rid of the big-bang singularity and predicts an infinite
age of our universe.

3A Google Scholar search provided the response “Bohm-Poisson equation and cosmological constant
did not match any articles”
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To finalize, we must say that the most attractive project is to find nontrivial solutions
to the relativistic Bohm-Poisson equation (10). A careful inspection reveals that a sep-
aration of variables does not work. Solutions to eq-(33) are more difficult to find. We
delegate this difficult task for future investigations as well as the study of these equations
and solutions in higher dimensions.

Acknowledgments

We are indebted to M. Bowers for assistance and Tony Smith for discussions pertaining
Armand Wyler’s derivation of the fine structure constant and its plausible connection to
the Bohm-Poisson equation.

References

[1] “Dark Energy” http://en.wikipedia.org/wiki/Dark−energy

[2] S. Carroll, “The cosmological constant”. Living Reviews in Relativity 4 (2001).

[3] M. Sami and R. Myrzakulov, “Late time cosmic acceleration: ABCD of dark energy
and modified theories of gravity”. International Journal of Modern Physics D 25
(12) (2015).

[4] A. Joyce, L. Lombriser, F. Schmidt, “Dark Energy vs. Modified Gravity”. Annual
Review of Nuclear and Particle Science 66 (2016)

[5] A. Arbey, “Is it possible to consider Dark Energy and Dark Matter as a same and
unique Dark Fluid? http://arxiv.org/abs/astro-ph/0506732”

A. Arbey, “Dark Fluid: a complex scalar field to unify dark energy and dark matter
http://arxiv.org/abs/astro-ph/0601274”

[6] S.I. Pekar, “Untersuchungen uber die Elektronentheorie der Kristalle” Akademie
Verlag, Berlin, 1954, pp-29-34.

R. Ruffini and S. Bonazzola, “Systems of self-gravitating particles in general rela-
tivity and the concept of an equation of state”, Phys. Rev. 187 (1969) 1767

[7] M. Bahrami, A.Grossardt, S. Donadi, and A. Bassi, “The Schrödinger-Newton equa-
tion and its foundations” New J. Phys. 16 (2014) 115007.

[8] E. Santamato, “Geometric derivation of the Schrödinger equation from classical
mechanics in curved Weyl spaces”, Phys. Rev. D 29, (1984) 216.

E. Santamato, “Statistical interpretation of the Klein-Gordon equation in terms of
the space-time Weyl curvature”, Journal of Mathematical Physics 25, 2477 (1984).

12



[9] C. Castro, “Nonlinear Quantum Mechanics as the Weyl Geometry of a Classical
Statistical Ensemble ”. Found. Physics Letters, vol.4, no.1 (1991) 81.

C. Castro, “On Weyl Geometry, Random Processes and Geometric Quantum Me-
chanics ”. Foundations of Physics. vol 22, no.4 (1992) 569- 615.

[10] I. Tavernelli, “On the Geometrization of Quantum Mechanics” Annals of Physics
371 (2016) 239.

[11] C. Castro, “Exact Solutions of the Newton-Schroedinger Equation, Infinite Deriva-
tive Gravity and Schwarzschild Atoms” to appear in the Physics and Astronomy
International Journal.

[12] C. Castro, “An elegant solution to the cosmological constant problem from the
Bohm-Poisson equation” vixra.org :1710.0215; submitted to the AACA, Waldyr
Rodrigues’ memorial issue, October 2017.

[13] A. Shojai and F. Shojai, “Constraints Algebra and Equations of Motion in Bohmian
Interpretation of Quantum Gravity”, arXiv : gr-qc/0311076.

D. Fiscaletti, “Bohm’s Quantum Potential and the Geometry of Space”, Quantum
Matter 2, 1 (2013) 45.

E. Squires, “A quantum solution to a cosmological mystery”, Phys. Letts A 162, 1
(1992) 35.

J. Vink, “The quantum potential interpretation of quantum mechanics due to Bohm
is applied to the Wheeler-De Witt equation for minisuperspace” Nuc. Phys. B 369,
3 (1992) 707.

T. Horiguchi, Mod. Phys. Lett. A 9, (1994).

J. Marto and P. Vargas Moniz, “de Broglie-Bohm FRW universes in quantum string
cosmology”, Phys. Rev. D 65, (2001) 023516.

[14] A. Farag and S. Das, “Cosmology from quantum potential”, PLB 741 (2015) 276.

[15] H. Nikolic, “Time and Probability : From classical mechanics to relativistic Bohmian
mechanics” arXiv : 1309.0400

H. Nikolic, “Cosmological constant, semiclassical gravity, and foundations of quan-
tum mechanics” gr-qc/0611037.

H. Nikolic, “Interpretation miniatures” arXiv : 1703.08341

[16] L. Nottale, “Mach’s Principle, Dirac’s Large Number Hypothesis and the Cosmolog-
ical Constant Problem”, https://www.luth.obspm.fr/luthier/nottale/arlambda.pdf
(1993).

L. Nottale, Scale Relativity And Fractal Space-Time: A New Approach to Unifying
Relativity and Quantum Mechanics (World Scientific 2011)

L. Nottale, Fractal Space-Time and Micro-physics (World Scientific 1993).

13



[17] C. Castro, “Asymptotic Safety in Quantum Gravity and Diffeomorphic Non-
isometric Metric Solutions to the Schwarzschild Metric” to appear in Can. J.
Physics, 2017.

[18] C. Castro, “On Maximal Proper Force, Black Hole Horizons and Matter as Curva-
ture in Momentum Space” to appear in IJGMMP.

C. Castro, “On Dual Phase Space Relativity, the Machian Principle and Modified
Newtonian Dynamics” Progress in Physics 1 (April 2005) 20.

C. Castro, “Solutions to the Gravitational Field Equations in Curved Phase-Spaces”
to appear in the EJTP.

[19] S. Weinberg, “Ultraviolet divergences in quantum theories of gravitation” General
Relativity : An Einstein centenary survey, Eds. S. Hawking and W. Israel, Cam-
bridge University Press (1979) p. 790.

M. Reuter and F. Saueressig, “Quantum Einstein Gravity” arXiv: 1202.2274

R. Percacci, “A short introduction to Asymptotic Safety” arXiv: 1110.6389.

D. Litim, “Renormalization group and the Planck scale” arXiv: 1102.4624.

S. Nagy, “Lectures on Renormalization and Asymptotic Safety”, arXiv : 1211.4151.

M. Niedermaier, “The Asymptotic Safety Scenario in Quantum Gravity-An Intro-
duction” , gr-qc/0610018.

[20] A. Bonano and Reuter. “Renormalization group improved black hole spacetimes”
Phys. Rev. D62 (2000) 043008.

[21] M. Reuter and F. Saueressig, “Asymptotic Safety, Fractals and Cosmology”, arXiv:
1205.5431.

14


