# The $q q^{\prime}$-Calculus 

Antoine Balan


#### Abstract

We present here a generalisation of the $q$-calculus, the $q q^{\prime}$-calculus. The calculus is however limited.

\section*{1 The $\delta$-derivation}

\subsection*{1.1 Definitions}

The derivative of a function $f$ at the point $x$ is usually defined as: $$
\begin{gathered} d_{h}(f)(x)=f(x+h)-f(x) \\ \frac{d f}{d x}(x)=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{d_{h}(f)}{d_{h}(x)}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \end{gathered}
$$


if the limit exists.

Definition 1 Similarly, the $\delta$-derivative of a function is defined as:

$$
\begin{gathered}
\delta_{h h^{\prime}}(f)(x)=f(x+h)-f\left(x+h^{\prime}\right) \\
\frac{\delta f}{\delta x}(x)=\tilde{f}(x)=\lim _{h, h^{\prime} \rightarrow 0} \frac{\delta_{h h^{\prime}}(f)}{\delta_{h h^{\prime}}(x)}=\lim _{h, h^{\prime} \rightarrow 0} \frac{f(x+h)-f\left(x+h^{\prime}\right)}{h-h^{\prime}}= \\
=\lim _{x_{0}, x_{1} \rightarrow x} \frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{x_{0}-x_{1}}
\end{gathered}
$$

If the $\delta$-derivative of a function exists, then the derivative of the function exists and we have $\frac{\delta f}{\delta x}(x)=\frac{d f}{d x}(x)$.

### 1.2 A counter-example

The derivative can exist even if the $\delta$-derivative doesn't. Indeed let be $f$ the fonction such that $f(x)=x^{2}$, if $x \in \mathbf{Q}$ and $f(x)=x^{3}$ if $x \notin \mathbf{Q}$. This function admits a derivative in zero which is zero, but has no $\delta$-derivative as one can verify:

$$
\lim _{h h^{\prime} \rightarrow 0} \frac{h^{2}-h^{\prime 3}}{h-h^{\prime}}=\lim _{h h^{\prime} \rightarrow 0} h+h^{\prime}+\frac{h^{\prime 2}-h^{\prime 3}}{h-h^{\prime}}
$$

doesn't exist because $h-h^{\prime}$ can be as small as we want.

### 1.3 The Leibniz rule

The Leibniz rule can be verified:

$$
\begin{gathered}
\frac{f(x+h) g(x+h)-f\left(x+h^{\prime}\right) g\left(x+h^{\prime}\right)}{h-h^{\prime}}= \\
=\frac{f(x+h)-f\left(x+h^{\prime}\right)}{h-h^{\prime}} g(x+h)+\frac{g(x+h)-g\left(x+h^{\prime}\right)}{h-h^{\prime}} f\left(x+h^{\prime}\right)
\end{gathered}
$$

so that:
Proposition 1

$$
\frac{\delta(f g)}{\delta x}=\left(\frac{\delta f}{\delta x}\right) g+f\left(\frac{\delta g}{\delta x}\right)
$$

### 1.4 Some formulas

The following formulas can be easily verified:

$$
\begin{gathered}
\left(\frac{\tilde{1}}{f}\right)=\frac{-1}{f^{2}} \tilde{f} \\
\left(\frac{\tilde{f}}{g}\right)=\frac{\tilde{f} g-f \tilde{g}}{g^{2}}
\end{gathered}
$$

and also :

$$
(f \tilde{\circ} g)=(\tilde{f} \circ g) \times \tilde{g}
$$

## $1.5 \quad \delta$-derivative of a function of class $\mathcal{C}^{3}$

Theorem 1 If the fonction $f$ is of class $\mathcal{C}^{3}$, then the $\delta$-derivative exists.

Demonstration 1 As we have :
$(1 / 2) \int_{0}^{h} f^{(2)}(t)(h-t) d t=\int_{0}^{h} f^{\prime}(t) d t-f^{\prime}(0) h=f(h)-f(0)-f^{\prime}(0) h$ so that:
$(1 / 2) h^{2} \int_{0}^{1} f^{(2)}(h t)(1-t) d t-(1 / 2) h^{\prime 2} \int_{0}^{1} f^{(2)}\left(h^{\prime} t\right)(1-t) d t=f(h)-f\left(h^{\prime}\right)-f^{\prime}(0)\left(h-h^{\prime}\right)=$
$=(1 / 2)\left(h^{2}-h^{\prime 2}\right) \int_{0}^{1} f^{(2)}(h t)(1-t) d t+h^{2} \int_{0}^{1}\left[f^{(2)}(h t)-f^{(2)}\left(h^{\prime} t\right)\right](1-t) d t$
and

$$
\left|f^{(2)}(h t)-f^{(2)}\left(h^{\prime} t\right)\right| \leq\left(\max \left|f^{(3)}\right|\right)\left(h-h^{\prime}\right) t
$$

by the Taylor's formula.
So a smooth function is also infinitely $\delta$-derivable.

### 1.6 The $q q^{\prime}$-limit

We have, if the limit exists, for $x \neq 0$ :

$$
\lim _{q q^{\prime} \rightarrow 1} \frac{f(q x)-f\left(q^{\prime} x\right)}{\left(q-q^{\prime}\right) x}=\tilde{f}(x)
$$

### 1.7 Integration and $\delta$-derivation

Theorem 2 If $f$ is continuous over the interval $[a, b]$, it is Riemann integrable and the primitive is $\delta$-derivable, so that we have:

$$
\frac{\delta}{\delta x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

Demonstration 2

$$
\frac{\delta}{\delta x}\left(\int_{a}^{x} f(t) d t\right)=\lim _{h h^{\prime} \rightarrow 0} \frac{\int_{h^{\prime}}^{h} f(t+x) d t}{h-h^{\prime}}=f(x)
$$

by the Taylor formula.

## 2 qq'-quantum derivation

### 2.1 Definitions

Definition 2 Let be two numbers $q, q^{\prime}$ and let be an arbitrary function $f$, its $q q^{\prime}$-differential is:

$$
d_{q q^{\prime}}(f)(x)=f(q x)-f\left(q^{\prime} x\right)
$$

In particular $d_{q q^{\prime}} x=\left(q-q^{\prime}\right) x$.
We have the following Leibniz rule:

$$
\begin{gathered}
d_{q q^{\prime}}(f g)(x)=f(q x) g(q x)-f\left(q^{\prime} x\right) g\left(q^{\prime} x\right)= \\
=\left(f(q x)-f\left(q^{\prime} x\right)\right) g(q x)+f\left(q^{\prime} x\right)\left(g(q x)-g\left(q^{\prime} x\right)\right.
\end{gathered}
$$

Proposition 2

$$
d_{q q^{\prime}}(f g)(x)=d_{q q^{\prime}}(f)(x) \cdot g(q x)+f\left(q^{\prime} x\right) \cdot d_{q q^{\prime}}(g)(x)
$$

Definition 3 The following formula:

$$
D_{q q^{\prime}} f(x)=\frac{d_{q q^{\prime}}(f)(x)}{d_{q q^{\prime}}(x)}=\frac{f(q x)-f\left(q^{\prime} x\right)}{\left(q-q^{\prime}\right) x}
$$

is called the $q q^{\prime}$-derivative of the function $f$

### 2.2 The Leibniz rule

The Leibiz rule is:
Proposition 3

$$
D_{q q^{\prime}}(f g)(x)=D_{q q^{\prime}}(f)(x) \cdot g(q x)+f\left(q^{\prime} x\right) \cdot D_{q q^{\prime}}(g)(x)
$$

### 2.3 Some formulas

The $q q^{\prime}$-derivative is a linear operator as we can verify:

$$
D_{q q^{\prime}}(a f+b g)=a D_{q q^{\prime}}(f)+b D_{q q^{\prime}}(g)
$$

for any scalars $a, b$ and functions $f, g$.

## Example 1

$$
D_{q q^{\prime}}\left(x^{n}\right)=[n]_{q q^{\prime}} x^{n-1}
$$

with $[n]_{q q^{\prime}}=\frac{q^{n}-q^{\prime n}}{q-q^{\prime}}$
The number $[n]_{q q^{\prime}}$ is called the $q q^{\prime}$-analog of $n$ as $\lim _{q q^{\prime} \rightarrow 1}[n]_{q q^{\prime}}=n$. We obtain also:
Proposition 4

$$
\begin{gathered}
D_{q q^{\prime}}\left(\frac{f}{g}\right)(x)=\frac{g\left(q^{\prime} x\right) D_{q q^{\prime}}(f)(x)-f\left(q^{\prime} x\right) D_{q q^{\prime}}(g)(x)}{g(q x) g\left(q^{\prime} x\right)}= \\
\quad=\frac{g(q x) D_{q q^{\prime}}(f)(x)-f(q x) D_{q q^{\prime}}(g)(x)}{g(q x) g\left(q^{\prime} x\right)}
\end{gathered}
$$

For the composition we also have, if $u=x^{a}$ :
Proposition 5

$$
D_{q q^{\prime}}(f \circ u)(x)=\left(D_{q^{a} q^{\prime a}}(f) \circ u\right)(x) \times D_{q q^{\prime}}(u)(x)
$$

## $3 q q^{\prime}$-analogue of $(x-a)^{n}$

### 3.1 Definition

## Definition 4

$$
\begin{gathered}
{[0]_{q q^{\prime}}!=1} \\
{[n]_{q q^{\prime}}!=[n]_{q q^{\prime}} \times[n-1]_{q q^{\prime}} \times \ldots \times[1]_{q q^{\prime}} \text { if } n \neq 0}
\end{gathered}
$$

### 3.2 The exponential

Definition 5

$$
\exp _{q q^{\prime}}(x)=\sum_{n \geq 0} \frac{x^{n}}{[n]_{q q^{\prime}}!}
$$

The derivative is :

$$
D_{q q}\left(\exp _{q q^{\prime}}\right)(x)=\exp _{q q^{\prime}}(x)
$$

### 3.3 The $q q^{\prime}$-analogue of $(x-a)^{n}$

Definition 6 The $q q^{\prime}$-analogue of $(x-a)^{n}$ is:

$$
(x-a)_{q q^{\prime}}^{n}=\prod_{k, l, k+l=n-1}\left(x-q^{k} q^{\prime l} a\right)
$$

We have the following theorem:

## Theorem 3

$$
D_{q q^{\prime}}(x-a)_{q q^{\prime}}^{n}=[n]_{q q^{\prime}}(x-a)_{q q^{\prime}}^{n-1}
$$

## Demonstration 3

$$
(x-a)_{q q^{\prime}}^{n}=(x-q a)_{q q^{\prime}}^{n-1}\left(x-q^{\prime n} a\right)
$$

so that, by induction on $n$, using Leibniz rule:

$$
D_{q q^{\prime}}(x-a)_{q q^{\prime}}^{n}=D_{q q^{\prime}}(x-a)_{q q^{\prime}}^{n-1}\left(q^{\prime} x-q^{\prime n-1} a\right)+(q x-q a)_{q q^{\prime}}^{n-1}=
$$

$=[n-1]_{q q^{\prime}} q^{\prime}(x-a)_{q q^{\prime}}^{n-2}\left(x-q^{\prime n-2} a\right)+q^{n-1}(x-a)_{q q^{\prime}}^{n-1}=[n]_{q q^{\prime}}(x-a)_{q q^{\prime}}^{n-1}$
We have also:

$$
(x-a)_{q q^{\prime}}^{n+m}=\left(x-q^{\prime m} a\right)_{q q^{\prime}}^{n}\left(x-q^{n} a\right)_{q q^{\prime}}^{m}
$$

## 4 qq'-Taylor's Formula for polynomials

### 4.1 The Taylor's expansion

Theorem 4 For any polynomial $P(X)$ of degree $n$, and any number a, we have the following $q q^{\prime}$-Taylor expansion:

$$
P(x)=\sum_{j=0}^{n}\left(D_{q q^{\prime}}^{j} P\right)(a) \frac{(x-a)_{q q^{\prime}}^{j}}{[j]_{q q^{\prime}}!}
$$

Demonstration 4 Due to the degree, we can write:

$$
P(x)=\sum_{j=0}^{n} c_{j} \frac{(x-a)_{q q^{\prime}}^{j}}{[j]_{q q^{\prime}}!}
$$

and now, by derivation, we have inductively on the degree of $P$ :

$$
c_{k}=\left(D_{q q^{\prime}}^{k} P\right)(a)
$$

### 4.2 A formula

The $q q^{\prime}$-Taylor formula for $x^{n}$ about $x=1$ then gives:

$$
x^{n}=\sum_{j=0}^{n}[n]_{q q^{\prime}} \ldots[n-j+1]_{q q^{\prime}} \frac{(x-a)_{q q^{\prime}}^{j}}{[j]_{q q^{\prime}}!}
$$

Formula 1

$$
x^{n}=\sum_{j=0}^{n}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q q^{\prime}}(x-a)_{q q^{\prime}}^{j}
$$

with $\left[\begin{array}{l}n \\ j\end{array}\right]_{q q^{\prime}}=\frac{[n]_{q q^{\prime}}!}{[j]_{q q^{\prime}}![n-j]_{q q^{\prime}}!}$.

## References

[KC] V.Kac, P.Cheung, "Quantum Calculus", Springer-Verlag, Berlin, 2002.
[K] C.Kassel, "Quantum Groups", Springer-Verlag 155, New-York, 1995.

