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Abstract. The paper discusses the recovery of signals in the case that signals are
nearly sparse with respect to a tight frame D by means of the l1-analysis approach. We
establish several new sufficient conditions regarding the D-restricted isometry property
to ensure stable reconstruction of signals that are approximately sparse with respect to
D. It is shown that if the measurement matrix Φ fulfils the condition δts < t/(4 − t)
for 0 < t < 4/3, then signals which are approximately sparse with respect to D can be
stably recovered by the l1-analysis method. In the case of D = I, the bound is sharp,
see Cai and Zhang’s work [5]. When t = 1, the present bound improves the condition
δs < 0.307 from Lin et al.’s reuslt to δs < 0.333.
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1 Introduction

In recent years, compressed sensing (CS) has brought about important research activity. For-
mally, in CS, researchers are interested in the model below

b = Φf + z,

where Φ ∈ RM×N (M ≪ N) is a known measurement matrix, observed signal b ∈ RM , an unknown
signal f ∈ RN and z ∈ RM is a vector of measurement errors. In the standard compressed sensing
frame, if the signal is (nearly) sparse in the nature base or other orthonormal bases, it can be
accurately or stably recovered in the noiseless case or the noise case respectively under various
sufficient conditions on the sensing matrix Φ, for instance a restricted isometry property (RIP)
condition, see [1-9].

However, in practical applications, there exist a large number of signals of interest whose sparsity
is not expressed in terms of an orthogonal basis. On the contrary, these signals are sparse with
respect to an overcomplete dictionary or a tight frame [10, 11] or a general frame [12]. That is

∗Corresponding author. E-mail address: wjj@swu.edu.cn (J. Wang).

1



to say, the original signal f ∈ RN can be represented as f = Dx where D is some coherent and
redundant dictionary with the size N × d (N ≤ d) and x is (approximately) sparse coefficient with
x ∈ Rd.

For a matrix D, a tight frame is formed by its d columns D1, · · · , Dd, namely,

d∑
i=1

Di ⟨f,Di⟩ = f and

d∑
i=1

| ⟨f,Di⟩ |2 = ∥f∥22

for all f ∈ RN , where ⟨·, ·⟩ stands for the standard Euclidean inner product. For all q ∈ [1,∞),

x ∈ RN , let ∥x∥q = q

√∑N
i=1 |xi|q and ∥x∥∞ =

∨N
i=1 |xi| denote the maximum of {|x1|, · · · , |xN |}.

One can easily prove that for all f ∈ RN ,

DD∗ = In, ∥f∥22 = ∥D∗f∥22,

where D∗ denotes the transpose of the matrix D and In is an identity matrix of n order.

Our goal in the present paper is to recover the true signal f ∈ RN from M linear measurements
b = Φf + z in the case that the signal is sparse or approximately sparse in terms of D. The
l1-analysis approach below is utilized for the recovery of such signal

f̃ = arg min
f∈RN

∥D∗f∥1 subject to Φf − b ∈ B, (1.1)

where B is a bounded set relied on the noise structure. In this paper, we discuss two types of
bounded noise: l2 bounded B0(ε) = {z : ∥z∥2 ≤ ε} and Dantzig selector bounded B1(ζ) = {z :
∥D∗Φ∗z∥∞ ≤ ζ}. In order to discuss the performance of the above method, we will present the
concept of D-RIP of a sensing matrix, which was first proposed by Candés et al. [11]. In fact, it is
a generalization to the standard RIP.

Definition 1.1. (D-RIP) Let D be a matrix with the size N × d (N ≤ d). One says that a
measurement matrix Φ satisfies the restricted isometry property adapted to D (D-RIP for short) of
s order with constant δs if √

1− δs∥Dx∥2 ≤ ∥ΦDx∥2 ≤
√

1 + δs∥Dx∥2 (1.2)

holds for all s-sparse vector x in Rd. We call a vector x ∈ Rd s-sparse if | sup(x)| ≤ s, where
sup(x) = {i : xi ̸= 0} represents the support of the vector x. Define the D-RIP constant δs as the
smallest number δs obeying (1.2) for any s-sparse vector x ∈ Rd.

By the way, we give the definition of l0 based on the notion of support that ∥x∥0 = | sup(x)|,
that is, ∥x∥0 counts the number of non-zero entries for vector x. In the case of that D is an identity
matrix, i.e., D = I, the Definition 1.1 degenerates to the definition of standard RIP.

It has been shown that sparse signals in terms ofD can be recovered though l1-analysis approach
under a variety of conditions on the D-RIP. Candés et al. [11] proved that a sufficient condition
δ2s < 0.08 can guarantee the reconstruction of sparse signals. In [13, 14] respectively improved
the upper bound to δ2s < 0.4931 and δs < 0.307. Liu et al. [12] employed the assumption
9δ2s + 4δ4s < 5 to assure recovery under the general frame. Zhang and Li [15] refined the bound
to δ2s <

√
2/2 ≈ 0.707 and δs < 1/3 ≈ 0.333. Furthermore, Chen and Li [16] gave a high order

condition on the D-RIP for the recovery of signal.
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In this paper, we provide a sufficient condition on D-RIP constant δts under which signals
from undersampled data that are approximately sparse in terms of D are guaranteed to be stably
reconstructed in the noise situation or exactly recovered in the noiseless situation via the l1-analysis
method. We prove that under the condition δts < t/(4 − t) for 0 < t < 4/3, any signals f which
are sparse with respect to a tight frame D can be accurately and stably recovered via (1.1). When
t = 1, our main results are consistent with Theorem 3.1 and Theorem 4.1 in [15]. Besides, in the
situation of D = I (for the standard compressing sensing), we obtain same results as the main
results in [17] and the bound on the constant δts is sharp, referred to see [5]. Observe that our
new bound δts < t/(4− t) (t ∈ (0, 4/3)) improves the condition δs < 0.307 given in [14] in the case
when t is equal to 1. Weakening the D-RIP condition brings a few advantages [14]. First of all, it
allows more sensing matrices to be utilized in compressed sensing. Second, it provides better error
estimation in a usual issue to reconstruct signals with noise. Last, improving the D-RIP condition
allows estimating a sparse signal with more nonzero entries.

The remainder of this paper is organized as following. Some key lemmas and notations are
presented in section 2. The main results are establish in section 3. In section 4, we provide proofs
of theorems. Conclusions are given in the section 5.

2 Some technical lemmas

Define D as a tight frame with the size N × d (N ≤ d). This means that all row vectors are
orthonormal. Denote by D⊥ its orthonormal complement, then it is also a tight frame. Therefore,
for all x ∈ Rd, √

∥Dx∥22 + ∥D⊥x∥22 = ∥x∥2.

The above equality implies that the property of a tight frameD: ∥Dx∥2 ≤ ∥x∥2. It is straightforward
to check that if the measurement matrix Φ obeys D-RIP with constant δs, then√

1− δs∥x∥2 ≤
√

∥ΦDx∥22 + ∥D⊥x∥22 ≤
√

1 + δs∥x∥2 (2.1)

holds for all vectors x ∈ Rd with ∥x∥0 ≤ s.

Throughout of this article, we utilize the following notations. Set f̃ = f + h be a solution
to (1.1), where f is the unknown signal we wish to recover. For T ⊂ {1, 2, · · · , d}, DT indicates
the matrix D limited to the columns indexed by T and T c represents the complement of T in
{1, 2, · · · , d}, i.e., T c = {1, 2, · · · , d}\T. Set D∗

T = (DT )
∗ and D∗h = (x1, x2, · · · , xd). Suppose that

{|xi|}di=1 is a non-increasing sequence, rearranging the indices if necessary. Let T0 = {1, 2, · · · , s}.
Let S0 stand for the index set of the largest s components of D∗f in amplitude. Denote by x[s] the

vector comprising the s largest absolute-value coefficients of x ∈ Rd: x[s] = argmin∥y∥0≤s ∥x− y∥2.
The following lemmas are used in the proofs of main results.

Lemma 2.1. (Lemma 1 in [17]) Suppose Π is an index set with |Π| = s. Given vectors {uj : j ∈ Π}
are in a vector space X with inner product ⟨, ·, ⟩. Select all subset Πi ⊂ Π satisfying |Πi| = k, i ∈ U
with |U | = Ck

s (Ck
s = (sk)), then ∑

i∈U

∑
j∈Πi

uj = Ck−1
s−1

∑
i∈Π

ui, (2.2)

holds for k ≥ 1.
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In [5], Cai and Zhang introduced a crucial technical tool, which expresses points in a polytope
by convex combinations of sparse vectors. The proofs of theorems for this paper depend on this
new technique which is stated as the following lemma.

Lemma 2.2. Assume that α is a positive number and s is a positive integer. The polytope τ(α, s) ⊂
Rd is defined by

τ(α, s) = {x ∈ Rd : ∥x∥∞ ≤ α, ∥x∥1 ≤ sα}.

The set of sparse vectors U(α, s, x) ⊂ Rd is defined by

U(α, s, x) = {u ∈ Rd : sup(u) ⊆ sup(x), ∥u∥0 ≤ s, ∥u∥1 = ∥x∥1, ∥u∥∞ ≤ α}

for all x ∈ Rd. Then we can represent any x ∈ τ(α, s) as

x =
∑
i

λiui,

where ui ∈ U(α, s, x), 0 ≤ λi ≤ 1,
∑

i λi = 1, and
∑

i λi∥ui∥22 ≤ sα2.

Lemma 2.3. We get that

∥D∗
Πh∥1 + 2∥D∗

Πcf∥1 ≥ ∥D∗
Πch∥1 (2.3)

for any subset Π ⊂ {1, · · · , d}.

Proof According to the minimality of f̃ , one implies that

∥D∗f∥1 ≥ ∥D∗f̃∥1.

That is,

∥D∗
Πf∥1 + ∥D∗

Πcf∥1 ≥ ∥D∗
Πf̃∥1 + ∥D∗

Πc f̃∥1.

Applying the inverse triangular inequality to the above inequality, we get

∥D∗
Πf∥1 + ∥D∗

Πcf∥1 ≥ ∥D∗
Πf∥1 − ∥D∗

Πh∥1 + ∥D∗
Πch∥1 − ∥D∗

Πcf∥1,

which deduces the desired result.

3 Main results

In the present section, we will establish new D-RIP conditions for the stable reconstruction of
sparse signals in terms of D via the l1-analysis method.

A. Bounded Noise

In this subsection, we discuss recovery of signals which are sparse with respect to D in the noisy
situation. Specially, we think over two types of bounded noise: l2 bound B0(ε) = {z : ∥z∥2 ≤ ε}
and Dantzig selector bound B1(ζ) = {z : ∥D∗Φ∗z∥∞ ≤ ζ}. For simplicity, let f̃ABP represent the
solution of (1.1) obeying B = B0(ε) and f̃ADS stand for the solution of (1.1) such that B = B1(ζ).
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Theorem 3.1. Suppose that D denotes an arbitrary tight frame. If the measurement matrix Φ
fulfils the D-RIP with constant δts < t/(4− t) for 0 < t < 4/3, then

∥f̃ABP − f∥2 ≤ Aε+B
∥D∗f − (D∗f)[s]∥1√

s
,

and

∥f̃ADS − f∥2 ≤ Cζ +B
∥D∗f − (D∗f)[s]∥1√

s
, (3.1)

where

A =
2
√
2
√
1 + δtst̃

t+ (t− 4)δts
,

B =
4
√
2δts + 2

√
2
√

(t+ (t− 4)δts)δts
t+ (t− 4)δts

+

√
2

2
,

and

C =
2
√
2st̃

t+ (t− 4)δts
.

Remark 3.1. When D is an identity matrix, namely for the standard compressed sensing, we
obtain same results as Theorem 2 in [17] and the condition is the weakest, for more information,
see [5].

Remark 3.2. In the case when t is equal to 1, Theorem 3.1 coincides with Theorem 4.1 in [15].
The sufficient condition δts < t/(4 − t) (t ∈ (0, 4/3)) extends the condition δs < 1/3 to a more
general context. Furthermore, the error estimations (3.1) is much better than (4.1) and (4.2) of
Theorem 4.1 in [15].

Remark 3.3. It is known that Lin et al. [14] gave a sufficient condition δs < 0.307, which
guarantees that s-sparse signals in term of D can be stably reconstructed. When t = 1, the result
of Theorem 3.1 improves the bound to δs < 1/3 ≈ 0.333, for more details, see Remark III.2.(d) in
[14].

Remark 3.4. In the proof of Theorem 3.1, by applying Lemma 5.3 in [4] to the estimation of
∥D∗

T ch∥2, we obtain different error estimations as follows:

∥f̃ABP − f∥2 ≤ Aε+ B̃
∥D∗f − (D∗f)[s]∥1√

s
,

and

∥f̃ADS − f∥2 ≤ Cζ + B̃
∥D∗f − (D∗f)[s]∥1√

s
, (3.2)

where

B̃ =
4
√
2δts + 2

√
2
√

(t+ (t− 4)δts)δts
t+ (t− 4)δts

+ 2,

and A, C are defined by Theorem 3.1. Obviously, note that the upper bounds of error estimations
determined by (3.1) is much better than those presented by (3.2). In addition, (3.2) is the same as
Theorem 4.1 in [15] in the situation that t is equal to 1.
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In the following corollary, we consider exact reconstruction of sparse (in terms of D) signals
with noiseless via the approach (1.1) with B = {0}.

Corollary 3.1. Assume that one observes b = Φf with ∥D∗f∥0 ≤ s. The solution to (1.1) satisfying
B = {0} estimates the unknown signal f , viz, f̃ = f provided that the matrix Φ meets the D-RIP
with constant δts < t/(4− t) for 0 < t < 4/3.

Remark 3.5. In the noise-free situation when noise vector z = 0 and the unknown signal f is
s-sparse with respect to D, the result directly follows from Theorem 3.1.

Remark 3.6. When D is an identity matrix, the result is the same as Theorem 1 in [17].

B. Gaussian Noise

In statistics and signal processing, it is of interest to study the signal reconstruction with the
error vector obeying Gaussian noise (i.e., z ∼ N(0, σ2I)). Define two bounded sets

B2 =
{
z : ∥z∥22 ≤ σ2

(
M + 2

√
M logM

)}
and

B3 =
{
z : ∥D∗Φ∗z∥2∞ ≤ 8σ2 log d

}
.

The following lemma shows that the Gaussian error is bounded.

Lemma 3.1. (Lemma III.3 in [14]) Suppose a matrix Φ ∈ RM×N fulfils the D-RIP with real
number δ1 ∈ (0, 1), then Gaussian noise z obeys

1− P(z ∈ B2) ≤
1

M

and

1−P(z ∈ B3) ≤
1

d
√
2π log d

,

where the noise vector z ∼ N(0, σ2I).

Theorem 3.2. We suppose that D is an arbitrary tight frame. Let f̃1 represent the solution of
(1.1) obeying B = B2 and f̃2 stand for the solution of (1.1) such that B = B3. If the measurement
matrix Φ fulfils the D-RIP with constant δts < t/(4− t) for 0 < t < 4/3, then

∥f̃1 − f∥2 ≤ Aσ

√
M + 2

√
M logM +B

∥D∗f − (D∗f)[s]∥1√
s

with probability not less than 1− 1/M and

∥f̃2 − f∥2 ≤ 2
√
2Cσ

√
log d+B

∥D∗f − (D∗f)[s]∥1√
s

with probability greater or equal to 1− 1/(d
√
2π log d). Here, the constants A, B and C are defined

by Theorem 3.1.

Remark 3.7. Since in this situation noise vector z is in some bounded set with high probability,
the theorem follows from Theorem 3.1 and Lemma 3.1.

Remark 3.8. In the situation when D is equal to an identity matrix I, Theorem 3.2 is the same
as Corollary 2 in [17].
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4 Proofs of main results

Proof of Theorem 3.1.

We suppose that ts is an integer. Observe that ∥D∗
S0
h∥1 ≤ ∥D∗

T0
h∥1, ∥D∗

T c
0
h∥1 ≤ ∥D∗

Sc
0
h∥1. It

thus follows from Lemma 2.3 that

∥D∗
T0
h∥1 + 2∥D∗

Sc
0
f∥1 ≥ ∥D∗

T c
0
h∥1. (4.1)

Set
∥D∗

T0
h∥1 + 2∥D∗

Sc
0
f∥1

s
= r.

Then

r2 =
∥D∗

T0
h∥21 + 4∥D∗

T0
h∥1∥D∗

Sc
0
f∥1 + 4∥D∗

Sc
0
f∥21

s2
.

By employing ∥D∗
T0
h∥21 ≤ s∥D∗

T0
h∥22 to the above equality, we get

r2 ≤
∥D∗

T0
h∥22

s
+

4∥D∗
T0
h∥2∥D∗

Sc
0
f∥1

s
3
2

+
4∥D∗

Sc
0
f∥21

s2
. (4.2)

Pick out positive integers m and n contenting n ≤ m ≤ s and (m + n)/s = t. We use subsets
Ti, Sj ⊂ {1, · · · , s} to represent all probable index sets with |Ti| = m (i ∈ U), |Sj | = n (j ∈ V ) that
|U | = Cm

s and |V | = Cn
s .

From the definition of T0, we have

∥D∗
T c
0
h∥∞ ≤

∥D∗
T0
h∥1

s
≤

∥D∗
T0
h∥1 + 2∥D∗

Sc
0
f∥1

s
≤ s

n
r. (4.3)

Moreover, it is known that the l1 norm of D∗
T c
0
h is bounded, i.e.,

∥D∗
T c
0
h∥1 ≤ n

s

n
r.

Hence, by Lemma 2.2, we imply that

D∗
T c
0
h =

∑
i

λiui,

where ui is n-sparse, i.e.,
∥ui∥0 = | sup(ui)| ≤ n,

and
∑

i λi = 1 with for each i, λi ∈ (0, 1],

sup(ui) ⊂ sup(D∗
T c
0
h), ∥ui∥1 = ∥D∗

T c
0
h∥1, ∥ui∥∞ ≤ s

n
r,

∑
i

λi∥ui∥22 ≤ n
( s
n
r
)2

=
s2r2

n
. (4.4)

Analogously, we can also decompose D∗
T c
0
h into

D∗
T c
0
h =

∑
i

µivi,
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and

D∗
T c
0
h =

∑
i

νiwi.

Here | sup(vi)| ≤ m, | sup(wi)| ≤ (t− 1)s (t > 1) and∑
i

µi∥vi∥22 ≤
s2r2

m
, (4.5)

∑
i

νi∥wi∥22 ≤
sr2

t− 1
. (4.6)

By the feasibility of f̃ABP , we get that

∥Φh∥2 ≤ ∥Φ(f̃ABP − f)∥2 ≤ ∥Φf̃ABP − b∥2 + ∥Φf − b∥2 ≤ 2ε. (4.7)

Thus, it follows that

|
⟨
ΦDD∗

T0
h,Φh

⟩
|2 ≤ ∥ΦDD∗

T0
h∥22∥Φh∥22

≤ 4ε2(1 + δs)∥DD∗
T0
h∥22

≤ 4ε2(1 + δts)∥D∗
T0
h∥22 (4.8)

for t ∈ [1, 4/3), where for the third inequality, we used the fact that δs ≤ δs1 if s ≤ s1[14];

|
⟨
ΦDD∗

T0
h,Φh

⟩
|2 ≤ 4ε2(1 + δs)∥DD∗

T0
h∥22

≤ 4ε2
(
1 +

(
2

t
− 1

)
δts

)
∥D∗

T0
h∥22

≤ 4ε2(1 + δts)

t
∥D∗

T0
h∥22 (4.9)

for t ∈ (0, 1), where for the second inequality follows from Lemma 4.1 in [4].

For notational simplicity, set

∆0 =
∑
i∈U,k

s− n

mCm
s

λk

(
m2∥E(D∗

Ti
h+

n

s
uk)∥22 − n2∥E(D∗

Ti
h− m

s
uk)∥22

)
+
∑
j∈V,k

s−m

nCn
s

µk

(
n2∥E(D∗

Sj
h+

m

s
vk)∥22 −m2∥E(D∗

Sj
h− n

s
vk)∥22

)
, (4.10)

where E ∈ RL×d and L is an arbitrary integer. Let ρ(m,n) = (m − n)2 + 2(t − 2)mn. The
construction of following two identities make use of ideals from equalities (14) and (15) in [17]. One
can verify that

ρ(m,n)(t− 1)

mnCm
s Cn

s−m

∑
Ti

∩
Sj=ϕ

(
mn

t− 1
∥E(D∗

Ti
h+D∗

Sj
h)∥22 + ∥E(nD∗

Ti
h−mD∗

Sj
h)∥22

)
= t∆0 + 2mn(t− 2)t2

⟨
ED∗

T0
h,ED∗h

⟩
holds for t ∈ (0, 1), and

ρ(m,n)
∑
k

νk

{
∥E(D∗

T0
h+ (t− 1)wk)∥22 − ∥(t− 1)E(D∗

T0
h− wk)∥22

}
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= −(3t− 4)∆0 + 2{(t− 1)s2 −mn}t3
⟨
ED∗

T0
h,ED∗h

⟩
holds for t ∈ [1, 4/3). It thus follows that

ρ(m,n)(t− 1)

mnCm
s Cn

s−m

∑
Ti

∩
Sj=ϕ

(
mn

t− 1
∥ΦD(D∗

Ti
h+D∗

Sj
h)∥22 + ∥ΦD(nD∗

Ti
h−mD∗

Sj
h)∥22

+
mn

t− 1
∥D⊥(D∗

Ti
h+D∗

Sj
h)∥22 + ∥D⊥(nD∗

Ti
h−mD∗

Sj
h)∥22

)
= t∆̃0 + 2mn(t− 2)t2

⟨
ΦDD∗

T0
h,Φh

⟩
(4.11)

holds for t ∈ (0, 1), and

ρ(m,n)
∑
k

νk

(
∥ΦD(D∗

T0
h+ (t− 1)wk)∥22 − ∥(t− 1)ΦD(D∗

T0
h− wk)∥22

+ ∥D⊥(D∗
T0
h+ (t− 1)wk)∥22 − ∥(t− 1)D⊥(D∗

T0
h− wk)∥22

)
= −(3t− 4)∆̃0 + 2{(t− 1)s2 −mn}t3

⟨
ΦDD∗

T0
h,Φh

⟩
(4.12)

holds for t ∈ [1, 4/3), where

∆̃0 =
∑
i∈U,k

s− n

mCm
s

λk

(
m2∥ΦD(D∗

Ti
h+

n

s
uk)∥22 − n2∥ΦD(D∗

Ti
h− m

s
uk)∥22

+m2∥D⊥(D∗
Ti
h+

n

s
uk)∥22 − n2∥D⊥(D∗

Ti
h− m

s
uk)∥22

)
+
∑
j∈V,k

s−m

nCn
s

µk

(
n2∥ΦD(D∗

Sj
h+

m

s
vk)∥22 −m2∥ΦD(D∗

Sj
h− n

s
vk)∥22

+ n2∥D⊥(D∗
Sj
h+

m

s
vk)∥22 −m2∥D⊥(D∗

Sj
h− n

s
vk)∥22

)
, (4.13)

and we used the fact that
⟨
D⊥D∗

T0
h,D⊥D∗h

⟩
= 0. For ρ(m,n), if ts is odd, then let m = n+ 1 =

(ts+ 1)/2; if ts is even, set m = n = ts/2. Easily check that ρ(m,n) < 0 for both situations.

According to ∥D∗
Ti
h∥0 = ∥vk∥0 ≤ m, ∥D∗

Sj
h∥0 = ∥uk∥0 ≤ n (m + n = ts) and combining with

(2.1), we imply that

∆̃0 ≥
∑
i∈U,k

s− n

mCm
s

λk

(
m2(1− δts)∥D∗

Ti
h+

n

s
uk∥22 − n2(1 + δts)∥D∗

Ti
h− m

s
uk∥22

)

+
∑
j∈V,k

s−m

nCn
s

µk

(
n2(1− δts)∥D∗

Sj
h+

m

s
vk∥22 −m2(1 + δts)∥D∗

Sj
h− n

s
vk∥22

)
.

Notice that
⟨
D∗

Ti
h, uk

⟩
=
⟨
D∗

Sj
h, vk

⟩
= 0 for each i, j, k. Then

∆̃0 ≥
∑
i∈U,k

s− n

mCm
s

λk

(
m2(1− δts)∥D∗

Ti
h∥22 +

m2n2

s2
(1− δts)∥uk∥22 − n2(1 + δts)∥D∗

Ti
h∥22

− m2n2

s2
(1 + δts)∥uk∥22

)
9



+
∑
j∈V,k

s−m

nCn
s

µk

(
n2(1− δts)∥D∗

Sj
h∥22 +

m2n2

s2
(1− δts)∥vk∥22 −m2(1 + δts)∥D∗

Sj
h∥22

− m2n2

s2
(1 + δts)∥vk∥22

)
=

s− n

mCm
s

{(m+ n)(m− n)− (m2 + n2)δts)}
∑
i∈U

∥D∗
Ti
h∥22 −

2(s− n)mn2δts
s2

∑
k

λk∥uk∥22

+
s−m

nCn
s

{−(m+ n)(m− n)− (m2 + n2)δts}
∑
j∈V

∥D∗
Sj
h∥22 −

2(s−m)m2nδts
s2

∑
k

µk∥vk∥22.

By exploiting (2.2) to the above inequality, we get

∆̃0 ≥{(m+ n)(m− n)− (m2 + n2)δts}
s− n

mCm
s

Cm−1
s−1 ∥D∗

T0
h∥22 −

2(s− n)mn2δts
s2

∑
k

λk∥uk∥22

+ {−(m+ n)(m− n)− (m2 + n2)δts}
s−m

nCn
s

Cn−1
s−1 ∥D

∗
T0
h∥22 −

2(s−m)m2nδts
s2

∑
k

µk∥vk∥22.

By utilizing (4.4) and (4.5) to the above inequality, we get that

∆̃0 ≥{(m+ n)(m− n)− (m2 + n2)δts}
s− n

s
∥D∗

T0
h∥22 −

2(s− n)mn2δts
s2

s2r2

n

+ {−(m+ n)(m− n)− (m2 + n2)δts}
s−m

s
∥D∗

T0
h∥22 −

2(s−m)m2nδts
s2

s2r2

m

=

(
(m+ n)(m− n)2

s
− (m2 + n2)(2s−m− n)δts

s

)
∥D∗

T0
h∥22

− 2mn(2s−m− n)δtsr
2

={(m− n)2t+ (m2 + n2)(t− 2)δts}∥D∗
T0
h∥22 + 2mns(t− 2)δtsr

2. (4.14)

For convenience, denote

F =
ρ(m,n)(t− 1)

mnCm
s Cn

s−m

∑
Ti

∩
Sj=ϕ

(
mn

t− 1
∥ΦD(D∗

Ti
h+D∗

Sj
h)∥22 + ∥ΦD(nD∗

Ti
h−mD∗

Sj
h)∥22

+
mn

t− 1
∥D⊥(D∗

Ti
h+D∗

Sj
h)∥22 + ∥D⊥(nD∗

Ti
h−mD∗

Sj
h)∥22

)
,

G = t∆̃0 + 2mn(t− 2)t2
⟨
ΦDD∗

T0
h,Φh

⟩
,

H = ρ(m,n)
∑
k

νk

(
∥ΦD(D∗

T0
h+ (t− 1)wk)∥22 − ∥(t− 1)ΦD(D∗

T0
h− wk)∥22

+ ∥D⊥(D∗
T0
h+ (t− 1)wk)∥22 − ∥(t− 1)D⊥(D∗

T0
h− wk)∥22

)
,

I = −(3t− 4)∆̃0 + 2{(t− 1)s2 −mn}t3
⟨
ΦDD∗

T0
h,Φh

⟩
,

where ∆̃0 is determined by (4.13).

We firstly take into the situation of t ∈ (0, 1).

Since D∗
Ti
h+D∗

Sj
h are ts-sparse for each i, j, we make use of (2.1), then it gives

F ≤ ρ(m,n)(t− 1)

mnCm
s Cn

s−m

∑
Ti

∩
Sj=ϕ

(
mn

t− 1
(1− δts)∥D∗

Ti
h+D∗

Sj
h∥22 + (1 + δts)∥nD∗

Ti
h−mD∗

Sj
h∥22
)

10



=
ρ(m,n)(t− 1)

mnCm
s Cn

s−m

{
mn

t− 1
(1− δts)

(
Cn
s−m

∑
i∈U

∥D∗
Ti
h∥22 + Cm

s−n

∑
j∈V

∥D∗
Sj
h∥22
)

+ (1 + δts)

(
n2Cn

s−m

∑
i∈U

∥D∗
Ti
h∥22 +m2Cm

s−n

∑
j∈V

∥D∗
Sj
h∥22
)}

.

Applying Lemma 2.2 to the above inequality, we get that

F ≤ ρ(m,n)(t− 1)

mnCm
s Cn

s−m

{
mn

t− 1
(1− δts)

(
Cn
s−mCm−1

s−1 ∥D∗
T0
h∥22 + Cm

s−nC
n−1
s−1 ∥D

∗
T0
h∥22
)

+ (1 + δts)

(
n2Cn

s−mCm−1
s−1 ∥D∗

T0
h∥22 +m2Cm

s−nC
n−1
s−1 ∥D

∗
T0
h∥22
)}

= ρ(m,n){t+ (t− 2)δts}t∥D∗
T0
h∥22. (4.15)

A combination of (4.9) and (4.14), we obtain

G ≥ {t(m− n)2 + (m2 + n2)(t− 2)δts}t∥D∗
T0
h∥22 + 2mnst(t− 2)δtsr

2

+ 4εmn(t− 2)t
√

(1 + δts)t∥D∗
T0
h∥2. (4.16)

Combine the above two inequalities (4.15) and (4.16), which leads to

−2mnst(t− 2)δtsr
2 ≥ 2mn(t− 2)t[−t+ (3− t)δts]∥D∗

T0
h∥22 + 4εmn(t− 2)t

√
(1 + δts)t∥D∗

T0
h∥2.

Plug (4.2) into the above inequality, we get

2mnt(t− 2)

(
(4− t)

[
t

4− t
− δts

]
∥D∗

T0
h∥22

−
(4δts∥D∗

Sc
0
f∥1

√
s

+ 2ε
√

(1 + δts)t

)
∥D∗

T0
h∥2 −

4δts∥D∗
Sc
0
f∥21

s

)
≥ 0, (4.17)

which is a second-order inequality for ∥D∗
T0
h∥2 with the coefficient of square term is less than zero

under the condition δts < t/(4− t).

We now consider the situation of t ∈ [1, 4/3).

Combining with ρ(m,n) < 0, the definition of the D-RIP of ts order and (2.1), we imply

H ≤ ρ(m,n)
∑
k

νk

(
(1− δts)∥D∗

T0
h+ (t− 1)wk∥22 − (1 + δts)∥(t− 1)(D∗

T0
h− wk)∥22

)
.

Since the support of D∗
T0
h does not intersect with that of wk, one gains

H ≤ ρ(m,n)
∑
k

νk

(
(1− δts)∥D∗

T0
h∥22 + (1− δts)(t− 1)2∥wk∥22

− (t− 1)2(1 + δts)∥D∗
T0
h∥22 − (t− 1)2(1 + δts)∥wk∥22

)
= ρ(m,n)

∑
k

νk

(
[1− (t− 1)2 − (1 + (t− 1)2)δts]∥D∗

T0
h∥22

− 2(t− 1)2δts∥wk∥22
)
.
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Substituting (4.6) into the above inequality, we get that

H ≤ ρ(m,n)

{
[1− (t− 1)2 − (1 + (t− 1)2)δts]∥D∗

T0
h∥22 − 2(t− 1)sδtsr

2

}
. (4.18)

Under the condition of Theorem 3.1, we can check that for t ∈ [1, 4/3),

(t− 1)s2 <
(2− t)2s2 − 1

4
+ (t− 1)s2 =

t2s2 − 1

4
≤ mn. (4.19)

By (4.8), (4.14) and (4.19), we derive

I ≥ −(3t− 4)

(
[t(m− n)2 + (m2 + n2)(t− 2)δts]∥D∗

T0
h∥22 + 2mns(t− 2)δtsr

2

)
+ 4εt3

√
1 + δts((t− 1)s2 −mn)∥D∗

T0
h∥2. (4.20)

Combining with (4.18) and (4.20), one gets

2t2s
[
−(t− 1)s2 +mn

]
δtsr

2

≥
{
−2s2t3(t− 1) + 2mnt2 + 2t2(t− 3)[−(t− 1)s2 +mn]δts

}
∥D∗

T0
h∥22

+ 4εt3
√

1 + δts[(t− 1)s2 −mn]∥D∗
T0
h∥2.

By applying (4.2) to the above inequality, we have

2[(t− 1)s2 −mn]t2
{
(4− t)

(
t

4− t
− δts

)
∥D∗

T0
h∥22

−
(
4δts√
s
∥D∗

Sc
0
f∥1 + 2εt

√
1 + δts

)
∥D∗

T0
h∥2 −

4δts
s

∥D∗
Sc
0
f∥21
}

≥ 0, (4.21)

which is a second-order inequality for ∥D∗
T0
h∥2. Combining with (4.17) and (4.21), we get

∥D∗
T0
h∥2 ≤

(
4δts∥D∗

Sc
0
f∥1

√
s

+ 2ε
√

1 + δtst̃

)
1

2(t+ (t− 4)δts)

+

{(4δts∥D∗
Sc
0
f∥1

√
s

+ 2ε
√

1 + δtst̃

)2

+
16(t+ (t− 4)δts)δts∥D∗

Sc
0
f∥21

s

} 1
2

× 1

2(t+ (t− 4)δts)
,

where t̃ = max{t,
√
t} denotes the maximum of {t,

√
t}. By applying the fact that (x2+y2)1/2 ≤ x+y

for x, y ≥ 0 to the above inequality, we get

∥D∗
T0
h∥2 ≤

2ε
√
1 + δtst̃

t+ (t− 4)δts
+

2
(
2δts +

√
(t+ (t− 4)δts)δts

)
∥D∗

Sc
0
f∥1

√
s(t+ (t− 4)δts)

. (4.22)

By the common inequality
N∑
j=1

|vj |2 ≤ max
1≤j≤N

|vj |
N∑
j=1

|vj |,
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we get

∥D∗
T c
0
h∥2 ≤

√
∥D∗

T c
0
h∥∞∥D∗

T c
0
h∥1.

By applying ∥D∗
T c
0
h∥∞ ≤ ∥D∗

T0
h∥1/s and (4.1) to the above inequality, we get

∥D∗
T c
0
h∥2 ≤

√
∥D∗

T0
h∥21

s
+

2∥D∗
T0
h∥1∥D∗

Sc
0
f∥1

s

≤

√
∥D∗

T0
h∥22 +

2∥D∗
T0
h∥2∥D∗

Sc
0
f∥1

√
s

, (4.23)

where the last inequality, we have utilized ∥D∗
T0
h∥1 ≤

√
s∥D∗

T0
h∥2.

Finally, a combination of (4.22) and (4.23), we obtain

∥h∥22 = ∥D∗h∥22 = ∥D∗
T0
h∥22 + ∥D∗

T c
0
h∥22

≤ 2∥D∗
T0
h∥22 +

2∥D∗
T0
h∥2∥D∗

Sc
0
f∥1

√
s

≤

{
√
2∥D∗

T0
h∥2 +

∥D∗
Sc
0
f∥1

√
2s

}2

≤

{
2
√
2ε
√
1 + δtst̃

t+ (t− 4)δts
+

(
4
√
2δts + 2

√
2
√

(t+ (t− 4)δts)δts
(t+ (t− 4)δts)

+
1√
2

)
∥D∗

Sc
0
f∥1

√
s

}2

.

If ts is not an integer, denote t̂s = [ts], then t̂s is an integer obeying t̂ > t. For t̂ ∈ (0, 4/3),
we have δt̂s = δts < t/(4 − t) < t̂/(4 − t̂). Similar to the above proof, one can prove the result by
dealing with δt̂s.

For the situation of Dantzig selector bounded noise:

According to the feasibility of f̃ADS :

∥D∗Φ∗Φh∥∞ ≤ ∥D∗Φ∗(b− Φf̃ADS)∥∞ + ∥D∗Φ∗(Φf − b)∥∞
≤ 2ζ (4.24)

It consequently follows that

|
⟨
Φh,ΦDD∗

T0
h
⟩
|2 ≤ |

⟨
D∗Φ∗Φh,D∗

T0
h
⟩
|2

≤ ∥D∗Φ∗Φh∥2∞∥D∗
T0
h∥21

≤ 4sζ2∥D∗
T0
h∥22. (4.25)

The rest of proof is similar to the l2 bounded noise situation. The proof of Theorem 3.1 is complete.

5 Conclusions

This paper considers a sufficient condition concerning the restricted isometry property adapted
to a tight frame D for the reconstruction of signals. We show that the D-RIP constant δts from
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the measurement matrix Φ obeys δts < t/(4 − t) for t ∈ (0, 4/3), signals that are nearly s-sparse
with respect to D can be stably estimated by l1-analysis methods. When t = 1, our main results
coincide with Theorems 3.1, 4.1 in [15] and the error estimates are smaller than those given in their
work. Moreover, we derive a much weaker sufficient condition than δs < 0.307 provided by [14]. In
the case of D = I, our main results return to these results in [17]. Meanwhile, the bound is sharp
in the case, for more details, see [5].
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