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0. Abstract

The Jensen-Shannon divergence (JSD) quantifies the “information distance” 
between a pair of probability distributions. (A more generalized version, 
which is beyond the scope of this paper, is given in [1]. It extends this 
divergence to arbitrarily many such distributions. Related divergences are 
presented in [2], which is an excellent summary of existing work.)

A couple of novel applications for this divergence are presented herein, both 
of which involving sets of whole numbers constrained by some nonzero 
maximum value. (We’re primarily concerned with discrete applications of the
JSD, although it’s defined for analog variables.) The first of these, which we 
can call the “Jensen-Shannon divergence transform” (JSDT), involves a 
sliding “sweep window” whose JSD with respect to some fixed “needle” is 
evaluated at each step as said window moves from left to right across a 
superset called a “haystack”.

The second such application, which we can call the “Jensen-Shannon 
exodivergence transform” (JSET), measures the JSD between a sweep 
window and an “exosweep”, that is, the haystack minus said window, at all 
possible locations of the latter. The JSET turns out to be exceptionally good 
at detecting anomalous contiguous subsets of a larger set of whole numbers. 



We then investigate and attempt to improve upon the shortcomings of the 
JSD and the related Kullback-Leibler divergence (KLD).

1. Background

The JSET would be useful, for example, in detecting bursts of ultrawideband 
data in a background of Gaussian noise. (Taken to the extreme, 
ultrawideband becomes what I call “entropy modulation”, which is a signal 
encoding technique which utilizes continuous changes in information density 
to convey bit streams, at a cost of many samples per single bit in exchange 
for arbitrarily high redundancy against interference.)

Ideally, it would be useful to the Search for Extraterrestrial Intelligence 
(SETI), as there are fundamental information theory reasons to assert that, as 
a putative intelligent civilization evolved evermore complicated technology, 
it would dedicate a progressively larger proportion of its total communication
power to higher entropy encoding schemes. Such is quite clearly the case on 
Earth, if one looks at the evolution of digital radio technology, for example. 
Such schemes are not easily detected via conventional periodicity analysis 
such as Fourier transforms, wavelets, or phase folding. Of course, those 
methods are still necessary to filter out interference of mundane origin, but 
are of unknown utility for the purpose of combing through the resulting 
residue in search of alien signals.

Fortunately, there is precedent for the use of information theory in related 
fields, for example the work of Kimberly Cartier in exoplanets [3] or Jason 
Wright in “artifact” SETI [4]. However, there is much room for optimization. 
This paper is published in the hopes that it will prove useful to someone with 
the patience to actually test the techniques, which should prove elementary to
any signal processing engineer, whether or not in the SETI field. Moreover, 
all the work has already been done for you in the open-source Agnentro 
entropy toolkit, which is available at the web address at the top of this paper.

Finally, I must be clear that my reason for publishing on Vixra is directness of
public access. I am doing this as public service, period. I don’t receive any 
compensation for my work, and have no interest in seeing it paywalled by a 



professional journal, regardless of whatever reputational upgrade that might 
afford. I can be contacted at the aforementioned web address.

2. The Jensen-Shannon Divergence (JSD)

An intuitive, physical way to think of the JSD is to assume that a pair of 
empirically derived probability distributions actually originate from the same 
unobservable “generator” distribution, itself a probability distribution, onto 
which noise has been superimposed, resulting in said pair of (apparently) 
different such distributions. The closer the JSD to zero, the more likely that 
this hypothesis is true in a particular case. This concept is easily generalized 
to arbitrarily many such probability distributions. But let’s start with a review
the JSD in its simplest form.

Suppose that we have a pair of probability distributions, each consisting of a 
set of probabilities of occurrence of various masks (symbols), each of which 
assuming a value on the (inclusive) interval [0, (Z-1)], (Z>1). We then refer 
to Z as the “mask span”.

We denote these distributions as N and S, each of Z components of which 
having a subscript, M, denoting its corresponding mask:

N≡ {N 0, N1 ...N Z−1 }
S≡ {S0, S1 ...SZ−1 }

(The literal letters, N and S, will make sense later. For now, consider them as 
“any old” probability distributions, the sums of which over all allowed values
of M thus necessarily being unity.)

The JSD between N and S is then given, in units of bits, by

JSD (N ,S ,Z )≡
1

2 ln 2
∑
M=0

Z−1

{N M ln
2N M

N M+SM

+SM ln
2SM

N M+SM
}

as adapted fom units of nats as presented in [2]. But we can isolate all the 
fractions of (ln 2), which then sum to (2 ln 2), yielding



≡1+
1

2 ln 2
∑
M=0

Z−1

{N M ln
NM

N M+SM

+SM ln
SM

N M+SM
}

JSD (N ,S ,Z )≡1−
1

2 ln 2
∑
M=0

Z−1

{(N M+SM) ln(N M+SM)−NM ln N M−SM ln SM }

where, to emphasize, the units are bits. Typically, I prefer to use nats, but the 
use of bits has the delightful property of normalizing both sides to real values
on the unit interval, [0, 1]. Zero implies that N is identical to S; one implies 
that they’re orthogonal (have a dot product of zero); all intermediate values 
provide an estimate of how similar they are to their mean, which is the JSD’s 
model of the generator distribution, with lesser values implying greater 
similarity.

Note that while M may assume any value on the aforementioned domain, it’s 
possible that some such values have zero probability, which creates 
singularities that require special handling. Specifically, (0 ln 0) must be taken
as zero wherever it occurs. This is not arbitrary because, formally, the JSD 
should be expressed as the limit of the above sum as its constituent 
probabilities morph smoothly from equality to their actual values, but we 
disregard this and impose the foregoing rule for the sake of brevity.

The above form of the JSD is computationally friendly because the sum 
operands are all nonnegative, and a value on the unit interval is being 
subtracted from one, thereby yielding a result on the same.

Before we continue, it’s helpful to develop some further intuition for what the
JSD actually quantifies. Informally, it’s the additional number of bits per 
mask which would be required to arithmetically encode the following with 
asymptotic efficiency: (1) a set of Q masks (Q>0) on [0, (Z-1)] adhering 
exactly to the probabilities given by N, followed by (2) an identically 
constrained set adhering to S; in both cases, using the average of NM and SM 
as the probability input required to arithmetically encode mask M whenever 
it occurs.



Note that achieving such asymptotically efficient encoding is actually 
impossible – and perhaps by many bits – because it does not account for the 
encoding cost of the probability values themselves. This is the entire point of 
agnentropy and its related transforms, as I discussed in “Introduction to 
Agnentropy”.

Note also that both notional sets contain Q masks. In other words, the JSD 
expresses the normalized (Q-agnostic) “information distance” (which is, 
formally, a divergence and not a metric) between the sets based on the 
assumption that they are of equal size. In the general case in which they may 
be of different sizes, the JSD measures the divergence between their implied 
probability distributions, wherein the “probability” of mask M occurring in a 
mask list is simply its frequency of occurrence, FM, divided by the total 
number of masks, Q, contained therein. So then we define

NM≡
FNM

QN

SM≡
FSM

Q S

such that NM and SM are the probabilities of discovering mask M in the sets 
with distributions N and S, and “mask counts” (total number of masks) QN 
and QS, respectively. The JSD may then be expressed as

JSD (N ,S ,Z )≡1−
1

2 ln 2
∑
M=0

Z−1

{(
F NM

QN

+
FSM

Q S

) ln(
F NM

QN

+
FSM

Q S

)−
FNM

QN

ln
FNM

QN

−
FSM

QS

ln
FSM

QS
}

JSD (N ,S ,Z )≡1−
1

2 ln 2
∑
M=0

Z−1

{(
F NM

QN

+
FSM

Q S

) ln(FNM QS+FSM QN)−
FNM

QN

ln FNM QS−
FSM

QS

ln FSM QN}

...but we can pull out (ln QNQS) because all the fractional pieces of (ln QN) 
and (ln QS) add up to the former:

JSD (N , S , Z )≡1−
1

2 ln 2 {∑M=0

Z−1

{(
FNM

QN

+
FSM

QS

) ln(FNM QS+FSM QN)−
FNM

QN

ln FNM−
FSM

QS

ln FSM }− lnQN QS}



As always, (0 ln 0) must be taken as zero. This is sufficient to guarantee that 
the JSD ends up on [0, 1]. This form is useful in practice because all of the 
log operands are whole, which means that they are to some extent amenable 
to acceleration via caching. Furthermore the divisions are actually just 
multiplications by reciprocals which remain constant throughout the entire 
summation process. Agnentro takes advantage of both, although for the sake 
of consistency with other normalized entropy quantifiers, it outputs (1-JSD) 
instead of literal JSD.

3. The Jensen-Shannon Divergence Transform (JSDT)

We now derive a sliding window transform – a “sweep transform” – which 
computes the JSD between a contiguous subset of a “haystack” of masks, 
called a “sweep window”; and a constant “needle” of masks in a separate set, 
at every step as the sweep window marches across the haystack. In practice, 
this means that we’re searching for approximate matches to the needle within
the haystack.

The aforementioned sets are constrained as follows: (1) the haystack contains
at least as many masks as the sweep window; (2) the needle and the haystack 
consist of masks on [0, (Z-1)]; (3) the haystack consists of QH masks (QH>0); 
(4) the needle consists of QN masks (QN>0); and (5) the sweep window 
consists of QS masks (0<QS<=QH), where QS is called the “sweep”. Note that 
there is no other relationship assumed between QN and QS, although in 
practice they’re usually equal.

Implicitly, the output of the JSDT is a vector containing (QH-QS+1) 
components sorted ascending by the zero-based base index of the sweep 
window. So for example the first component of the JSDT output is the JSD 
between the sweep window based at index zero (the leftmost index) of the 
haystack, and the needle; the second component is the JSD between the 
sweep window based at index one, and the needle; etc. Formally

JSDT (H , J , N , Z)≡JSDT J≡JSD(N , S (J ), Z) , 0≤J≤(QH−Q S)



where S(J) is the probability distribution (with sum one) of masks derived 
from the frequencies with which they occur at indexes J through (J+QS-1) of 
the haystack, H; and H itself consists of masks HK, where K is on [0, (QH-1)]. 
We can then we can define S(J)M as the “probability” of finding mask M 
within sweep window S(J):

S (J )≡{S (J )0 , S (J )1...S (J )Z−1 }

S(J )M≡
1

Q S
∑
K=J

J +QS−1

(H K=M )

where the value of the expression

(HK=M )

is one if true, else zero. This is sufficient information to allow us to compute 
the JSDT. However, when (QH>QS), the computational complexity of 
repeatedly computing the JSD between the sweep window and the needle is 
burdensome. Fortunately, in that case, we can shortcut the process by 
considering the net probability flux due to the exit of mask M0 from the left 
side of the sweep window, counterbalanced by the entry of mask M1 into its 
right side, which occurs in the course of a single step (incrementation of J). 
To be clear

M 0=H J

M1=H J +QS

0≤J≤(QH−QS−1)

(Note that M1 is the first mask after the sweep window, whereas M0 is the 
first mask inside it.) Initially, we need only evaluate

JSDT 0≡JSD(N , S (0), Z)

Then, starting from (J=0): if (M0=M1), then JSDTJ+1 is simply equal to JSDTJ.
Otherwise, we need to evaluate

Δ JSDT J≡JSD(N ,S(J+1) , Z )−JSD (N ,S(J ) , Z )



then add this difference to JSDTJ in order to obtain JSDTJ+1. From the 
definition of the JSD, we find that

Δ JSDT J (2 ln2)≡

−
FSM 0

QS

ln FSM 0 QN

−
FSM 1

QS

ln FSM 1QN

+(
FSM 0

Q S

−
1

Q S

) ln (FSM 0 QN−QN)

+(
FSM 1

QS

+
1

Q S

) ln (FSM 1QN+QN)

+(
F NM 0

QN

+
FSM 0

QS

) ln (FNM 0 QS+FSM 0 QN)

+(
FNM 1

QN

+
FSM 1

QS

) ln (FNM 1 QS+FSM 1QN)

−(
FNM 0

QN

+
FSM 0

Q S

−
1
QS

) ln(F NM 0Q S+FSM 0QN−QN)

−(
FNM 1

QN

+
FSM 1

QS

+
1
QS

) ln(F NM 1Q S+ FSM 1 QN+QN)

Note that the above expressions are to be computed before decrementing the 
frequency FSM0 (of M0) or incrementing the frequency FSM1 (of M1) within the 
sweep window. As always, (0 ln 0) must be treated as zero, although this can 
only occur with some of the log terms; therefore checking for zero operands 
is not necessary in every case.

Finally, multiplying both sides by QNQS yields

ΔJSDT J (2QN Q S ln 2)≡
−FSM 0 QN ln FSM 0 QN

−FSM 1 QN ln FSM 1QN

+(FSM 0 QN−QN) ln(FSM 0QN−QN)

+(FSM 1QN+QN) ln(FSM 1 QN +QN)

+(F NM 0 QS+FSM 0QN) ln(FNM 0 QS+FSM 0QN)

+(FNM 1 QS+FSM 1QN) ln(FNM 1 QS+FSM 1QN)

−(FNM 0QS+FSM 0 QN−QN) ln(FNM 0 QS+FSM 0 QN−QN)

−(FNM 1QS+FSM 1QN+QN) ln(FNM 1 QS+FSM 1QN+QN)



which provides an expression for the delta in terms of more computationally 
friendly whole numbers, and also grows in expression complexity in order to 
show reusable terms.

Note that the constant coefficient on the lefthand side does not change the 
ordering of JSDT items. Therefore division of the righthand side by this 
constant can be deferred until just prior to result issuance. This can save time 
in the event that only the greatest or least however-many JSDT items are to 
be returned, as is usually the case with Agnentro Find, for example.

4. The Jensen-Shannon Exodivergence Transform (JSET)

Suppose that we now remove the needle entirely, and focus instead on the 
JSD between the sweep window and (the haystack without said sweep 
window). We call the latter the “exosweep”, in the sense of “the stuff outside 
of the sweep window”. Provided that (QS<QH) – because otherwise the JSET 
is undefined – we now have a means of quantifying the difference between 
the probability distributions of the sweep window and its exosweep.

In this case, as with the JSDT, we have exiting and entering masks, M0 and 
M1, respectively. But this time when M0 exits the sweep window, it enters the
exosweep; when M1 enters the sweep window, it exits the exosweep.

Initially, we must compute the JSD between the leftmost sweep window and 
its exosweep. We can use the very same expression for the JSD between a 
needle and a sweep window, as given above, except that in this case the 
values FNM are taken from the exosweep and (QN=(QH-QS)). (We can simply 
accumulate the mask frequencies of the haystack and the sweep window, then
subtract the latter distribution from the former to find FN. This is exactly what
Agnentro Scan does, for example.)

Having done that, we must once again compute successive deltas:

Δ JSETJ≡JSD(N , S (J +1) , Z )−JSD(N ,S (J ), Z)



but this time for (0<=J<QN). Building on the previous analysis, the following 
expression arises straightforwardly from symmetry:

ΔJSET J (2 ln 2)≡

−
FNM 0

QN

ln
F NM 0

QN

−
F NM 1

QN

ln
F NM 1

QN

−
FSM 0

QS

ln
FSM 0

QS

−
FSM 1

QS

ln
FSM 1

Q S

+(
FNM 0

QN

+
1

QN

) ln(
FNM 0

QN

+
1

QN

)

+(
F NM 1

QN

−
1

QN

) ln(
FNM 1

QN

−
1

QN

)

+(
FSM 0

Q S

−
1
QS

) ln(
FSM 0

QS

−
1

Q S

)

+(
FSM 1

QS

+
1
QS

) ln(
FSM 1

QS

+
1
QS

)

+(
FNM 0

QN

+
FSM 0

QS

) ln(
FNM 0

QN

+
FSM 0

QS

)

+(
F NM 1

QN

+
FSM 1

QS

) ln(
FNM 1

QN

+
FSM 1

Q S

)

−(
FNM 0

QN

+
FSM 0

QS

+
1

QN

−
1
QS

) ln(
FNM 0

QN

+
FSM 0

QS

+
1

QN

−
1
QS

)

−(
F NM 1

QN

+
FSM 1

QS

−
1

QN

+
1
QS

) ln(
FNM 1

QN

+
FSM 1

QS

−
1

QN

+
1

Q S

)



Δ JSET J (2QN QS ln2)≡

−FNM 0 QS ln FNM 0 QS

−FNM 1 QS ln FNM 1 QS

−FSM 0QN ln FSM 0QN

−FSM 1QN ln FSM 1 QN

+(FNM 0 QS+QS) ln(FNM 0Q S+QS)

+(F NM 1QS−QS) ln(FNM 1QS−QS)

+(FSM 0QN−QN) ln(FSM 0 QN−QN)

+(FSM 1 QN +QN) ln(FSM 1QN+QN)

+(FNM 0QS+FSM 0 QN) ln(FNM 0Q S+FSM 0 QN )

+(F NM 1Q S+FSM 1 QN) ln(FNM 1QS+FSM 1QN)

−(FNM 0QS+FSM 0 QN+QS−QN ) ln(F NM 0QS+FSM 0QN+QS−QN)

−(FNM 1 QS+FSM 1QN−Q S+QN ) ln(F NM 1QS+F SM 1 QN−QS+QN)

where, as always, all frequency values are to be measured prior to their 
incrementation or decrementation.

As with the JSDT, the output of the JSET is a vector containing (QH-QS+1) 
components. (If we allowed for the possibility that (QH=QS), we could 
perhaps consider the (null) exosweep as a uniform distribution, reached via 
some limit under analytic continuation of the JSET, from which to compute 
the JSD to the sweep window. But this is an exercise in transfinite 
mathematics beyond the scope of this paper. Moreover, the result would have
no practical significance.)

The JSET is of particular use in the discovery of anomalous bursts of data 
within larger sets, for example, prolate spheroidal waves [5] or solitons [6] 
buried in noise, both of which having obvious application to ultrawideband 
communication. Technologically superior aliens would, almost by definition, 
be expected to use even higher entropy signalling which would therefore be 
even less amenable to conventional oscillation analysis.

5. JSET vs. Exoelasticity vs. Exoentropy

In my paper entitled “Introduction to Entropy Transforms”, I introduced the 
concepts of exoelasticity and exoentropy. They’re similar to the JSET in that 
they both involve the divergence between a sweep window and its exosweep.



Agnentro includes SETI Demo, which is a signal injection test program 
designed to shed some light on the question of which entropy tools are most 
effective at detecting a signal. The approach is crude, involving the injection 
of a minimum-amplitude square wave into real Gaussian noise obtained from
a radio telescope. At best, we can hope to derive qualitative information 
about the relative utility of various methods.

One surprising result is that searching for said signal using exoelasticity 
(mode bit one) is fully half as sensitive as cheating by knowing the exact 
signal topology in advance (the “Fourier” technique, mode bit 7). In 
particular, the former seems to need roughly 1300 samples to detect the faint 
signal, whereas the latter needs about half as many. But in general, it’s 
overwhelmingly likely that “the” signal will be either too short or too long, in
which case both methods would work equally well (or not). And for the 
aforementioned evolutionary reasons, it would be wise for SETI to employ at
least one method based on information theory.

JSET (mode bit 9) performs comparably to exoelasticity – apparently a bit 
worse at the 50% detection threshold, and slightly better at the 99.9% 
detection threshold. It currently takes about 10 times as long, however; as 
such, it’s merely intended as a reference demo as of this writing. My statistics
are unfortunately weak with regards to this comparison, owing to insufficient 
compute time, but suffice to say that the methods are of comparable utility in 
this specific case. The results might be quite different with different types of 
injected signals, however. Fundamentally, exoelasticity is concerned with 
how well the exosweep predicts the sweep, whereas the JSET is concerned 
with the credibility of the notion that both regions originated from the same 
underlying phenomenon. In this regard, the former assumes that the statistical
significance of the exosweep is dominant, whereas the latter assumes it to be 
of equivalent value, to that of the sweep window. In the signal injection 
simulation, the exosweep is many times larger, which therefore perhaps 
explains the apparent advantage enjoyed by exoelasticity.

For its part, exoentropy (mode bit 2) performs moderately worse, but is 
roughly twice as fast as exoelasticity. Agnentropy (mode bit zero) performs 
worse still, requiring essentially quadruple the number of samples as the 



cheat mode, but executes on the order of 100 times as fast as the JSET, so for 
the purposes of realtime signal analysis with the expectation of a sufficiently 
long pulse, it could make practical sense.

There is, however, a method which outperforms all of the foregoing on SETI 
Demo, which we’ll introduce later.

Practically speaking, however, the only way to know is to try. Agnentro is 
available on Github.

6. Caveats of the Kullback-Leibler Divergence (KLD)

The KLD [7] appears to be more popular than the JSD for some reason. As 
such, it deserves some analysis. Given a prior (presumed) probability 
distribution Q, with individual mask probabilities QM, and a posterior 
(empirical) probability distribution P, with individual mask probabilities PM, 
then KLD(P||Q) (which counterinuitively means “the KLD from Q to P”) is 
given, in units of bits, by

KLD(P∥Q)≡
1

ln 2
∑
M =0

Z−1

PM ln
PM

QM

provided that (QM=0) implies (PM=0) for all M, and in which case the term in 
question is to be taken as zero, just as with (0 ln 0).

But therein lies the first problem: what if QM is zero, but PM isn’t? Sorry, it’s 
just undefined! This isn’t practical because in reality stuff happens in set P 
that never occurred in set Q. The concepts of agnentropy (and agnostic 
frequency in particular) are a practical if imperfect means to asymptotically 
escape this problem. But then, so is every other entropy tool mentioned in 
this paper because, by design, they can’t blow up like this.

The second issue with the KLD is that it’s a poor basis of comparison 
between a pair of distributions, the reason being that it considers the prior 
distribution as “the” source of truth. In the real world, both distributions are 



usually informative to some extent. Indeed, the JSD has the opposite 
weakness: it treats both as equally informative.

A better approach would seem to be to interpolate between these extremes…

7. The Leidich Divergence (LD)

Given the JSD in bits, stated in terms of probability:

JSD (N ,S ,Z )≡1+
1

2 ln 2
∑
M=0

Z−1

{N M ln
NM

N M+SM

+SM ln
SM

N M +SM
}

Now suppose that we weight each distribution by the number of samples 
which were used to construct it. In other words we perform the following 
substitution:

NM→
2N M QN

QN+QS

SM→
2SM QS

QN+QS

so that the total weight of the 2 terms inside the sum is still 2. This results in 
the LD:

LD (N ,S , Z)≡1+
1

2 ln 2
∑
M =0

Z−1

{
2N M QN

QN+QS

ln
NM QN

N M QN+SM QS

+
2SM QS

QN+QS

ln
SM Q S

NM QN +SM QS
}

LD (N ,S , Z)≡1+
1

(QN+QS) ln2
∑
M=0

Z −1

{NM QN ln
N M QN

N M QN+SM QS

+SM QS ln
SM QS

N M QN+SM QS
}

...but NMQN is just FNM, and SMQS is just FSM, so, in whole number form, we 
have

LD(N , S , Z)≡1+
1

(QN+QS) ln2
∑
M=0

Z −1

{FNM ln
F NM

FNM+ FSM

+FSM ln
FSM

FNM+FSM
}



LD (N ,S , Z)≡1−
1

(QN +QS) ln 2
∑
M=0

Z−1

{(FNM+FSM ) ln(FNM+FSM)−FNM ln FNM−FSM ln FSM }

where, once again

NM≡
FNM

QN

SM≡
FSM

Q S

Voila! We now have a sample-size-weighted divergence between a pair of 
frequency lists (that is, a pair of Z-tuples consisting of mask frequencies). 
Note that when (QN>>QS), LD(N, S, Z) approaches KLD(S||N). On the other 
hand, as QN and QS approach equality, the LD approaches JSD(N, S, Z). (As 
always, (0 ln 0) must be treated as zero. However, unlike with the KLD, there
is no requirement that FSM be zero when FNM is zero, or the other way round.)

8. The Generalized Leidich Divergence (GLD)

The LD is easily extended from a pair of such lists to K of them (K>1), 
yielding the GLD:

GLD(K , F0, F1... F K−1 , Z)≡1−
1

Q ln K
∑
M=0

Z−1

{(∑
J=0

K −1

FJM ) ln ∑
J=0

K −1

F JM−∑
J =0

K −1

FJM ln F JM}

where, Q is the sum of all QJ, where the latter is just the mask count of 
frequency list J:

QJ≡∑
M=0

Z−1

F JM

Q≡∑
J=0

K −1

Q J

so that the result is normalized. This implies that, regardless of K and all the 
QJ values, a GLD of zero implies that all distributions are identical, whereas 
one implies that they’re all orthogonal. As such, the units are neither bits nor 



nats when (K>2). (For nats, multiply the GLD by (ln K); for bits, multiply by
(log2 K).)

Is the GLD actually new? Not really. It’s simply a degenerate case of the 
generalized Jensen-Shannon divergence (GJSD) as presented in [1], in which 
the weights have been tuned so as to be proportional to the mask counts of 
the distributions in question, with the result then normalized for the sake of 
meaningful comparison.

And let’s be honest: the LD still doesn’t account for the cost of encoding the 
probability values themselves; like the JSD and the Shannon entropy itself, it 
does not precisely express encoded arithmetic compression size, or any 
change in that size. (As in, the generator distribution isn’t actually a given 
because it depends upon the posterior distributions which suddenly make 
themselves known during computation. So if we don’t account for the 
amount of information which arrives in the form of those distributions, then it
follows that we can’t precisely compute divergences from the generator, 
although we can approximate them to the extent said information is 
negligible. In practice, this is not always the case!) For that, we’ll need 
something like agnentropy; perhaps at some point we’ll need to consider 
agnostic divergences as well. For small data sets or large ones deeply buried 
in noise, the distinction between theoretical divergences and actual 
differences in encoding size can make or break signal detection. Information 
comes down to encoding size, not cheap asymptotic approximations thereof. 
But for now, all I have to offer is the LD.

Now, I hope that the very fact that I’ve been pompous enough to name a 
mathematical object after myself will annoy you enough to motivate the 
search for a precursor in the literature. The act of doing so should at least 
create a constructive debate over its utility. I don’t really care about the 
inevitable ad hominem attacks because hardly anyone seems to take me 
seriously anyway. (For example, I’ve been labelled as a pseudoscientist, 
which is particularly odd because my arguments are strictly mathematical – 
not scientific – and thus straightforwardly falsifiable.) But of course, if any 
such precursor should be found, I would be happy to revise this paper.



9. The Leidich Divergence Transform (LDT)

Analogously to the JSDT, we define the LDT between a sweep window based
at index J of a haystack H, having probability distribution S(J); and a needle 
with probability distribution N as

LDT (H , J , N , Z )≡LDT J≡LD(N , S (J ) , Z ) ,0≤J≤(QH−QS)

so implictly

Δ LDT J≡LD (N ,S (J +1), Z)−LD (N , S(J ) , Z)

which works out as follows:

ΔLDT J (QN+QS) ln2≡

−FSM 0 ln FSM 0

−FSM 1 ln FSM 1

+(FNM 0+FSM 0) ln(FNM 0+F SM 0)

+(FNM 1+FSM 1) ln(FNM 1+FSM 1)

+(F SM 0−1) ln(FSM 0−1)

+(FSM 1+1) ln(FSM 1+1)
−(FNM 0+FSM 0−1) ln(FNM 0+ FSM 0−1)
−(FNM 1+FSM 1+1) ln(FNM 1+FSM 1+1)

ΔLDT J (QN+Q S) ln2≡

−ln FSM 0

+ ln(FSM 1+1)

+ ln(FNM 0+FSM 0)

−ln(FNM 1+FSM 1+1)

−(FSM 0−1) Δln(FSM 0−1)

+FSM 1 Δln FSM 1

+(F NM 0+FSM 0−1) Δln(FNM 0+FSM 0−1)

−(FNM 1+FSM 1) Δln(FNM 1+FSM 1)

where

Δln(F)≡ln(F+1)−ln F , F>0



which is faster and more precise if a single unified Taylor series is used 
instead of computing the difference literally as stated.

The LDT is most useful at searching for needles in haystacks in cases in 
which the relative number of masks in the needle and the sweep window 
matters for the sake of statistical significance.

10. The Leidich Exodivergence Transform (LET)

Analogously to the JSET, the LET produces a vector providing LD between a
sweep window and its exosweep as the former moves from left to right across
a haystack. All constraints and definitions are identical for the LET as the 
JSET. And as with the JSET, the first step in computing the LET is to 
evaluate the LD between the leftmost sweep window and its exosweep. In the
trivial case where (QH=QS), the output is always zero, and we’re done. 
Otherwise, we can compute the stepwise changes in the LET in the same 
manner as with the JSET:

Δ LET J≡LD (N , S (J+1) ,Z)− LD (N , S(J ) , Z )

This works out as follows:

Δ LET J (QN+QS) ln 2≡
−FNM 0 ln FNM 0

−F NM 1 ln FNM 1

−FSM 0 ln FSM 0

−FSM 1 ln FSM 1

+(FNM 0+1) ln(FNM 0+1)

+(F NM 1−1) ln(FNM 1−1)

+(FSM 0−1) ln(FSM0−1)
+(FSM1+1) ln(FSM1+1)



Δ LET J (QN+QS) ln 2≡
+ ln(FNM 0+1)

−ln F NM 1

−ln FSM 0

+ ln (FSM 1+1)

+FNM 0 Δln FNM 0

−(FNM 1−1) Δln(FNM 1−1)
−(FSM 0−1) Δln(FSM 0−1)

+FSM 1 Δln FSM 1

which is rapidly computable using the cached logs and logdeltas of whole 
numbers.

11. Remarks

The JSD quantifies the normalized cost, in additional bits per mask, of 
preserving the information in a pair of probability distributions, starting with 
the assumption that they are in fact merely noisy manifestations the same 
underlying generator distribution which is simply their mean. As such, the 
JSD worldview is one in which both empirical distributions are equally 
informative. This can be useful for finding approximate matches across 
asymmetric scales, for example, similar color distributions in photos of 
different sizes, or similar temperature distributions during time periods of 
mismatched duration. However, when one of the distributions is much more 
statistically significant than the other, the JSD can provide suboptimal results.

The KD “solves” this problem by computing the divergence from the 
“certain” distribution to the “noisy” one. In reality, of course, no empirically 
derived distribution is precisely accurate, and all emprical data provides 
some information about the state of the world. Consequently, the KD 
explodes when it encounters an “impossible” mask in the posterior 
distribution.

The GJSD builds on the JD by assuming that the generator distribution is a 
linear combination – not necessarily equally weighted – of arbitrarily many 
probability distributions.



The LD then attempts to bridge the gap between the JSD and the KD by 
tuning the weights of the GJSD so as to arrive at a sample-size-weighted 
relative valuation of the information contained in each distribution. In signal 
injection testing with SETI Demo, it outperformed every other detection 
method except Fourier cheat mode.

Will SETI try this? Hopefully someone somewhere someday, will.
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