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Abstract

After applying the recently proposed Bohm-Poisson equation [1] to the observ-
able Universe as a whole, and by introducing an ultraviolet (Planck) and infrared
(Hubble) scale, one can naturally obtain a value for the vacuum energy density of
the same magnitude as the extremely small observed vacuum energy density, and
explain the origins of its repulsive gravitational nature. Because Bohm’s formula-
tion of QM is by construction non-local, it is this non-locality which casts light into
the crucial ultraviolet/infrared entanglement of the Planck/Hubble scales which was
required in order to obtain the observed value of the vacuum energy density.

Exact solutions to the stationary spherically symmetric Newton-Schroedinger equation

ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) −

(
Gm2

∫ |Ψ(~r′, t)|2

|~r − ~r′|
d3r′

)
Ψ(~r, t) (1)

were proposed recently in terms of integrals involving generalized Gaussians [1]. The en-
ergy eigenvalues were also obtained in terms of these integrals which agree with the numer-
ical results in the literature. We proceeded to replace the nonlinear Newton-Schroedinger
equation for a non-linear quantum-like Bohm-Poisson equation involving Bohm’s quan-
tum potential, and where the fundamental quantity is no longer the wave-function Ψ but
the real-valued probability density ρ.

Bohm’s quantum potential VQ = − h̄2

2m
(∇2√ρ/√ρ) has a geometrical derivation in

terms of the Weyl scalar curvature produced by an ensemble density of paths associated
with one, and only one particle [2]. This geometrization process of quantum mechanics
allowed to derive the Schroedinger, Klein-Gordon [2] and Dirac equations [3]. Most re-
cently, a related geometrization of quantum mechanics was proposed [4] that describes
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the time evolution of particles as geodesic lines in a curved space, whose curvature is
induced by the quantum potential. This formulation allows therefore the incorporation
of all quantum effects into the geometry of space-time, as it is the case for gravitation
in the general relativity. Based on these results we proposed [1] the following nonlinear
quantum-like Bohm-Poisson equation for static solutions ρ = ρ(~r), after reabsorbing a
mass factor inside ρ so that ρ is now a mass-density,

∇2VQ = 4πGmρ ⇒ − h̄2

2m
∇2 (

∇2√ρ
√
ρ

) = 4πGmρ (2)

such that one could replace the nonlinear Newton-Schroedinger equation for the above
non-linear quantum-like Bohm-Poisson equation (2) where the fundamental quantity is
no longer the wave-function Ψ (complex-valued in general) but the real-valued probability
density ρ = Ψ∗Ψ.

It has been proposed by [5], [6] to give up the description of physical states in terms of
ensembles of state vectors with various probabilities, relying instead solely on the density
matrix as the description of reality. The time evolution of ρ is governed by the Lindblad
equation 1. The authors [6] also investigated a number of unexplored features of quantum
theory, including an interesting geometrical structure- which they called subsystem space-
that they believed merits further study.

An infinite-derivative-gravity generalization of eq-(2) is [1]

− h̄2

2m
(e−

σ2

4
∇2 ∇2) (

∇2√ρ
√
ρ

) = 4πGmρ (3)

the above equation is nonlinear and nonlocal.
If one wishes to introduce a temporal evolution to ρ via a Linblad-like equation, for

instance, this would lead to an overdetermined system of differential equations for ρ(~r, t).
This problem might be another manifestation of the problem of time in Quantum Gravity.
Naively replacing ∇2 in eqs-(2,3) for the D’Alambertian operator ∂µ∂

µ, µ = 0, 1, 2, 3 has
the caveat that in QFT ρ(xµ) = ρ(~r, t) no longer has the interpretation of a probability
density (it is now related to the particle number current). For the time being we shall
just focus on static solutions ρ(~r).

It is straightforward to verify that a spherically symmetric solution to eq-(2) in D = 3
is

ρ(r) =
A

r4
, A = − h̄2

2πGm2
< 0 (4)

At first glance, since ρ(r) ≤ 0 one would be inclined to dismiss such solution as being
unphysical. Nevertheless, we can bypass this problem by focusing instead on the shifted
density ρ̃(r) ≡ ρ(r)− ρ0 obeying the Bohm-Poisson equation

− h̄2

2m
∇2 (

∇2
√
ρ̃√
ρ̃

) = 4πGmρ̃ (5)

1To be more precise it is the Gorini-Kossakowski-Sudarshan-Lindblad equation
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and whose solution for the shifted density is given by

ρ̃ = A/r4 = ρ(r) − ρo ≤ 0, ⇒ ρ(r) =
A

r4
+ ρ0, A = − h̄2

2πGm2
(6)

It is not problematic that the terms inside the square roots are less than zero, since a
common factor of i =

√
−1 appears both in the numerator and denominator, and hence

it cancels out. The idea now is to focus on the domain of values where ρ(r) ≥ 0. And,
in doing so, it will allows to show that ρ0 is of the same order of magnitude as the
(extremely small) observed vacuum energy density, after introducing an ultraviolet and
infrared length scale which are close in values to the Planck Lp and Hubble scale RH ,
respectively. In particular, the ultraviolet Planck scale Lp is chosen such that

ρ(r = Lp) = − h̄2

2πGm2

1

L4
p

+ ρo = 0 ⇒ ρo =
h̄2

2πGm2

1

L4
p

(7)

The domain of physical values of r must be r ≥ LP in order to ensure a positive-definite
density ρ(r) ≥ 0. By inserting the observed vacuum energy density ρo = 3

8πL2
pR

2
H

(in units

h̄ = c = 1) into eq-(7) one arrives at

ρo =
3

8πL2
pR

2
H

=
3

8π
(
Lp
RH

)2 1

L4
p

=
1

2πGm2

1

L4
p

⇒

Gm =
2√
3
RH = 1.154 RH , G = L2

p, h̄ = c = 1 (8)

Therefore, the value of Gm is quite close to RH , which is compatible with the value of
the mass of the observable universe MU given by GMU = RH , and which in Planck mass
units is MU = (RH/Lp)Mp ∼ 1061Mp.

The infrared scale L is fixed by the normalization condition

m =
∫ L

Lp
ρ(r) 4πr2 dr =

∫ L

Lp
(
A

r4
+ ρ0) 4πr2 dr =

∫ L

Lp

(
− 1

2πGm2

1

r4
+ ρ0

)
4πr2 dr

(9)
Upon performing the integral in eq-(9), using eq-(8), and after some straightforward
algebra one arrives at the relationship

1

Lp

(
1

3
(
L

Lp
)3 +

Lp
L
− 4

3

)
=

1

2Lp
(

2√
3

)3 (
RH

Lp
)3 (10)

which furnishes the value of the infrared scale

L ' (
4√
3

)1/3 RH = 1.321 RH (11)

in terms of the Hubble scale. As expected, the value of L ' RH is of the same order of
magnitude as the Hubble scale.
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On the other hand, if one were to set a priori the value of L = RH to coincide precisely
with the Hubble scale, from the two eqs-(7,9) one would have obtained (in units h̄ = c = 1)
the following values

Gm = (
2

3
)1/3 RH , ρo =

1

2π
(
3

2
)2/3 (

Lp
RH

)2 1

L4
p

(12)

for the mass m and the vacuum energy density ρ0. The ratio of the value of ρo obtained
in eq-(12) with the observed value of ρo associated with a de Sitter expanding universe is
4
3

(3
2
)2/3 = 1.746; i.e. the values are of the same order of magnitude. This result is to be

contrasted with the 10122 discrepancy associated with the cosmological constant problem.
A third scenario is to fix a priori the values of Gm = RH , and ρo = 3

8πL2
pR

2
H

, and then

from eqs-(7,9) derive the values of the ultraviolet and infrared scales, which will also turn
out to be quite close to the Planck and Hubble scale, respectively, as expected.

Not only one is able to derive very acceptable results for the vacuum energy density
from the Bohm-Poisson equation, but one also finds the correct physical interpretation
of the vacuum energy density as a repulsive gravitational force. The reasoning goes
as follows. A simple inspection of the left hand side of the Bohm-Poisson equation (5)
for ρ̃ = ρ − ρo = Ar−4 ≤ 0, allows to multiply the numerator and denominator by
i =

√
−1. Whereas in the right hand side one can simply rewrite Gρ̃ = (−G)(−ρ̃),

leading now to a Bohm-Poisson equation corresponding to a positive definite expression
−ρ̃ = ρo−ρ = −Ar−4 ≥ 0, but with a negative gravitational constant −G < 0, associated
to repulsive gravity.

Concluding, after applying the Bohm-Poisson equation to the observable Universe as
a whole, and by introducing an ultraviolet (Planck) and infrared (Hubble) scale, one can
naturally obtain a value for the vacuum energy density of the same magnitude as the
extremely-small observed vacuum energy density, and explain the origins of its repulsive
gravitational nature. Is it numerical coincidence or design ? Because Bohm’s formulation
of QM is by construction non-local, it is this non-locality which casts light into the crucial
ultraviolet/infrared entanglement of the Planck/Hubble scales which was required in order
to obtain the observed values of the vacuum energy density.
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