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1 Introduction

A century later, after their elaboration, Painlevé-Gambier equations continue to be the
subject of intense study since their analytical properties and applications are not fully in-
vestigated. Ince in his book [1] studied many aspects of properties of these equations by
determining first integrals and corresponding analytical solutions. Recently other authors
have studied these equations by computing other first integrals in addition to those found
by Ince [1] in order to systematically express exact analytical solutions by the generalized
Sundman transformation [2]. The generalized Sundman transformation is a powerful math-
ematical tool in the linearization of nonlinear differential equations to facilitate their solving
process by the usual analytical methods of integration [2 − 4]. This method of Sundman
linearization was recently applied to detect for the first time the existence of a general class
of nonlinear differential equations of Liénard type whose solutions are trigonometric [3] but
with amplitude dependent frequency. Thus it was allowed to show for the first time that
some Painlevé-Gambier equations could admit explicit and exact general trigonometric solu-
tions [3]. Recently, this generalized Sundman transformation proposed by Akande et al. [3]
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was used to calculate explicit and exact general periodic solutions of the cubic Duffing equa-
tion and of some Painlevé-Gambier equations [4]. The present work is still interested in the
Painlevé-Gambier equations, in particular in Painlevé-Gambier XVII equation. It must be
noted, first of all, that the general solution of this equation has been given in the book of
Ince [1]. So under these conditions, it remains in analytical investigation of this equation
to propose other elegant alternative ways for explicit and exact general solutions, general-
ized equations or evidence of other properties which are not directly studied by Ince [1]. It
is also possible to consider a more general equation which contains the Painlevé-Gambier
equation as particular case. Thus, there appears appropriate to investigate the problem to
build a generalized equation which admits explicit and exact general solution in terms of
trigonometric functions [4, 5] and contains the linear harmonic oscillator equation and the
Painlevé-Gambier XVII equation, as special cases, with applications in physics. In classical
mechanics as well as in practical applications, the linear harmonic oscillator equation, as
well known, is often used in study of mechanical oscillations [6]. However, this structural
model could not take into consideration, for example, the nonlinear phenomena of energy
dissipation in heat and geometrical nonlinearities exhibited by real mechanical systems. As
such, nonlinear differential equations with explicit and exact general periodic solutions with
damping and geometrical nonlinearity properties for which the linear harmonic oscillator
equation consists of a limiting case are required in mathematical modeling of mechanical
oscillations. So it has been observed that these dissipation phenomena and geometrical
nonlinearities may be better captured by oscillators described by quadratic Liénard type
equations [7− 14]. These quadratic Liénard type equations may therefore be considered in
computing quantum properties of dynamical systems. In addition, such equations exhibit
a position dependent mass dynamics, which has been of great importance in improving
description of classical and quantum properties of dynamical systems [10 − 13, 15]. Thus,
these harmonic oscillators with a mass varying with distance have been used in many fields
of quantum physics as well as engineering applications, and are still the subject of intense
research activity [10 − 13, 15, 16]. However, the Schrödinger equation with a mass varying
with distance becomes quickly more complicated to be formulated and solved than the usual
Schrödinger equation with a constant mass. The formulation of such a Schrödinger equa-
tion is not easy because the usual Hamiltonian operator is no longer Hermitian. One way
of overcoming this difficulty is to consider the expression of the Hermitian Hamiltonian of
von Roos [17]. But this introduces another complication in the Schrödinger equation known
under the ambiguity parameter problem, because there is no rule leading to a rational para-
metric choice. As soon as this problem is solved, it remains therefore the choice of the
appropriate method of solving the Schrödinger eigenvalue equation with a position depen-
dent mass. There is a multitude of techniques for solving such equations in the literature,
which proves that there is no standard method that works in all cases of study. Therefore,
the question to be solved under these conditions can be announced as follows: Is there a
generalized quadratic Liénard type equation admitting the linear harmonic oscillator equa-
tion and the Painlevé-Gambier XVII equation as limiting cases? The identification of this
equation may be of great importance given the applications it may offer in physics, especially
in classical and quantum mechanics. The nonlinear differential equations with isochronicity
are of high interest in physics and engineering applications when dynamical systems with
amplitude independent frequency are concerned. Such a question may also enable to show
that the nonlinearity behavior of quadratic Liénard type equations affects discrete bound
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states solutions of corresponding Schrödinger wave equation so that the quantized general-
ized equation may be used in the control of quantum behavior of dynamical systems, that
is to say, as a simulation model of quantum mechanics. It is asserted that this generalized
quadratic Liénard type equation exists. Therefore to perform the purpose of this work, the
generalized equation under question (Section 2), as well as its explicit and exact general
solution in the framework of Riccati variable transformation are established (Section 3). In
this way, the exact quantum mechanics of this equation is exhibited under Nikiforov-Uvarov
method [18] after many point transformations (Section 4). Finally a discussion (Section 5)
and a conclusion for all the work are formulated.

2 Generalized equation of quadratic Liénard type

It has recently been shown by Monsia et al. [5] that some classes of mixed or quadratic
Liénard type nonlinear differential equations can be explicitly and exactly solved by appli-
cation of the Riccati variable transformation. In this work let us consider such a class of
equations defined by [5]

ẍ+

(
a

h(x)
− h′(x)

h(x)

)
ẋ2 +

4ω2
0 − λ2

4a
h(x) = 0 (1)

in which h(x) 6= 0, is an arbitrary function, a 6= 0, ω0 and λ being arbitrary parameters.
The dot over a symbol designates a derivative with respect to time and prime means differ-
entiation with respect to x. The problem to be solved under these conditions is to find the
appropriate function h(x) to be used to specify (1) as a generalized equation which contains
the linear harmonic oscillator equation and the Painlevé-Gambier XVII equation as special
cases, and having the ability to ensure applications in physics. Imposing h(x) = mx, where
m 6= 0, is an arbitrary parameter, the equation (1) leads to

ẍ−
(
m− a
m

)
ẋ2

x
+

4ω2
0 − λ2

4a
mx = 0 (2)

Making

b =
4ω2

0 − λ2

4α
(3)

where α = a
m , the equation (2) may be rewritten

ẍ− (1− α)
ẋ2

x
+ bx = 0 (4)

The equation (2) or (4) is the desired generalized quadratic Liénard type equation. It suffices
to note that for the parametric choice b = 0, that is for 4ω2

0 − λ2 = 0, and m 6= 0, equation
(4) reduces to

ẍ− (1− α)
ẋ2

x
= 0 (5)

which, for a = 1,that is α = 1
m , gives

ẍ−
(
m− 1

m

)
ẋ2

x
= 0 (6)
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known as the Painlevé-Gambier XVII equation [1]. As such one may observe the generalized
equation (4) for a = 1, as the Painlevé-Gambier XVII equation with linear external forcing

function −bx. For α = -1, and
4w2

0−λ
2

4 = 1, that is λ = 0, and w0 = 1, equation (2) or (4)
becomes the Euler-Lagrange equation corresponding to the alternative Hamiltonian for the
harmonic oscillator [19] while α = 1, gives the linear harmonic oscillator equation. Such
a quadratic Liénard type equation, according to [19] cannot be correctly quantized by the
normal-ordering and Weyl quantization methods. According to the above the explicit and
exact general solution to (4) may be computed and applied to show that it may exhibit
periodic oscillations.

3 Classical analysis

This part is devoted to calculate the explicit and exact general solution to (4). It is demon-
strated in this way that for an appropriate parametric choice, the general solution to the
Painlevé-Gambier XVII equation given by Ince [1] is recovered by means of the linearizing
transformation applied in this research work to find solutions.

3.1 Solving of Painlevé-Gambier XVII equation

To solve explicitly and exactly the Painlevé-Gambier XVII equation, let us consider the
Riccati transformation [5]

ẏ

y
= a

ẋ

h(x)
(7)

where y 6= 0. By application of h(x) = mx, the equation (7) reduces, after (5), to the
equation of the free particle motion

ÿ = 0 (8)

with the general solution
y = k1t+ k2 (9)

where k1 and k2 are arbitrary parameters, so that the general solution to (5) becomes

x(t) = (k1t+ k2)
1
α (10)

In this regard, the general solution to the Painlevé-Gambier XVII equation may, knowing
that a = 1, be written

x(t) = (k1t+ k2)m (11)

The solution (11) is the same as that given by Ince [1]. It is interesting to note that here,
imposing m = 1

2 , and a = 1, that is α = 2, equation (6) reduces to the inverted Painlevé-
Gambier XI equation

ẍ+
ẋ2

x
= 0 (12)

which admits the general solution

x(t) = (k3t+ k4)
1
2 (13)

where k3 and k4 are constants of integration. Now one may consider the explicit and exact
general periodic solution to the generalized quadratic Liénard type equation of interest.
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3.2 Solving of generalized quadratic Liénard type equation

By applying the Riccati transformation (7) with h(x) = mx, the explicit and exact general
periodic solution of (4) may be expressed as

x(t) = A
1
α sin

1
α (

√
4ω2

0 − λ2
4

t+K) (14)

where A and K are arbitrary parameters, and
4ω2

0−λ
2

4 > 0. It is interesting to note that

such a solution is periodic with amplitude independent frequency, so that for
4ω2

0−λ
2

4 > 0,
the generalized equation (4) may exhibit isochronicity property. For α = 1, the equation (4)
reduces to that of the harmonic oscillator for λ = 0, such that the explicit and exact general
periodic solution (14) becomes a trigonometric solution with fixed frequency, that is with
amplitude independent frequency. An interesting case is also when the exponent 1

α = m
a , in

the expression (14) is a positive integer greater than or equal to two, allowing to write the
solution (14) as a linear combination of terms having the form sin(qt + ϕ) or cos(qt + ϕ)
where q denotes a positive integer, and ϕ is an arbitrary parameter. Under these conditions,
the solution (14) assumes for α = 1

2 , a very interesting expression

x(t) =
A2

2
− A2

2
cos(

√
4ω2

0 − λ2t+ C) (15)

where C = 2K. The solution (15) is a trigonometric solution like that of the harmonic

oscillator but with a shift factor A2

2 . That being so the quantum mechanics of the generalized
quadratic Liénard type equation (4) may be carried out.

4 Quantum mechanical analysis

As mentioned in the above, it is interesting to show that the generalized equation (4) may
be quantized in a perspective where it may be used in physical and practical applications
to compute the discrete bound states of dynamical systems.

4.1 Schrödinger eigenvalue problem

The objective of this part is to establish the Schrödinger wave equation in question. This
will be carried out under the formalism of Schrödinger equation with position-dependent
mass. Given (4), the mass distribution function M(x) may be calculated as [9− 11]

M(x) = m0x
2(α−1) (16)

so that the potential function takes the form

V (x) =
1

2α
m0bx

2α (17)

In this way the Schrödinger eigenvalue problem to be solved may clearly be stated.

5



4.1.1 Problem description

Let us consider a particle described by (4) of mass M(x), moving in the potential V (x). The
problem is to find in this context, the Schrödinger wave function ψ(x) and energy eigenvalue

E under the conditions that ψ(x) is bounded and of square integrable on the interval [0, A
1
α ].

4.1.2 Schrödinger wave equation

According to [9−11] the Schrödinger eigenvalue problem which has been described previously
may be written in the form

ψ′′(x)− M ′(x)

M(x)
ψ′(x) + 2M(x)[E − V (x)]ψ(x) = 0 (18)

where prime designates the derivative with respect to x. Substituting the equations (16)
and (17), when β = b

α where α 6= 0, into (18) yields the desired Schrödinger equation with
position dependent mass

ψ′′(x)− (2α− 2)
ψ′(x)

x
+
[
2Ex2(α−1) − βx2(2α−1)

]
ψ(x) = 0 (19)

where m0 = 1, and b =
4ω2

0−λ
2

4α , over the interval 0 ≤ x ≤ A
1
α with ψ(0) = ψ(A

1
α ) = 0. It

is interesting to mention that, using the Liouville transformation [20]

ψ(x) = ϕ(x)xα−1 (20)

the equation (19) may be reduced to the normal form

ϕ′′(x) +

[
2Ex2(α−1) − βx2(2α−1) − α(α− 1)

1

x2

]
ϕ(x) = 0 (21)

Now to determine the eigensolutions, it is needed to write (21) in an appropriate hypergeo-
metric type equation.

4.2 Mapping of (21) into hypergeometric type equation

The objective in this subsection is to map the equation (21) into an appropriate form in
order to secure the desired eigensolutions. To this end, it is convenient to reduce (21) to an
appropriate normal form which may enable to deduce an exactly solvable hypergeometric
type equation.

4.2.1 Application of the point canonical transformation

Equation (21) may be, putting

Q(x) = 2Ex2(α−1) − βx2(2α−1) − α(α− 1)
1

x2
(22)

written as
ϕ′′(x) +Q(x)ϕ(x) = 0 (23)
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The application of the point canonical transformation [20]

x = h(z), ϕ(x) = [h′(z)]
1
2u(z) (24)

reduces (23) to

u′′(z) +

[
h′′′(z)

2h′(z)
− 3

4
[
h′′(z)

h′(z)
]2 +Q(h(z))[h′(z)]2

]
u(z) = 0 (25)

Now let us consider
h(z) = zl (26)

where l is an arbitrary parameter. The substitution of (26) into (25) yields the normal form

u′′(z)+

[
2El2z2lα−2 − βl2z4lα−2 −

α(α− 1)l2 − 1
2 (l − 1)(l − 2) + 3

4 (l − 1)2

z2

]
u(z) = 0 (27)

As l is an arbitrary parameter, it is always possible to set the product lα to an arbitrary
value. Setting lα = 1, that is l = 1

α , equation (27) therefore becomes

u′′(z) +

[
2E

α2
− β

α2
z2 − 1

4
(

1

α
− 3)(

1

α
− 1)

1

z2

]
u(z) = 0 (28)

which may be mapped into a solvable hypergeometric type equation.

4.2.2 Hypergeometric type equation

For the purpose to apply the Nikiforov-Uvarov method to compute the exact discrete bound
state solutions, equation (28) must be transformed into an appropriate form which supports
such an approach. Thus under the variable transformation

s = z2 (29)

equation (28) takes the desired form

u′′(s) +
1

2s
u′(s) +

1

s2
[− β

4α2
s2 +

E

2α2
s− 1

16
(

1

α2
− 4

α
+ 3)]u(s) = 0 (30)

which may be solved by applying the Nikiforov-Uvarov method [18] to ensure the discrete
eigenstates.

4.3 Application of the Nikiforov-Uvarov method

The Nikiforov-Uvarov method has been widely used by several authors [10,11,21,22] to solve
exactly the Schrödinger wave equation with position-dependent mass. This method is very
interesting due to its simplicity and elegance in solving process steps. The Nikiforov-Uvarov
method is usually applied to solve the general second order linear equation [18]

u′′(s) +
τ̃(s)

σ(s)
u′(s) +

σ̃(s)

σ(s)2
u(s) = 0 (31)
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where τ̃(s) is a polynomial at most of first degree while σ(s) and σ̃(s) are polynomials at
most of second degree. In this regard the wave function u(s) is expressed as

u(s) = φ(s)yn(s) (32)

where the function yn(s) satisfies the hypergeometric type linear differential equation

σ(s)y′′n(s) + τ(s)y′n(s) + λyn(s) = 0 (33)

and
φ′(s)

φ(s)
=
π(s)

σ(s)
(34)

under the condition that τ(s) should be a polynomial at most of first degree, λ is a constant,
and π(s) satisfies

π(s) =

(
σ′(s)− τ̃(s)

2

)
±

√(
σ′(s)− τ̃(s)

2

)2

− σ̃(s) + kσ(s) (35)

The polynomial π(s) is required to be at most of first degree with the conditions that

τ(s) = τ̃(s) + 2π(s) (36)

k = λ− π′(s) (37)

and

λ = λn = −nτ ′(s)− n(n− 1)

2
σ′′(s), n = 0, 1, 2, 3, ... (38)

As such the hypergeometric-type function yn(s) is considered as a polynomial of degree n
with an expression given by the Rodrigues formula

yn(s) =
An
ρ(s)

dn

dsn
[σ(s)nρ(s)] (39)

in the sense that the weight function ρ(s) satisfies

d

ds
[σ(s)ρ(s)] = τ(s)ρ(s) (40)

and An denotes the normalization constant. In the context where σ(s) = s, τ̃(s) = 1
2 ,

σ̃(s) = − β
4α2 s

2 + E
2α2 s− 1

16 ( 1
α2 − 4

α + 3), the polynomial π(s) may take the expression

π(s) =
1

4
±
√

β

4α2
s2 + (k − E

2α2
)s+

1

16
(

1

α2
− 4

α
+ 4) (41)

which becomes under the requirement that the derivative of τ(s) must be negative

π(s) = π+(s) =
1

4
−
√
β

2α
s− 1

4
(

1

α
− 2) (42)
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where

k = k+ =
E

2α2
+

√
β

4α
(

1

α
− 2) (43)

or

π(s) = π−(s) =
1

4
−
√
β

2α
s+

1

4
(

1

α
− 2) (44)

for

k = k− =
E

2α2
−
√
β

4α
(

1

α
− 2) (45)

In such a situation
τ(s) = τ̃(s) + 2π(s) (46)

reduces to

τ(s) = τ+(s) = 1− 1

2
(

1

α
− 2)−

√
β

α
s (47)

for π+(s), or

τ(s) = τ−(s) = 1 +
1

2
(

1

α
− 2)−

√
β

α
s (48)

for π−(s). Therefore two cases must be considered in computing eigensolutions.

4.3.1 Discrete bound state solutions for k+

This paragraph deals with the determination of exact discrete bound state energy spectrum
and wave functions of the dynamical system under consideration for k+.

a. Discrete bound state energy eigenvalues
The substitution of τ+(s) and σ(s) into (38) leads to

λn = n

√
β

α
(49)

On the other hand, the use of (43) by taking into consideration (37) yields

λn =
E

2α2
+

√
β

2α
(

1

2α
− 2) (50)

Therefore the comparison of (49) with (50) provides the desired exact discrete energy eigen-
values

En =

√
β

2
[4α(n+ 1)− 1] , n = 0, 1, 2, ... (51)

Since α = a
m , and β =

m2(4ω2
0−λ

2)
4a2 , the energy eigenvalues En become

En =
[
n+ 1− m

4a

]√
4ω2

0 − λ2, n = 0, 1, 2, ... (52)

Equation (52) is very interesting since it shows that the energy spectrum depends not only
on natural frequency ω0 as in the case of the quantum harmonic oscillator, but also on
nonlinearity parameter α = a

m of the classical model. In this way the discrete bound state
wave functions may be exactly calculated.
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b. Discrete bound state wave functions
According to the above, the function φ(s) defined by (34) may be computed under the

form
φ(s) = s

3
4−

1
4α e−

√
β

2α s (53)

so that the hypergeometric type function un(s) may take the expression

un(s) = Ans
1
4 (

1
α−1)e

√
β

2α s
dn

dsn
[sn+1− 1

2α e−
√

β
α s] (54)

Using the definition of the associated Laguerre polynomials [23,24]

Lrn(τ) =
1

np.
eττ−r

dn

dτn
(τn+re−τ ) (55)

equation (54) may be written as

un(s) = Bns
1
4 (3−

1
α )e−

√
β

2α sL
1− 1

2α
n (

√
β

α
s) (56)

where Bn denotes a normalization constant. Knowing s = z2, (56) becomes

un(z) = Bnz
1
2 (3−

1
α )e−

√
β

2α z
2

L
1− 1

2α
n (

√
β

α
z2) (57)

In this context the wave function ϕ(x), taking into consideration (24), may read

ϕ(x) = Cnx
αe−

√
β

2α x
2α

L
1− 1

2α
n (

√
β

α
x2α) (58)

where z = xα, so that the initial wave function ψ(x) = xα−1ϕ(x), takes definitively the
expression

ψn(x) = Cnx
2α−1e−

√
β

2α x
2α

L
1− 1

2α
n (

√
β

α
x2α) (59)

where it is required that

L
1− 1

2α
n (

√
β

α
A2) = 0 (60)

as ψn(0) = ψn(A
1
α ) = 0, α > 1

2 , and Cn is the new normalization constant determined by∫ A
1
α

0

|ψn(x)|2dx = 1 (61)

Equation (60) shows that the nonlinearity parameter α = a
m , that is the energy eigenvalues

En are related to the appropriate associated Laguerre polynomials zeros, so that α depends
on eigenstates and may be noted α = αn, n = 1, 2, .... In such a condition, n ≥ 1, the first

eigenvalue may take for α1 =
1+

[
1+16A2

√
4ω2

0−λ2
] 1

2

8 , the expression

E1 =
2
√

4ω2
0 − λ2

[
1 + 16A2

√
4ω2

0 − λ2
] 1

2

1 +
[
1 + 16A2

√
4ω2

0 − λ2
] 1

2

(62)

So with that the discrete bound state solutions for the case k = k− may be performed.
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4.3.2 Discrete bound state solutions for k−

Using the same approach as previously, the exact discrete bound state solutions in the case
k = k−, may be easily computed.

a. Discrete bound state energy eigenvalues
To compute the discrete bound state energy spectrum it suffices to calculate again λn

by introducing τ−(s) and σ(s) into (38), which gives

λn = n

√
β

α
(63)

and to compare the result with λn given by (45), that is

λn =
E

2α2
−
√
β

4α2
(64)

Therefore one may express the energy eigenvalues as

En = 2α
√
β(n+

1

4α
) (65)

that is

En = (n+
m

4a
)
√

4ω2
0 − λ2, n = 0, 1, 2, ... (66)

Here again the energy spectrum depends on m
a , which characterises the nonlinearity property

of the investigated dynamical system. After computing the eigenvalues one may determine
now the corresponding discrete wave functions.

b. Discrete bound state wave functions
Applying the same procedure as in the case k = k+, the eigenfunctions un(s) for k = k−,

if Dn is a normalization constant, may be expressed in the form

un(s) = Dns
1
4 (3−

1
α )e

√
β

2α s
dn

dsn
[sn+

1
2α−1e−

√
β

α s] (67)

which may lead, using the identity s = z2, to

un(z) = Dnz
1
2 (

1
α−1)e−

√
β

2α z
2

L
1
2α−1
n (

√
β

α
z2) (68)

so that the wave functions ϕ(x) may take the expression

ϕn(x) = Nnx
1−αe−

√
β

2α x
2α

L
1
2α−1
n (

√
β

α
x2α) (69)

where Nn designates the new normalization constant. In such a situation, the initial wave
functions ψn(x) may be in definitive expressed in the form

ψn(x) = Nne
−

√
β

2α x
2α

L
1
2α−1
n (

√
β

α
x2α) (70)

Since α > 0, L
1
2α−1
n (0) 6= 0, such that (70) cannot be eigensolutions to the boundary value

problem under consideration. However, for α −→ ∞, one may have L−1n (0) = 0, according
to [24], where n ≥ 1, so that (70) may consist of eigenfunctions to the eigenvalue problem

investigated. In this case, L
1
2α−1
n (

√
β
α x2α) must be replaced by [24] (−

√
β
α x2α)

(n−1)p.
np.

L1
n−1

(
√
β
α x2α).
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5 Discussion

Many physical processes are studied on the basis of nonlinear differential equations. Con-
versely, the construction of nonlinear differential equations may be useful in the conception
of new dynamical systems for engineering applications. As such a quadratic Liénard type
nonlinear dynamical system which contains the Painlevé-Gambier XVII equation, the har-
monic oscillator equation and its alternative form as special cases has been constructed. In
so doing, it has been possible to show that an usual change of dependent variable, that is,
a simple Riccati transformation is enough sufficient to secure the general solution to the
Painlevé-Gambier XVII equation which agrees with that found by Ince [1]. In this perspec-
tive it is shown that the performed generalized equation may be of interest for some physical
applications. Indeed this generalized equation exhibits periodic oscillations with isochronic-
ity characteristic consisting of a m

a th power of a trigonometric function. As expected, this
general behavior reduces to that of the linear harmonic oscillator by putting m

a = 1 and
λ = 0. This fact enables then to investigate the quantum mechanics of the developed gen-
eralized equation. Such an investigation is reasonable since it is well known that only few
nonlinear differential equations are quantum mechanics solvable problems. In such a way
the problem quickly becomes more complicated when quadratic damping effects are consid-
ered. So the quantum mechanics of a quadratic Liénard type differential equation is not a
simple task. However, fortunately under the formalism of Schrödinger equation with posi-
tion dependent mass, exact discrete bound state solutions in terms of well known associated
Laguerre polynomials are obtained for the quantization of the generalized second order sin-
gular equation of quadratic Liénard type investigated on the basis of the Nikiforov-Uvarov
approach for solving hypergeometric type differential equations after several point transfor-
mations. Such an approach enables to compute the discrete bound state solutions in terms of
the nonlinearity parameter 1

α . In this regard, the Nikiforov-Uvarov method appeared to be
an advanced and efficient mathematical technique in solving the Schrödinger wave equation
in terms of special orthogonal functions as noticed in several papers [10,11,22]. However the
class of singular equations defined by α < 1

2 cannot be quantized by the present theory so
that this opens up new research perspectives as to their quantization. This fact agrees well
with α = −1, which gives the well-known alternative form for the linear harmonic oscillator
equation, for which the application of normal-ordering and Weyl quantization techniques
leads to incorrect physical results [19]. So according to the above, a conclusion may be
carried out for this work.

Conclusion

This work introduces a generalized second order singular differential equation of quadratic
Liénard type which contains the Painlevé-Gambier XVII equation and the linear harmonic
oscillator with well-known solutions as special cases. The utility of the equation has been
highlighted through its possible applications in classical and quantum mechanics. In so
doing it has been possible to show that the introduced generalized equation may exhibit
exact periodic oscillations with amplitude independent frequency and discrete bound state
solutions through quantization. It is found that eigensolutions depend on amplitude of
oscillations of the dynamical system so that such a property may be used in quantum

12



applications.
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[9] J. Akande, D. K. K. Adjäı, L. H. Koudahoun, Y. J. F. Kpomahou and M. D. Monsia
2017 Prolate spheroidal wave function as exact solution of the Schrödinger equation
viXra: 1701.0166v1.
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