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Abstract—In the era of big data, the multi-modal data can be seen everywhere. Research on such data has attracted extensive
attention in the past few years. In this paper, we investigate perturbations of compressed data separation with redundant tight frames
via Φ̃-ℓq-minimization. By exploiting the properties of the redundant tight frame and the perturbation matrix, i.e., mutual coherence, null
space property and restricted isometry property, the condition on reconstruction of sparse signal with redundant tight frames is
established and the error estimation between the local optimal solution and the original signal is also provided. Numerical experiments
are carried out to show that Φ̃-ℓq-minimization are robust and stable for the reconstruction of sparse signal with redundant tight frames.
To our knowledge, our works may be the first study concerning perturbations of the measurement matrix and the redundant tight frame
for compressed data separation.

Index Terms—Compressed data separation, perturbation, null space property, restricted isometry property.
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1 INTRODUCTION

COMPRESSED sensing [1], [2], [3] is a novel signal pro-
cessing technique for efficiently reconstructing a signal

by solving underdetermined linear systems. The basic prin-
ciple is that a sparse or compressible signal can be recon-
structed from far fewer samples than that is required by the
Shannon-Nyquist sampling theorem. Compressed sensing
is being extensively applied in various fields of science and
engineering, including compressive imaging [4], medical
imaging [5], pattern recognition [6], image processing [7],
etc.

Suppose that we observe

y = Af + z,

where f ∈ Rn is an unknown signal to be reconstructed, A
is an m× n measurement matrix with m ≪ n, y ∈ Rm are
available measurements, and z ∈ Rm is a simple additive
noise with level ε (∥z∥2 ≤ ε). The problem is of course
ill-posed but suppose now that f is known to be sparse
or nearly sparse in the sense that it depends on a smaller
number of unknown parameters. However, in reality, the
common signals are not necessarily sparse, and even these
signals can not be sparsely represented in some orthogonal
basis. Naturally, the above model can not be directly applied
to the reconstruction of this kind of signals. Recently, there
are some literature showing that some signals can be sparse-
ly represented in certain redundant tight frames D ∈ Rn×d

(n ≤ d,DD∗ = Dn) [8], [9]. That is f = Dx, where x ∈ Rd

is (approximately) sparse. Following this, the above problem

can be regarded as the D-ℓ0-minimization:

min
f̄∈Rn

∥D∗f̄∥0 s.t. ∥Af̄ − y∥2 ≤ ε, (1.1)

where D∗ is the conjugate of the transpose of D and
∥D∗f∥0 represents the number of nonzero elements of
D∗f . We call such a signal D∗f s-sparse, if ∥D∗f∥0 ≤ s.
However, (1.1) is a NP problem that can not be effectively
solved in practice. Relaxation methods replace ℓ0-norm by
the following convex objective function:

min
f̄∈Rn

∥D∗f̄∥1 s.t. ∥Af̄ − y∥2 ≤ ε, (1.2)

where ∥D∗f̄∥1 =
d∑

i=1
|(D∗f̄)i|.

Since (1.2) is a convex optimization problem, it can
be transformed into an equivalent quadratic optimization
problem that can be very effectively solved. However, the
obtained solution by this method is not necessarily the most
sparse solution. Notice that the ℓ0-norm is the limit of the
ℓq-norm as q → 0:

∥f∥0 = lim
q→0

∥f∥qq = lim
q→0

∑
j

|fj |q.

Naturally, many researchers have utilized ℓq-norm with
0 < q ≤ 1 to replace ℓ1-norm, see [10], [11], [12], [13],
[14]. Therefore, the following D-ℓq-minimization problem
is proposed to solve problem (1.1):

min
f̄∈Rn

∥D∗f̄∥qq s.t. ∥Af̄ − y∥2 ≤ ε,



where ∥D∗f̄∥qq =
d∑

i=1
|(D∗f̄)i|q .

In [12], Li and Lin have conducted a detailed analysis
for D-ℓq-minimization. The authors obtained the sufficient
condition for robust and stable reconstruction of the orig-
inal signal, and established an upper bound estimation of
approximation error between the reconstructive signal and
the true signal. Along this line, a few of scholars had paid
great efforts [15], [13].

However, in the real world, we often encounter with
some complex data such as: multi-frequency acoustic data
(data from the superposition of different instruments) [16],
neurobiology image data [17], and radar data [18] have
wide application. These data show some special structures
different from the traditional one, for example multiple
modes, i.e., being composed of distinct subcomponents.
For these data, one can try to separate it into suitable
single components for convenient analysis. In [19], [20], [21],
[22], typical instances consist of the texture separation from
cartoon images, blind source separation and separation of
sinusoids and spikes. The problem is referred as compressed
data separation. In view of mathematical point, we consider
splitting the signal f = f1+f2 into its constituents f1 ∈ Rn

and f2 ∈ Rn, which are assumed to be sparse in redundant
tight frames D1 and D2, respectively. By using linear,
nonadaptive, and noisy measurements y = Af + z and A,
we try to reconstruct the unknown constituents f1 and f2.
In 2013, Donoho and Kutyniok [23] proposed the following
D-ℓ1-separation:

(f̂1, f̂2) = argmin
f̄1,f̄2∈Rn

∥D∗
1f̄1∥1 + ∥D∗

2f̄2∥1

s.t. f = f̄1 + f̄2.

As we know, for the measurements y, the simple ad-
ditive noise z was uncorrelated with signal f . However,
the signal f may be polluted due to the influence of the
measurement matrix and the dictionary. So, it is necessary
to consider the multiplicative noise which is closely related
to the signal f . This kind of noise is usually generated
by non-ideal measurement devices and reconstruction de-
vices as well as the computational limitations. In order
to simulate the real situation and interpret the precision
errors of the measurement and reconstruction process, one
should introduce the multiplicative noise into compressed
data separation [24], [25]. Here, we consider the following
complex case by respectively incorporating perturbations E,
E1 and E2 to the matrix A, tight frames D1 and D2:

Ã = A+E, D̃1 = D1 +E1, D̃2 = D2 +E2,

where E ∈ Rm×n, E1 ∈ Rn×d1 and E2 ∈ Rn×d2 . These
perturbations can be quantified with the following relative
bounds:

∥E∥2
∥A∥2

≤ εA,
∥E1∥2
∥D1∥2

≤ εD1 ,
∥E2∥2
∥D2∥2

≤ εD2 ,

where εA, εD1 and εD2 are perturbation levels of the mea-
surement matrix A and the redundant tight frames D1, D2,
respectively. Meanwhile, considering the merits of ℓq-norm

(0 < q ≤ 1) with characterizing sparsity, we adopt D̃-ℓq-
split analysis with perturbations to recover the constituents
as follows:

(f̂1, f̂2) = argmin
f̄1,f̄2∈Rn

∥D̃∗
1f̄1∥qq + ∥D̃∗

2f̄2∥qq

s.t. ∥Ã(f̄1 + f̄2)− y∥2 ≤ ε, (1.3)

where y = A(f1 + f2) + z ∈ Rm and ε is a mixed noise
level of measurement noise z and matrix perturbation E.
In general, these perturbations are more difficult to analyze
than simple additive noise z since they are correlated with
constituents f1 and f2 of interest. To see this, simply
calculate as:

Ã(f1 + f2) = A(f1 + f2) +E(f1 + f2),

D̃
∗
1f1 = D∗

1f1 +E∗
1f1, D̃

∗
2f2 = D∗

2f2 +E∗
2f2,

there will be three extra noise terms E(f1 + f2), E1f1 and
E2f2. To facilitate the problem, we demand for simplifying
(1.3) and initially assume the following set-up:

• A is an m× n measurement matrix.
• Ã is an m× n full rank measurement matrix (pertur-

bation matrix of the true matrix A).
• D1 ∈ Rn×d1 and D2 ∈ Rn×d2 are two redundant

tight frames.
• D∗

1f1 and D∗
2f2 are approximately s1-sparse and

s2-sparse, respectively.
• D̃1 ∈ Rn×d1 and D̃2 ∈ Rn×d2 are two perturbation

dictionaries of D1 and D2, respectively.
• d = d1 + d2, D = [D1|D2]n×d, Φ =[

D1 0
0 D2

]
2n×d

, Φ̃ =

[
D̃1 0

0 D̃2

]
2n×d

, f =(
f1

f2

)
2n×1

, Å = ÃDΦ∗ ∈ Rm×2n.

• Φ∗f is approximately s-sparse, where s = s1 + s2.

Then, we can rewrite (1.3) as the following Φ̃-ℓq-
minimization problem:

f̂ = argmin
f̄∈R2n

∥Φ̃∗
f̄∥qq s.t. ∥Åf̄ − y∥2 ≤ ε. (1.4)

Taking into account the special case of ℓ1-minimization
and non-perturbation, in 2013, Lin, Li, et al. [26] have
done some valuable work that investigated compressed data
separation using the model

f̂ = argmin
f̄∈R2n

∥Φ∗f̄∥1 s.t. ∥ADΦ∗f̄ − y∥2 ≤ ε,

they obtained sufficient conditions for the robust and stable
reconstruction of the signal and gave an upper bound on
the estimation error

∥f̂ − f∥2 ≤ C0ε+ C1

∥Φ∗f − (Φ∗f)[s]∥1√
s

,

where ∥Φ∗f − (Φ∗f)[s]∥1 is the best s-term ℓ1 approx-
imation error [27]. This influential result has far-reaching
significance for the research of the compressed data separa-
tion. Considering the importance of the above problem, we
conduct a deep investigation and provide two important
results that show Φ̃-ℓq-split analysis is robust and stable

2



with regard to measurement noise and perturbation of the
measurement matrix A, tight frames D1 and D2.

In short summary, our contributions are as follows:

• We first investigate the perturbations of the mea-
surement matrix and the redundant tight frame for
compressed data separation.

• We establish two sufficient conditions for the robust
and stable reconstruction of the original signal.

• We obtain the estimation of upper bound on error
between the reconstructive signal and the true signal.

• We perform a series of experiments to verify the
reconstruction effects of Φ̃-ℓq-minimization method.

The paper is organized as follows. In Section 2, we give
the main result of this paper. With respect to the main the-
orem, we will present some meaningful remarks. In Section
3, we carry out some numerical simulation experiments
on signal reconstruction. The conclusion is addressed in
section 4. Finally, proofs of Theorem 2.1 and Theorem 2.2
are presented in Appendix A and Appendix B, respectively.

2 MAIN RESULT

In this section, we present our two main contributions.

2.1 Reconstruction error estimation with Φ-NSPq

One of our main results is to get the upper bound
of reconstruction error by using Φ-NSPq and Φ̃-ℓq-split
analysis with perturbations. The Φ-NSPq , analogous to the
null space property, is imposed on the measurement matrix
and its definition as follows.

Definition 2.1 (Φ-NSPq [28]). Let Φ ∈ R2n×d be a dictionary
matrix as in the previous setting, if there exists 0 < c < 1 such
that

∀f̄ ∈ kerA, ∀|T | ≤ s ∥Φ∗
T f̄∥qq ≤ c∥Φ∗

T c f̄∥qq,

where |T | is the cardinality for the index set T ⊂ {1, 2, · · · , d},
T c is its complementary index set and Φ∗

T f̄ = (Φ∗f̄)T is the
restriction of Φ∗f̄ on T , then matrix A satisfies the ℓq null space
property of order s relative to Φ (Φ-NSPq), and the smallest
constant c is named as the null space constant (NSC).

We are now prepared to state our first main result.

Theorem 2.1. Suppose that a tight frame Φ ∈ R2n×d satisfies
ΦΦ∗ = I2n and that Φ̃ ∈ R2n×d fulfils ∥Φ∗ − Φ̃

∗∥op ≤ τ1.
Moreover, suppose that the matrix Å ∈ Rm×2n obeys the
Φ-NSPq of order s with the null space constant c (0 < c <
1). If the noise measurement y = ADΦ∗f + z satisfies
∥ADΦ∗f − y∥2 ≤ ε, then any solution f̂ of (1.4) satisfies

∥f̂−f∥2 ≤ C1ε+C2∥Φ∗f−(Φ∗f)[s]∥q+C3∥A− Ã∥op+C4,

where

τ1 = 5

(
1− c

10

) 1
q

d
1
2−

1
q ,

and

C1 =
2

νÅ

(
τ1 − ∥Φ∗ − Φ̃

∗∥op
) , C2 =

2
1
q d

1
2−

1
q

τ1 − ∥Φ∗ − Φ̃
∗∥op

,

C3 =

(
1 + 2

1
q−

1
2 + 2

1
q−

1
2 ∥Φ∗ − Φ̃

∗∥op
)
∥DΦ∗f∥2

νÅ

(
τ1 − ∥Φ∗ − Φ̃

∗∥op
) ,

C4 =
2

1
q ∥Φ∗ − Φ̃

∗∥op∥f∥2
τ1 − ∥Φ∗ − Φ̃

∗∥op
.

Proof. See Appendix A.

The operator norm of an m×n matrix as a mapping from
(Rn, ∥ · ∥2) to (Rm, ∥ · ∥2), denoted by ∥ · ∥op. The smallest
positive singular value of A denoted by νÅ. This constraint
∥Φ∗ − Φ̃

∗∥op ≤ τ1 can be met by controlling the disturbance
level of the frame Φ such that ∥Φ∗ − Φ̃

∗∥op is small enough.

Remark 2.1. Theorem 2.1 is our highlight that we first use
the Φ-NSPq to deal with the reconstruction of the compressed
data separation with respect to perturbations on the measurement
matrix and the dictionary. From Theorem 2.1, the condition that
Å satisfies the Φ-NSPq is only a necessary condition, however,
when D1, D2 are the canonical basis, the Φ-NSPq degenerates
to the standard NSPq that is a necessary and sufficient condition
to robustly and stably recover any (approximately) sparse signal.

The above statement can be summarized by the follow-
ing corollary.

Corollary 2.1. Let D1, D2 are the canonical basis. The matrix
Ã ∈ Rm×2n obeys the NSPq of order s with the null space
constant c (0 < c < 1) is a necessary and sufficient condition
to robustly and stably recover any (approximately) sparse signal
in the case of perturbations of the measurement matrix and
noise measurement. If the noise measurement y = Af + z
satisfies ∥Af − y∥2 ≤ ε, then any solution f̂ of the following
optimization problem

min
f̄∈R2n

∥f̄∥qq s.t. ∥Ãf̄ − y∥2 ≤ ε

satisfies

∥f̂ − f∥2 ≤ C
′

1ε+ C
′

2∥f − f [s]∥q + C
′

3∥A− Ã∥op,

where

C
′

1 =
2

5νÃ

(
10

1− c

) 1
q

d
1
q−

1
2 , C

′

2 =
1

5

(
5

1− c

) 1
q

,

C
′

3 =
1 + 21/q−1/2

5νÃ

(
10

1− c

) 1
q

d
1
q−

1
2 ∥f∥2.

Corollary 2.1 shows that NSPq , the minimal condition on
Ã for exact recovery for any sparse signal, is also sufficient
for robustness and stability via ℓq-minimization.

2.2 Reconstruction error estimation with D-RIP

The other main result of this paper is obtained via Φ̃-ℓq-
split analysis with perturbations under D-RIP, a natural
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property on measurement matrix, analogous to the restrict-
ed isometry property. The definition of D-RIP is as follows.

Definition 2.2 (D-RIP [29]). Let x ∈ Rd be approximately s-
sparse. D ∈ Rn×d is a matrix as the previous setting, if there
exists a constant 0 < δs < 1 for all s sparse vectors x ∈ Rd such
that

(1− δs)∥Dx∥22 ≤ ∥ADx∥22 ≤ (1 + δs)∥Dx∥22,

then matrix A satisfies the restricted isometry property with
respect to D (D-RIP) of order s, the smallest constant δs is
referred to as the restricted isometry constant with respect to D
(D-RIC).

Given a deterministic matrix A, it is generally NP-
hard, however, to verify whether A is a D-RIP matrix.
Fortunately, some random matrices have been proved to
satisfy D-RIP with overwhelmingly high probability, such
as Gaussian random matrices, Bernoulli random matrices
and partial Fourier random matrices, etc.

Next, we introduce the concept of the mutual coher-
ence to provide a measurement of incoherence between the
frames D1 and D2, which can be used to measure the
morphological difference between components.

Definition 2.3 (Mutual Coherence [26]). Let D1 =
(d1i)1≤i≤d1 and D2 = (d2j)1≤j≤d2 . The mutual coherence of
D1 and D2 is defined as

µ = µ(D1;D2) = max
i,j

| < d1i,d2j > |.

We are now ready to state our second main result.

Theorem 2.2. Suppose that a tight frame Φ ∈ R2n×d satisfies
ΦΦ∗ = I2n and that Φ̃ ∈ R2n×d fulfils ∥Φ∗ − Φ̃

∗∥op ≤ τ2.
Fix positive integers s, k with s ≤ k. Moreover, suppose that
Ã obeys the D-RIP with constant δ̃s+k and that the D-RIP
constant δ̃s+k and the mutual coherence µ between D1 and D2

jointly meets

δ̃s+k < W (s, µ, k, q) :=
2(1− α2)

2 − µ(s+ k)− 4α2

2(1− α2)
2 − µ(s+ k) + 4α2

.

If the noise measurement y = ADΦ∗f+z satisfies ∥ADΦ∗f−
y∥2 ≤ ε, then any solution f̂ of (1.4) satisfies

∥f̂−f∥2 ≤ C5ε+C6∥Φ∗f−(Φ∗f)[s]∥q+C7∥A− Ã∥op+C8,

where

τ2 = (
d

s
)

1
2−

1
q

√
V1

2V3
, α =

1

2
(
4s

k
)

1
q−

1
2 ,

and

C5 =
(ds )

1
2−

1
q

√
2V2

V3

τ2 − ∥Φ∗ − Φ̃
∗∥op

, C6 =
(d/2)

1
2−

1
q

τ2 − ∥Φ∗ − Φ̃
∗∥op

,

C7 =
(ds )

1
2−

1
q

√
V2

2V3
+ 2

1
q
−1

νÅ
+ 2

1
q
−1

νÅ
∥Φ∗ − Φ̃

∗∥op
τ2 − ∥Φ∗ − Φ̃

∗∥op
,

C8 =
2

1
q−

1
2 ∥Φ∗ − Φ̃

∗∥op∥f∥2
τ2 − ∥Φ∗ − Φ̃

∗∥op
.

In addition, the constants Vi(i = 1, 2, 3) are quantified in (B.9).

Proof. See Appendix B.

Similarly, this constraint ∥Φ∗ − Φ̃
∗∥op ≤ τ2 also can be

achieved by bounding the disturbance level of the frame Φ

such that ∥Φ∗ − Φ̃
∗∥op is small enough. There are plenty of

constants in Theorem 2.2. It is difficulty to understand the
whole statement for some readers. Therefore, we provide
the proper choice of parameters in the step 5 of the proof of
Theorem 2.2, which makes our results clearer.

Remark 2.2. Lin, Li, et al. have explored the compressed data
separation via ℓ1-split analysis and ℓq-split analysis under the
D-RIP in literatures [26] and [12], respectively. Our works share
the ℓq-minimization method with [12]. From Theorem 1 of [24],
there is a close correlation among the perturbation, the restricted
isometry constants δ and δ̃ with respect A and Ã, respectively.
If more information on the perturbation matrix is known, then it
may be possible to estimate a smaller, and more accurate value of
D-RIC. In view of this, therefore, there are essential differences
between our works and [12], so the perturbation should not be
neglected.

In view of the common properties of Theorem 2.1 and
Theorem 2.2, we provide some remarks as follows:

Remark 2.3. By using the frame inequality, our results can be
easily extended to the general frames cases and because there exists
only a difference of constants in the proofs. In Theorem 2.1 and
Theorem 2.2, we assume Φ is a tight frame (ρ1 = ρ2). This means
that D1 and D2 are also tight frames. It is helpful for simplifying
the analysis, but is of course not necessary because the assumption
does not affect the generalization of our theorems. Since the
condition of the theorem can be weakened, in this situation, our
theory will be more practical significance and applied values.

Remark 2.4. When D1 = D2 = I , Φ-NSPq and D-RIP will
reduce to the standard NSPq and RIP, respectively. Our results
show that NSPq or RIP characterizes the exact recovery of any
sparse signal f = f1 + f2 from its noiseless observation y =
A(f1 + f2) via Φ̃-ℓq-split analysis.

Remark 2.5. The above theorems offer the upper bound estima-
tion on reconstruction error, which clearly depicts relationship
among reconstruction error, the best s-term approximation, noise
level and q. Particularly, it shows that the reconstruction speed is
proportionally controlled by the best s-term approximation, per-
turbation and noise level. Obviously, with no perturbations on the
measurement matrix or the redundant tight frame, ∥f̂−f∥2 → 0
as ε → 0, it therefore shows that any s-sparse signal can be
approximated arbitrarily well, especially, when ε = 0, f can be
exactly reconstructed.

3 NUMERICAL SIMULATIONS

In this section, we provide an efficient algorithm and a
series of numerical simulations to evaluate the performance
of our Φ̃-ℓq-minimization method.
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3.1 An IRLS algorithm for Φ̃-ℓq-minimization problem

In order to solve the Φ̃-ℓq-minimization problem (1.4)
with 0 < q ≤ 1, we first derive an efficient algorithm which
can be seen a natural extension of the iterative reweighted
least squares algorithm (IRLS) [30]. Similarly, the problem
(1.4) can be rewritten as the following unconstrained regu-
larization problem:

min
f̄∈R2n

∥Φ̃∗
f̄∥qq,ϵ +

1

2λ
∥Åf̄ − y∥22, (3.1)

where ϵ is a smoothing parameter, λ is a regularization

parameter and ∥Φ̃∗
f̄∥qq,ϵ =

∑d
i=1

(
ϵ2 + (Φ̃

∗
[i]f̄)

2
) q

2
. For

convenience, we let f0 denote a critical point of (3.1) and
it satisfies the first-order optimality condition

d∑
i=1

qΦ̃[i]Φ̃
∗
[i](

ϵ2 + (Φ̃
∗
[i]f0)

2
)1− q

2

f0 +
1

λ
Å

∗
(Åf0 − y) = 0. (3.2)

Because of the nonlinearity of the above system, there is no
straightforward method to solve it. However, we can use
the iterative method to approximate the solution of problem
(3.2), and the iterative process is as follows:

d∑
i=1

qλΦ̃[i]Φ̃
∗
[i](

(ϵ(t))2 + (Φ̃
∗
[i]f

(t))2
)1− q

2

+ Å
∗
Å

f (t+1) = Å
∗
y,

the above method is summarized as Algorithm 1:

Algorithm 1 IRLS algorithm for Φ̃-ℓq-minimization problem

1: Initialize f (0) such that Åf (0) = y, and ϵ(0) = 1, 0 < q ≤ 1,
λ.

2: Set t = 0.
3: repeat
4: Search f (t+1) by solving

f (t+1)

=

{
Φ̃Diag

[
qλI(

(ϵ(t))2 + (Φ̃
∗
[i]f

(t))2
)1− q

2

, i = 1, 2, · · · , d
]
Φ̃

∗

+ Å
∗
Å

}−1

Å
∗
y.

5: Update ϵ(t+1) = 0.9ϵ(t).
6: Replace t with t+ 1.
7: until Any of the following stopping criterions are satisfied.

1) ∥f (t+1) − f (t)∥2 ≤ 1× 10−5;
2) t ≤ 100.

8: Output f (t+1) as the approximation to f0.

3.2 Experimental settings

Throughout the experiments, the measurement matrix
A is generated by creating an m × n Gaussian matrix with
m = 128 and n = 256, and the tight frames D1 and D2 are
generated by creating two n×d1 and n×d2 DCT dictionaries
with d1 = d2 = 512, respectively. The elements of pertur-
bation matrices E, E1 and E2 are subject to normal distri-
bution, moreover ∥E∥2 = εA∥A∥2, ∥E1∥2 = εD1∥D1∥2

and ∥E2∥2 = εD2∥D2∥2, where εA, εD1 and εD2 are
perturbation levels of the measurement matrix A and the
redundant tight frames D1, D2, respectively. As is shown
in the conditions ∥Φ∗ − Φ̃

∗∥op < τ1 and ∥Φ∗ − Φ̃
∗∥op < τ2,

the dictionary Φ is very sensitive to the perturbation, so we
make ∥Φ∗ − Φ̃

∗∥op small enough by controlling εD1 and
εD2 , meanwhile, we keep the perturbation matrices E1 and
E2 unchanged and only consider the change of E in the
experiment. We set the value of the noise vector z obeying
a Gaussian distribute with mean 0 and deviation 0.05. The
original signal f is synthesized by using f = Φx where
x ∈ Rd is a s-sparse signal with d = 1024 and s = 30. The
relative error between the reconstructed signal f̂ and the
original signal f is denoted as ∥f̂ − f∥2/∥f∥2. We perform
100 times against each test and report the average result.

3.3 Experimental results

Fig 3.1 presents the relationship between the q, the
perturbation level, and the relative error of signal recon-
struction. The results show that the smaller the perturbation,
the better the reconstruction effect of the signal. Moreover,
the reconstruction effect is the best when q is around 0.5,
and the reconstruction effect is the worst when q = 1.
An instance is also presented in Fig 3.2, which carves the
recovery of the signal f and its constituents f1, f2 via Φ̃-ℓq-
minimization method with q = 0.5 and εA = 0.01. The
results show that Φ̃-ℓq-minimization method can almost
accurately reconstruct the original signal.

4 CONCLUSION

This paper mainly investigates Φ̃-ℓq-split analysis (0 <
q ≤ 1) to recover the general signal based on the mea-
surement matrix and the redundant tight frames with per-
turbations. The sufficient conditions Φ-NSPq and D-RIP
for the robust and stable reconstruction of the original
signal are established, and the estimations of upper bound
on error are obtained. The derived results show that the
upper bound of the error is mainly controlled by q, the
best s-term approximation, ∥Φ∗ − Φ̃

∗∥op and ∥A − Ã∥op.
In addition, a series of experiments are conducted to test
Φ̃-ℓq-minimization method. The simulation results show
that Φ̃-ℓq-minimization method has the ideal reconstruction
effect. Our works are helpful in understanding and devel-
opment of the compression data separation.

APPENDIX A
PROOF OF THEOREM 2.1

In order to improve the readability of theorem proving,
we initially review some inequalities used repeatedly in this
paper as follows:

1) The triangle inequality:
∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∀x, y ∈ Rn.

2) The reverse triangle inequality:
∥x∥ − ∥y∥ ≤ ∥x− y∥, ∀x, y ∈ Rn.
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Fig. 3.1: Parameters selection for Φ̃-ℓq-minimization
method. (a) for q versus relative error with different values
of εA. (b) for εA versus relative error with different values
of q.

3) The frame inequality:
ρ1∥f∥ ≤ ∥Φ∗f∥ ≤ ρ2∥f∥, 0 < ρ1 ≤ ρ2, ∀f ∈ Rd.

4) The quasi-norm inequality:
∥x∥p ≤ n

1
p−

1
q ∥x∥q ≤ ∥x∥q ≤ n

1
q−

1
p ∥x∥p,

0 < q ≤ p ≤ ∞, ∀x ∈ Rn.
Two special cases of quasi-norm inequality:

4.1) ∥x∥q1 ≤ ∥x∥qq, 0 < q ≤ 1.

⇔
(

n∑
i=1

|xi|
)q

≤
n∑

i=1
|xi|q, 0 < q ≤ 1.

4.2) ∥x∥t1 ≤ nt−1∥x∥tt, t ≥ 1.

⇔
(

n∑
i=1

|xi|
)t

≤ nt−1
n∑

i=1
|xi|t, t ≥ 1.

The following lemma provides a useful property deriv-
ing from the singular value decomposition.

Lemma A.1 ([10]). Suppose M is an m× n (m ≤ n) matrix,
then any vector ξ ∈ Rn can be decomposed as ξ = γ + η with
γ ∈ kerM , η⊥ kerM and ∥η∥ ≤ 1

νM
∥Mξ∥, where νM is

the smallest positive singular value of M .

With these preparations we embark on the proof of
Theorem 2.1.
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Fig. 3.2: Signal reconstruction via Φ̃-ℓq-minimization
method with q = 0.5 and εA = 0.01. (a), (b) and (c) for
the signal f and its constituents f1, f2, respectively.

Proof. Step 1: Estimation of the perturbations.

It is known that, ∥ADΦ∗f − y∥2 ≤ ε is valid. But
∥ÃDΦ∗f − y∥2 is not necessarily less than ε because Ã is
a perturbation of A. Moreover, because Ã is a full rank ma-
trix, so there are some ws for each f such that ÃDΦ∗(w +
f) = ADΦ∗f , that is ÃDΦ∗w = (A − Ã)DΦ∗f , which
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means ∥ÃDΦ∗(w + f) − y∥2 ≤ ε is feasible. Moreover,
among all w which satisfy this equation, there exists a
unique vector of minimal ℓ2 norm with w⊥ ker(ÃDΦ∗).
Thus, by Lemma A.1, we have

∥w∥2 ≤ 1

νÅ
∥Åw∥2 =

1

νÅ
∥(A− Ã)DΦ∗f∥2. (A.1)

Since Φ is a tight frame, using the frame inequality with
ρ2 = 1, we get ∥Φ∗w∥2 ≤ ∥w∥2, and hence

∥Φ̃∗
w∥qq

(a)

≤ ∥Φ∗w − Φ̃
∗
w∥qq + ∥Φ∗w∥qq

(b)

≤
(
d

1
q−

1
2 ∥Φ∗w − Φ̃

∗
w∥2

)q
+
(
d

1
q−

1
2 ∥Φ∗w∥2

)q
(c)

≤ d1−
q
2 ∥Φ∗ − Φ̃

∗∥qop∥w∥q2 + d1−
q
2 ∥w∥q2

= d1−
q
2 ∥w∥q2

(
∥Φ∗ − Φ̃

∗∥qop + 1
)
, (A.2)

where (a) follows from the triangle inequality, and (b) is due
to the quasi-norm inequality. Notice that in (c), the operator
norm of an m × n matrix as a mapping from (Rn, ∥ · ∥2) to
(Rm, ∥ · ∥2), denoted by ∥ · ∥op. Thus

∥(Φ∗ − Φ̃
∗
)w∥2 ≤ ∥Φ∗ − Φ̃

∗∥op∥w∥2

is an immediate consequence of the definition of operator
norm1.

Taking the qth root of (A.2) and using the special case
4.2) of quasi-norm inequality, we have

∥Φ̃∗
w∥q ≤ (2d)

1
q−

1
2 ∥w∥2

(
∥Φ∗−Φ̃

∗∥op + 1
)
.

By (A.1), we have

∥Φ̃∗
w∥q ≤ (2d)

1
q−

1
2

νÅ

(
∥Φ∗−Φ̃

∗∥op + 1
)
∥(A− Ã)DΦ∗f∥2.

(A.3)

Step 2: Consequence of the minimizer.

Since both f̂ and f +w are feasible, but f̂ is a minimum
solution of (1.4), we have

∥Φ̃∗
f̂∥qq ≤ ∥Φ̃∗

(f +w)∥qq
= ∥Φ̃∗

Tf + Φ̃
∗
Tw∥qq + ∥Φ̃∗

T cf + Φ̃
∗
T cw∥qq. (A.4)

Moreover, let h = f̂ − f where f̂ is the optimal solution of
(1.4) and f is the original signal, we have

∥Φ̃∗
f̂∥qq =∥Φ̃∗

(h+ f)∥qq
=∥Φ̃∗

Th+ Φ̃
∗
Tf∥qq + ∥Φ̃∗

T ch+ Φ̃
∗
T cf∥qq

≥∥Φ̃∗
Tf + Φ̃

∗
Tw∥qq − ∥Φ̃∗

Th− Φ̃
∗
Tw∥qq

+ ∥Φ̃∗
T ch∥qq − ∥Φ̃∗

T cf∥qq, (A.5)

here, the last inequality holds because of the reverse triangle
inequality.

Combining (A.4) with (A.5), yields

∥Φ̃∗
T ch∥qq ≤ ∥Φ̃∗

Th∥qq + 2∥Φ̃∗
T cf∥qq + ∥Φ̃∗

w∥qq. (A.6)

1. We define the operator norm of Q ∈ Rm×n as: ∥Q∥op :=
sup{∥Qv∥/∥v∥ : v ∈ Rn with v ̸= 0}

Adding the term ∥Φ∗
T ch∥qq to both sides of (A.6), we get

∥Φ∗
T ch∥qq + ∥Φ̃∗

T ch∥qq ≤ ∥Φ∗
T ch∥qq + ∥Φ̃∗

Th∥qq + 2∥Φ̃∗
T cf∥qq

+∥Φ̃∗
w∥qq + ∥Φ∗

Th∥qq − ∥Φ∗
Th∥qq.

By rewriting the above inequality, we obtain

∥Φ∗
T ch∥qq

≤∥Φ∗
Th∥qq +

(
∥Φ̃∗

Th∥qq − ∥Φ∗
Th∥qq

)
+ 2∥Φ̃∗

T cf∥qq

+
(
∥Φ∗

T ch∥qq − ∥Φ̃∗
T ch∥qq

)
+ ∥Φ̃∗

w∥qq
≤∥Φ∗

Th∥qq + ∥Φ∗
Th− Φ̃

∗
Th∥qq + 2∥Φ̃∗

T cf∥qq
+ ∥Φ∗

T ch− Φ̃
∗
T ch∥qq + ∥Φ̃∗

w∥qq
=∥Φ∗

Th∥qq + ∥Φ∗h− Φ̃
∗
h∥qq + 2∥Φ̃∗

T cf∥qq + ∥Φ̃∗
w∥qq,

(A.7)

where the second inequality utilizes the reverse triangle
inequality again.

Step 3: Consequence of Φ-NSPq .

Utilizing the assumption that Å satisfies the Φ-NSPq ,
T is a index set with |T | ≤ s, and we decompose h as
h = γ + η with γ ∈ ker Å and η⊥ ker Å, we get

∥Φ∗
Th∥qq

(a)

≤ ∥Φ∗
Tγ∥qq + ∥Φ∗

Tη∥qq
(b)

≤ c∥Φ∗
T cγ∥qq + ∥Φ∗

Tη∥qq
≤ c∥Φ∗

T ch∥qq + ∥Φ∗η∥qq, (A.8)

where, according to the triangle inequality, (a) is definitely
true; while (b) holds since by definition of Φ-NSPq with null
space constant c.

Step 4: Estimation of ∥Φ∗η∥q .

Since Φ is a tight frame with ρ2 = 1, we easily obtain

∥Φ∗η∥q ≤ d
1
q−

1
2 ∥Φ∗η∥2 ≤ d

1
q−

1
2 ∥η∥2.

On account of η⊥ ker Å, by Lemma A.1, we have

∥η∥2 ≤ 1

νÅ
∥Åh∥2 =

1

νÅ
∥ÃDΦ∗(f̂ − f)∥2.

Note that

∥ÃDΦ∗(f̂ − f)∥2
=∥ÃDΦ∗f̂ − y + y −ADΦ∗f +ADΦ∗f − ÃDΦ∗f∥2
≤∥ÃDΦ∗f̂−y∥2 + ∥y−ADΦ∗f∥2 + ∥ADΦ∗f−ÃDΦ∗f∥2
≤2ε+ ∥(A− Ã)DΦ∗f∥2,

that is because ∥y − ADΦ∗f∥2 ≤ ε follows from the
assumption of Theorem 2.1; and because f̂ is the optimal
solution of (1.4), f̂ satisfies the constraint condition of (1.4),
that is, ∥y − ÃDΦ∗f̂∥2 ≤ ε.

Thus, we have

∥η∥2 ≤ 1

νÅ

{
2ε+ ∥(A− Ã)DΦ∗f∥2

}
.

So, the following holds

∥Φ∗η∥q ≤ d
1
q−

1
2

νÅ

{
2ε+ ∥(A− Ã)DΦ∗f∥2

}
. (A.9)
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Step 5: Estimation of ∥Φ̃∗
T cf∥qq .

∥Φ̃∗
T cf∥qq

(a)

≤∥Φ̃∗
T cf∥qq + ∥Φ∗

Tf − Φ̃
∗
Tf∥qq

=
(
∥Φ̃∗

T cf∥qq − ∥Φ∗
T cf∥qq

)
+ ∥Φ∗

Tf − Φ̃
∗
Tf∥qq + ∥Φ∗

T cf∥qq
(b)

≤∥Φ∗
T cf − Φ̃

∗
T cf∥qq + ∥Φ∗

Tf − Φ̃
∗
Tf∥qq + ∥Φ∗

T cf∥qq
=∥Φ∗f − Φ̃

∗
f∥qq + ∥Φ∗

T cf∥qq, (A.10)

where (a) is founded on the non-negativity of quasi-norm,
that is, ∥Φ∗

Tf − Φ̃
∗
Tf∥qq ≥ 0, and (b) holds because of the

reverse triangle inequality.

Step 6: Bounding the error.

Based on the fact that Φ is a tight frame with ρ1 = 1 and
the quasi-norm inequality, we have

∥h∥2 ≤ ∥Φ∗h∥2 ≤ ∥Φ∗h∥q.

In order to get bounds on ∥h∥2, we are first ready to estimate
∥Φ∗h∥q .

By (A.7), it is easy to see that

∥Φ∗h∥q
=
(
∥Φ∗

Th∥qq + ∥Φ∗
T ch∥qq

) 1
q

≤
(
2∥Φ∗

Th∥qq + ∥Φ∗h− Φ̃
∗
h∥qq + 2∥Φ̃∗

T cf∥qq + ∥Φ̃∗
w∥qq

) 1
q
.

On the other hand, associating with (A.7) and (A.8), we get

∥Φ∗
Th∥qq ≤ c

1− c
∥Φ∗h− Φ̃

∗
h∥qq +

2c

1− c
∥Φ̃∗

T cf∥qq

+
c

1− c
∥Φ̃∗

w∥qq +
1

1− c
∥Φ∗η∥qq.

Hence

∥h∥2 ≤
(
1 + c

1− c
∥Φ∗h− Φ̃

∗
h∥qq +

2 + 2c

1− c
∥Φ̃∗

T cf∥qq

+
1 + c

1− c
∥Φ̃∗

w∥qq +
2

1− c
∥Φ∗η∥qq

) 1
q

.

Substituting (A.10) into the above inequality, we have

∥h∥2

≤
(
1 + c

1− c
∥Φ∗h− Φ̃

∗
h∥qq +

2 + 2c

1− c
∥Φ∗f − Φ̃

∗
f∥qq

+
2 + 2c

1− c
∥Φ∗

T cf∥qq +
1 + c

1− c
∥Φ̃∗

w∥qq +
2

1− c
∥Φ∗η∥qq

) 1
q

≤5
1
q−1

{(
1 + c

1− c

) 1
q (

∥Φ∗h− Φ̃
∗
h∥q + ∥Φ̃∗

w∥q
)

+

(
2 + 2c

1− c

) 1
q (

∥Φ∗f − Φ̃
∗
f∥q + ∥Φ∗

T cf∥q
)

+

(
2

1− c

) 1
q

∥Φ∗η∥q

}
.

In particular, since 1
q > 1, so the second inequality takes ad-

vantage of the special case 4.2) of the quasi-norm inequality.

Then plugging (A.3) and (A.9) to the above inequality,
we obtain{

1− 1

5

(
10

1− c

) 1
q

d
1
q−

1
2 ∥Φ∗ − Φ̃

∗∥op

}
∥h∥2

≤ 2

5νÅ

(
10

1− c

) 1
q

d
1
q−

1
2 ε+

1

5

(
20

1− c

) 1
q

∥Φ∗
T cf∥q

+

{
1

5νÅ

(
10

1− c

) 1
q

d
1
q−

1
2 ∥DΦ∗f∥2

(
1 + 2

1
q−

1
2

+2
1
q−

1
2 ∥Φ∗ − Φ̃

∗∥op
)}

∥A− Ã∥op

+
1

5

(
20

1− c

) 1
q

d
1
q−

1
2 ∥Φ∗ − Φ̃

∗∥op∥f∥2.

Here, just like (A.2), we use the operator inequality for
operators (A− Ã) and (Φ∗ − Φ̃

∗
), respectively.

Let

τ1 = 5

(
1− c

10

) 1
q

d
1
2−

1
q ,

by controlling the disturbance level of the frame Φ such that
∥Φ∗ − Φ̃

∗∥op < τ1, then

1− 1

5

(
10

1− c

) 1
q

d
1
q−

1
2 ∥Φ∗−Φ̃

∗∥op = 1− 1

τ1
∥Φ∗−Φ̃

∗∥op > 0.

Therefore

∥h∥2 ≤ C1ε+ C2∥Φ∗
T cf∥q + C3∥A− Ã∥op + C4,

where

C1 =
2

νÅ

(
τ1 − ∥Φ∗ − Φ̃

∗∥op
) , C2 =

2
1
q d

1
2−

1
q

τ1 − ∥Φ∗ − Φ̃
∗∥op

,

C3 =

(
1 + 2

1
q−

1
2 + 2

1
q−

1
2 ∥Φ∗ − Φ̃

∗∥op
)
∥DΦ∗f∥2

νÅ

(
τ1 − ∥Φ∗ − Φ̃

∗∥op
) ,

C4 =
2

1
q ∥Φ∗ − Φ̃

∗∥op∥f∥2
τ1 − ∥Φ∗ − Φ̃

∗∥op
,

and ∥Φ∗
T cf∥q is the best s-term ℓq approximation error,

denoted by ∥Φ∗f−(Φ∗f)[s]∥q . Obviously, Ci (i = 1, 2, 3, 4)

is positive because of ∥Φ∗ − Φ̃
∗∥op < τ1.

So far, the proof of theorem 2.1 is completed.

APPENDIX B
PROOF OF THEOREM 2.2

Let T be the indices of entries with s largest magnitudes
in the vector Φ̃

*
f , and denote the complement of T by T c.

Setting T0 = T , we decompose T c
0 into r sets of size k (to be

chosen later) where T1 corresponds to the locations of the k

largest entries in Φ̃
∗
T cf , T2 to the next k largest entries and

so on. Finally, we let T01 = T0

∪
T1 and h = f̂ − f where f̂

is the optimal solution of (1.4) and f is the original signal.

We now begin the proof of Theorem 2.2.
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Proof. Step 1: Bounding the tail of Φ∗f .

By construction of the Tj , we have that each coefficient of
Φ̃

∗
Tj+1

h, written |Φ̃∗
Tj+1

h|(i), is at most the average of those
on Tj :

|Φ̃∗
Tj+1

h|(i) ≤ ∥Φ̃∗
Tj
h∥1/k,

squaring these terms and summing, and then taking the
square root yields

∥Φ̃∗
Tj+1

h∥2 ≤ ∥Φ̃∗
Tj
h∥1/

√
k ≤ k

1
2−

1
q ∥Φ̃∗

Tj
h∥q,

that is, ∑
j≥2

∥Φ̃∗
Tj
h∥2 ≤

∑
j≥1

k
1
2−

1
q ∥Φ̃∗

Tj
h∥q,

so∑
j≥2

∥Φ̃∗
Tj
h∥q2 ≤ k

q
2−1

∑
j≥1

∥Φ̃∗
Tj
h∥qq = k

q
2−1∥Φ̃∗

T ch∥qq. (B.1)

Moreover

∑
j≥2

∥Φ∗
Tj
h− Φ̃

∗
Tj
h∥q2 =

∑
j≥2

∥Φ∗
Tj
h− Φ̃

∗
Tj
h∥q2

 2
q ·

q
2

≤

r
2
q−1

∑
j≥2

∥Φ∗
Tj
h− Φ̃

∗
Tj
h∥22


q
2

= r1−
q
2 ∥Φ∗

T c
01
h− Φ̃

∗
T c
01
h∥q2, (B.2)

where the second inequality is due to the special case 4.2) of
quasi-norm inequality with r = d−s

k .

Combining (B.1) with (B.2), and utilizing the triangle
inequality, we have∑
j≥2

∥Φ∗
Tj
h∥q2 ≤

∑
j≥2

(
∥Φ∗

Tj
h− Φ̃

∗
Tj
h∥2 + ∥Φ̃∗

Tj
h∥2

)q
(a)

≤
∑
j≥2

∥Φ∗
Tj
h− Φ̃

∗
Tj
h∥q2 +

∑
j≥2

∥Φ̃∗
Tj
h∥q2

(b)

≤r1−
q
2 ∥Φ∗

T c
01
h− Φ̃

∗
T c
01
h∥q2

+ k
q
2−1

(
∥Φ̃∗

Th∥qq + 2∥Φ̃∗
T cf∥qq + ∥Φ̃∗

w∥qq
)
,

where (a) holds because of the special case 4.1) of quasi-
norm inequality, and (b) uses the result of (A.6).

Taking the qth root of both sides for the above inequality,
we get

∑
j≥2

∥Φ∗
Tj
h∥

2
≤

∑
j≥2

∥Φ∗
Tj
h∥q

2

 1
q

≤4
1
q−1

{
r

1
q−

1
2 ∥Φ∗

T c
01
h− Φ̃

∗
T c
01
h∥

2

+ k
1
2−

1
q

(
∥Φ̃∗

Th∥q+2∥Φ̃∗
T cf∥q+∥Φ̃∗

w∥q
)}

,

where, the last inequality follows from the special case 4.2)
of quasi-norm inequality. There is already the upper bound
of ∥Φ̃∗

w∥q as (A.3), so we next give a upper bound on
∥Φ̃∗

Th∥q and ∥Φ̃∗
T cf∥q , respectively.

By the quasi-norm inequality and the triangle inequality,
it is not hard to check that

∥Φ̃∗
Th∥q ≤ s

1
q−

1
2 ∥Φ̃∗

Th∥2
≤ s

1
q−

1
2

(
∥Φ̃∗

Th−Φ∗
Th∥2 + ∥Φ∗

Th∥2
)
, (B.3)

and by (A.10), we have

∥Φ̃∗
T cf∥q ≤ 2

1
q−1

(
∥Φ∗f − Φ̃

∗
f∥q + ∥Φ∗

T cf∥q
)

≤ 2
1
q−1

(
d

1
q−

1
2 ∥Φ∗f − Φ̃

∗
f∥2 + ∥Φ∗

T cf∥q
)

≤ 2
1
q−1

(
d

1
q−

1
2 ∥Φ∗ − Φ̃

∗∥op∥f∥2 + ∥Φ∗
T cf∥q

)
.

(B.4)

Note in particular that r = d−s
k ≈ d

k is suitable by the
partition of T c

0 . Hence, by (A.3), (B.3) and (B.4), we obtain∑
j≥2

∥Φ∗
Tj
h∥

2

≤4
1
q−1

( s
k

) 1
q−

1
2

{
∥Φ∗

Th− Φ̃
∗
Th∥2

+

(
d

s

) 1
q−

1
2

∥Φ∗
T c
01
h− Φ̃

∗
T c
01
h∥

2
+ ∥Φ∗

Th∥2

+ 2
1
q

(
d

s

) 1
q−

1
2

∥Φ∗ − Φ̃
∗∥op∥f∥2 + 2

1
q s

1
2−

1
q ∥Φ∗

T cf∥q

+
(2d/s)

1
q−

1
2

νÅ

(
∥Φ∗ − Φ̃

∗∥op + 1
)
∥A− Ã∥op∥DΦ∗f∥2

}
.

Moreover, and based on the fact that
(
d
s

) 1
q−

1
2 ≥ 1 (due to

d ≥ s and 0 < q ≤ 1), we have

∥Φ∗
Th− Φ̃

∗
Th∥2 +

(
d

s

) 1
q−

1
2

∥Φ∗
T c
01
h− Φ̃

∗
T c
01
h∥2

≤
(
d

s

) 1
q−

1
2 (

∥Φ∗
Th− Φ̃

∗
Th∥2 + ∥Φ∗

T c
01
h− Φ̃

∗
T c
01
h∥2

)
(a)

≤
(
d

s

) 1
q−

1
2

{
2
(
∥Φ∗

Th− Φ̃
∗
Th∥22 + ∥Φ∗

T c
01
h− Φ̃

∗
T c
01
h∥22

)} 1
2

=
√
2

(
d

s

) 1
q−

1
2

∥Φ∗h− Φ̃
∗
h∥2,

where (a) is from the special case 4.2) of quasi-norm inequal-
ity.

Thus ∑
j≥2

∥Φ∗
Tj
h∥2 ≤ α(∥Φ∗

Th∥2 + β), (B.5)

where

α =
1

2

(
4s

k

) 1
q−

1
2

,

β =
√
2

(
d

s

) 1
q−

1
2

∥Φ∗ − Φ̃
∗∥op∥h∥2

+ 2
1
q

(
d

s

) 1
q−

1
2

∥Φ∗ − Φ̃
∗∥op∥f∥2 + 2

1
q s

1
2−

1
q ∥Φ∗

T cf∥q

+
(2d/s)

1
q−

1
2

νÅ

(
∥Φ∗ − Φ̃

∗∥op + 1
)
∥(A− Ã)DΦ∗f∥2.

9



Step 2: Consequence of D-RIP.

Since Ã satisfies the D-RIP, by (B.5) and the fact that
∥D∥2 =

√
λmax(DD∗) =

√
λmax(2I) =

√
2, we have

2ε+ ∥(A− Ã)DΦ∗f∥2
≥∥ÃDΦ∗h∥2 ≥ ∥ÃDΦ∗

T01
h∥2 −

∑
j≥2

∥ÃDΦ∗
Tj
h∥2

≥
√
1− δ̃s+k∥DΦ∗

T01
h∥2 −

√
1 + δ̃k

∑
j≥2

∥DΦ∗
Tj
h∥2

≥
√
1− δ̃s+k∥DΦ∗

T01
h∥2 − α

√
2(1 + δ̃k)(∥Φ∗

Th∥2 + β)

≥
√
1− δ̃s+k∥DΦ∗

T01
h∥2 − α

√
2(1 + δ̃k)(∥h∥2 + β).

Thus

∥DΦ∗
T01

h∥22 ≤ 1

1− δ̃s+k

{
2ε+ ∥(A− Ã)DΦ∗f∥2

+ α

√
2(1 + δ̃k)(∥h∥2 + β)

}2

. (B.6)

Step 3: Consequence of the Mutual Coherence.

The following average inequality plays an important role
and is employed repeatedly in our proof.

Lemma B.1 ([7]). For any values a, b, and t > 0, we have

2ab ≤ ta2 +
b2

t
.

We next set T 1 = T ∩ {1, 2, · · · , d1}, T 2 = {j − d1|j ∈
T \ T 1} and denote components of h corresponding to D1

and D2 by h1 and h2, respectively. By applying Lemma B.1
with t1 (to be chosen later), we have

∥Φ∗
T01

h∥22 =∥D∗
1T 1

01
h1∥22 + ∥D∗

2T 2
01
h2∥22

= < h1,D1D
∗
1T 1

01
h1 > + < h2,D2D

∗
2T 2

01
h2 >

(a)

≤∥h1∥2∥D1D
∗
1T 1

01
h1∥2 + ∥h2∥2∥D2D

∗
2T 2

01
h2∥2

≤ t1∥h1∥22
2

+
∥D1D

∗
1T 1

01
h1∥22

2t1

+
t1∥h2∥22

2
+

∥D2D
∗
2T 2

01
h2∥22

2t1
, (B.7)

here, (a) is by the triangular inequality.

We adopt the mutual coherence of D1 and D2, analo-
gous to the method in [26], to estimate ∥D1D

∗
1T 1

01
h1∥22 +

∥D2D
∗
2T 2

01
h2∥22. Here, in order to avoid repeated work, we

give the result directly as follows:

∥D1D
∗
1T 1

01
h1∥22 + ∥D2D

∗
2T 2

01
h2∥22

≤ µ(s+ k)∥h∥22
2

+ ∥DΦ∗
T01

h∥22. (B.8)

Combining (B.6) with (B.7) and (B.8) yields

∥Φ∗
T01

h∥22 ≤ t1
2
∥h∥22 +

1

2t1

{
µ(s+ k)∥h∥22

2

+
1

1− δ̃s+k

(
2ε+ ∥(A− Ã)DΦ∗f∥2

+ α

√
2(1 + δ̃k)(∥h∥2 + β)

)2}
.

Step 4: Bounding the error.

Since Φ is a tight frame, we have

∥h∥22 = ∥Φ∗h∥22 = ∥Φ∗
T01

h∥22 + ∥Φ∗
T c
01
h∥22,

and

∥Φ∗
T c
01
h∥22 ≤

∑
j≥2

∥Φ∗
Tj
h∥2

2

≤ α2(∥Φ∗
Th∥2 + β)2

≤ α2(∥h∥2 + β)2

= α2∥h∥22+2α2β∥h∥2+α2β2.

Thus, by some simple calculations, we can show that

∥h∥22

≤
{
t1
2
+

µ(s+ k)

4t1
+

α2(1 + δ̃k)

t1(1− δ̃s+k)
+ α2

}
∥h∥22

+

{
2ε+∥(A−Ã)DΦ∗f∥2

}2

2t1(1−δ̃s+k)
+

{
α2(1+δ̃k)

t1(1−δ̃s+k)
+α2

}
β2

+
α
√
2(1 + δ̃k)

2t1(1− δ̃s+k)
· 2
{
2ε+ ∥(A− Ã)DΦ∗f∥2

}
β

+
α
√
2(1 + δ̃k)

t1(1− δ̃s+k)
· 2
{
2ε+ ∥(A− Ã)DΦ∗f∥2

}
∥h∥2

+

{
α2(1 + δ̃k)

t1(1− δ̃s+k)
+ α2

}
· 2β∥h∥2.

Utilizing Lemma B.1 to the latter three terms of the above
inequality (with constants t2, t3 to be chosen later), we have

∥h∥22

≤
{
t1
2
+

µ(s+ k)

4t1
+

α2(1 + δ̃k)

t1(1− δ̃s+k)
+ α2

}
∥h∥22

+

{
2ε+∥(A−Ã)DΦ∗f∥2

}2

2t1(1−δ̃s+k)
+

{
α2(1+δ̃k)

t1(1−δ̃s+k)
+α2

}
β2

+
α
√
2(1 + δ̃k)

2t1(1− δ̃s+k)

{(
2ε+ ∥(A− Ã)DΦ∗f∥2

)2
+ β2

}

+
α
√
2(1+δ̃k)

2t1(1−δ̃s+k)


(
2ε+∥(A−Ã)DΦ∗f∥2

)2
t2

+t2∥h∥22


+

{
α2(1 + δ̃k)

t1(1− δ̃s+k)
+ α2

}(
β2

t3
+ t3∥h∥22

)
.

Simplifying, this yields

V1∥h∥22 ≤ V2

{
2ε+ ∥(A− Ã)DΦ∗f∥2

}2
+ V3β

2,

where

V1 =1− t1
2
− µ(s+ k)

4t1
− α2(1 + δ̃k)

t1(1− δ̃s+k)
− α2

10



−
t2α
√
2(1 + δ̃k)

2t1(1− δ̃s+k)
− t3α

2(1 + δ̃k)

t1(1− δ̃s+k)
− t3α

2,

V2 =
1

2t1(1− δ̃s+k)
+

α
√
2(1 + δ̃k)

2t1(1− δ̃s+k)
+

α
√
2(1 + δ̃k)

2t1t2(1− δ̃s+k)
,

V3 =
α2(1 + δ̃k)

t1(1− δ̃s+k)
+ α2 +

α
√
2(1 + δ̃k)

2t1(1− δ̃s+k)

+
α2(1 + δ̃k)

t1t3(1− δ̃s+k)
+

α2

t3
. (B.9)

Assuming V1 > 0 (to be analyzed later), we obtain

∥h∥2 ≤

√
V2

V1

{
2ε+ ∥(A− Ã)DΦ∗f∥2

}
+

√
V3

V1
β.

Introducing the expression of β and arranging yields{
1−

(
d

s

) 1
q−

1
2

√
2V3

V1
∥Φ∗ − Φ̃

∗∥op

}
∥h∥2

≤2

√
V2

V1
ε+ 2

1
q s

1
2−

1
q

√
V3

V1
∥Φ∗

T cf∥q

+

{√
V2

V1
+

(2d/s)
1
q−

1
2

νÅ

√
V3

V1

+
(2d/s)

1
q−

1
2

νÅ

√
V3

V1
∥Φ∗ − Φ̃

∗∥op

}
∥DΦ∗f∥2∥A− Ã∥op

+ 2
1
q

(
d

s

) 1
q−

1
2

√
V3

V1
∥Φ∗ − Φ̃

∗∥op∥f∥2.

Let

τ2 =

(
d

s

) 1
2−

1
q

√
V1

2V3
,

by controlling the disturbance level of the frame Φ such that
∥Φ∗ − Φ̃

∗∥op < τ2, then

1−
(
d

s

) 1
q−

1
2

√
2V3

V1
∥Φ∗−Φ̃

∗∥op = 1− 1

τ2
∥Φ∗ − Φ̃

∗∥op > 0.

Therefore

∥h∥2 ≤ C5ε+ C6∥Φ∗
T cf∥q + C7∥A− Ã∥op + C8,

where

C5 =

(
d
s

) 1
2−

1
q

√
2V2

V3

τ2 − ∥Φ∗ − Φ̃
∗∥op

, C6 =
(d/2)

1
2−

1
q

τ2 − ∥Φ∗ − Φ̃
∗∥op

,

C7 =

(
d
s

) 1
2−

1
q

√
V2

2V3
+ 2

1
q
−1

νÅ
+ 2

1
q
−1

νÅ
∥Φ∗ − Φ̃

∗∥op
τ2 − ∥Φ∗ − Φ̃

∗∥op
,

C8 =
2

1
q−

1
2 ∥Φ∗ − Φ̃

∗∥op∥f∥2
τ2 − ∥Φ∗ − Φ̃

∗∥op
.

Obviously, Ci (i = 5, 6, 7, 8) is positive because of
∥Φ∗ − Φ̃

∗∥op < τ2.

Step 5: The choice of the parameters.

Now we need to choose parameters to make sure that
our hypothesis V1 > 0 is valid. There are many parame-
ters, i.e., s, µ, k, q, δ̃k, δ̃s+k, t1, t2, t3, in the expression of V1

(α = 1
2 (

4s
k )

1
q−

1
2 is a function of s, k and q). It seems to cause

trouble for our analysis. But we notice that the sparsity s
and the mutual coherence µ can be small (the latter from
Example II.1 in [26]). Moreover, V1(t1, t2, t3) decreases as
t2, t3 increase. Hence, we take t2, t3 arbitrarily small, i.e.,
t2, t3 → 0+, then V1(t1, t2, t3) degenerates to

V1(t1) = 1− t1
2
− µ(s+ k)

4t1
− α2(1 + δ̃k)

t1(1− δ̃s+k)
− α2.

Thus, let t1 take the maximum point of V1(t1), namely,

t1 =
{

µ(s+k)
2 + 2α2(1+δ̃k)

1−δ̃s+k

} 1
2

. The remaining parameters are
constrained to

1− α2 −
{
µ(s+ k)

2
+

2α2(1 + δ̃k)

1− δ̃s+k

} 1
2

> 0, (B.10)

such that V1 > 0. Further mathematical derivation shows
that (B.10) is equivalent to the following constraint

δ̃s+k < W (s, µ, k, q) :=
2(1− α2)

2 − µ(s+ k)− 4α2

2(1− α2)
2 − µ(s+ k) + 4α2

.

Specifically, we provide the choice of the parameters in the
following four cases (but not all).

• Case 1: When k = 4s, α = 1
2 and W (s, µ, k, q)

reduces to W (s, µ) = 14−5µs
22−5µs . If µs → 0, then

δ̃5s < W (s, µ) → 7
11 ≈ 0.636.

• Case 2: when k = 8s and q = 1, α =
√
2
4

and W (s, µ, k, q) reduces to W (s, µ) = 33−288µs
65−288µs . If

µs → 0, then δ̃9s < W (s, µ) → 33
65 ≈ 0.508.

• Case 3: when k = 8s and q = 1
2 , α =

√
2
8 and

W (s, µ, k, q) reduces to W (s, µ) = 1794−9216µs
2050−9216µs . If

µs → 0, then δ̃9s < W (s, µ) → 897
1025 ≈ 0.875.

• Case 4: when k = 8s and q → 0, α → 0
and W (s, µ, k, q) reduces to W (s, µ, q), then δ̃9s <

W (s, µ, q) =
2

{
1−( 1

2 )
2
q
+1

}2

−9µs−( 1
2 )

2
q
−1

2

{
1−( 1

2 )
2
q
+1

}2

−9µs+( 1
2 )

2
q
−1

→ 1.

Up to now, this completes the proof of Theorem 2.2.
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