
A 4× 4 diagonal matrix Schrödinger equation from relativistic total energy with a
2× 2 Lorentz invariant solution.

Han Geurdes1 and Koji Nagata2

1Geurdes datascience, 2593 NN, 164, Den Haag, Netherlands
E-mail: han.geurdes@gmail.com

2Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
E-mail: ko−mi−na@yahoo.co.jp

( Dated: October 13, 2017)

In this paper an algebraic method is presented to derive a non-Hermitian Schrödinger equation

from E = V + c
√

m2c2 +
(
p− e

c
A
)2

with E → i~ ∂
∂t

and p → −i~∇. In the derivation no use is

made of Dirac’s method of four vectors and the root operator isn’t squared either. In this paper
use is made of the algebra of operators to derive a matrix Schrödinger equation. It is demonstrated
that the obtained equation is Lorentz invariant.

PACS numbers: 03.65Aa, 03.65-w, 03.67.Lx(Quantum computer)
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I. INTRODUCTION

In many textbooks, treatises or lecture notes, e.g. [1, Chapter 2 page 40], [3, Chapter 6] or [4], one can read that
Dirac’s road to relativistic quantum mechanics is the way to quantize the total relativistic energy. In quantum field
theory the Dirac spinor is the key object of research [2]. In some textbooks, for instance, [5, Chapter 2, section 2.4],
Kramer’s work on the relativistic quantum mechanics or Weyls’s equation is mentioned as a curiosity. Weyl’s work
e.g. refers to neutrinos.

The main difficulty with the quantization of the total relativistic energy is that a direct more or less straightforward
Schrödinger equation appears to be impossible because of the square root term

E = V + c

√
m2c2 +

(
p− e

c
A
)2

(1)

In this equation, V is the potential energy, m the mass of the quantum, p the momentum, e the unit of charge, c the
velocity of light in vacuum and A the electromagnetic field vector. In the following section we present a method with
operator algebra to tackle the operator form in the square root term of (1).

II. OPERATOR ALGEBRA

Let us firstly rewrite equation (1) and write, HV = (E − V )/c. Introduce a vector of operators, pA = p− e
cA. We

suppose A 6= 0. This results into the equivalent.

HV =
(
m2c2 + pA

2
)1/2

(2)

Let us subsequently observe that because of p → −i~∇ the operator pA
2 =

(
−i~∇− e

cA
)2

will contain a real,

Re(pA
2) and an imaginary, Im(pA

2) part. Given this format it follows that

m2c2 + pA
2 = m2c2 + Re(pA

2) + iIm(pA
2) (3)

If we then introduce two real operator 4-vector functions H1 and H2, the operator in (3) can be equal to (H1 + iH2)2.
So we look at

m2c2 + pA
2 = (H1 + iH2)

2
(4)

Similar to pA
2 = pA ·pA, we have (H1 + iH2)

2
= (H1 + iH2) · (H1 + iH2). Combining (3) with (4) the following two

equations can be obtained

β = m2c2 + Re(pA
2) = H2

1 −H2
2

γ = Im(pA
2) = H1 ·H2 +H2 ·H1 (5)

The H1 and H2 operators are spanned by {êµ}4µ=1 and for κ = 1, 2, 3, 4, we have (êµ)κ = δµ,κ. This defines the four

unit base vectors. The δµ,ν , is the Kronecker delta, µ, ν = 1, 2, 3, 4. The · product of basis vectors {êµ}4µ=1 therefore
shows, êµ · êν = δµ,ν .

III. DEFINITION OF THE H1 AND H2 OPERATOR

Let us define the operators that are used in (5). We have

H1 = ê4σmc+
e

c

3∑
k=1

êkAk(x, t)

H2 = ~
3∑
k=1

êk
∂

∂xk
(6)



3

We will demonstrate that for σ ∈ {−1, 1} H1 and H2 can be employed in (5). Because the {êµ}4µ=1 are orthonormal

it is found that, noting σ2 = 1,

H2
1 = m2c2 +

(e
c

)2 ∣∣∣∣A∣∣∣∣2,
H2

2 = ~2∇2,

H1H2 +H2H1 =
e~
c

3∑
k=1

(
∂

∂xk
Ak +Ak

∂

∂xk

)
(7)

Then, the operators in the previous equation match the definitions of β and γ in (5).

A. Four-vector root terms

Subsequently it must be noted that (4) has a ”=” on the scalar level. Hence, we cannot flat out take the square
root on both sides of (4) and have H1 + iH2, a 1× 4 form, on the right hand and HV , defined in (2) a 1× 1 form on
the left hand. However, let us define a 1× 4 form EV as

EV =

4∑
µ=1

êµHV,µ (8)

If, HV,µ = cµHV then the following can be observed. In the first place we have from (2), (4) and (5) that

H2
V = (H1 + iH2)2 (9)

Secondly,

E2V = EV · EV =

4∑
µ=1

{HV,µ}2 = H2
V

4∑
µ=1

c2µ.

Suppose we have,
∑4
µ=1 c

2
µ = 1. Then, we can have

EV = H1 + iH2 (10)

as a solution of (9). In (8)-(10) E → i~ ∂
∂t . Hence, HV,µ =

cµ
c

(
i~ ∂
∂t − V (x, t)

)
for µ = 1, 2, 3, 4. Bearing in

mind that we work in the complex wave functions, we may take, c1 = 1, c2 = c3 = i and c4 =
√

2 and note that∑4
µ=1 c

2
µ = 1− 1− 1 + 2 = 1.

B. Quantisation equation

The result (10) can now be employed where the inner product of left and right hand side result in a Schrödinger

equation. Let us define ψ =
∑4
ν=1 êνψν(x, t), and

EV êνψν = (H1 + iH2)êνψν (11)

with ν = 1, 2, 3, 4. If, e.g. ν = 4, looking at (8) and (10), then on the left hand of (11) we will find,

c4
c

(
i~
∂

∂t
− V (x, t)

)
ψ4.

On the right hand side, looking at (10) and the definitions in (6) we see, σ ∈ {−1, 1},
σmcψ4

Hence, a Schrödinger equation

i~
∂

∂t
ψ4(x, t) = σb4mc

2ψ4(x, t) + V (x, t)ψ4(x, t) (12)

is found. If ν = k = 1, 2, 3, then it is found from (10) and the operator definitions in (6) that

i~
∂

∂t
ψk(x, t) = bki~c

∂

∂xk
ψk(x, t) + {V (x, t) + bkeAk(x, t)}ψk(x, t). (13)

Here bµ = 1/cµ, for, µ = 1, 2, 3, 4.
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C. 2× 2 Lorentz invariance

Suppose we take, c1 = 1, c2 = c3 = i and c4 =
√

2 together with the collapse ψ2 = ψ3 ≡ 0. In the Lorentz
transformation we look at ψ4 = ψ4(x, t) and ψ1 = ψ1(x, t) and take for brevity, x = x1. There is no transformation
along x2 and x3. The resulting equations then can be written as,

i~
∂

∂t
ψ4(x, t) =

σ

2
mc2ψ4(x, t) + V (x, t)ψ4(x, t)

i~
∂

∂t
ψ1(x, t) = i~c

∂

∂x
ψ1(x, t) + {V (x, t) + eA1(x, t)}ψ1(x, t) (14)

The (theoretical) phenomenon we are looking at has, hence, only one important spatial direction. The Lorentz
transformations for an observer with constant velocity v along the x-axis, related to the (x, t) system, are,

x′ = γ(x− vt)

t′ = γ
(
t− vx

c2

)
(15)

with γ = 1/
√

1− (v/c)2. The inverse transformation is equal to

x = γ(x′ + vt′)

t = γ

(
t′ +

vx′

c2

)
(16)

For ease of argument, let us take in equations (12), (13) and (14), V = V0 ≡ constant in (x, t), suppressing for
convenience, the x2 and x3. We start the Lorentz transformation exercise by looking at the transformation rule of
ψ4(x, t). Suppose

ψ4(x, t) = ψ0
4 exp [λ0(x− ct)] (17)

Here, ψ0
4 is a constant in (x, t). The constant λ0 in this equation is defined by

λ0 = − V0
i~c
− σmc

i~
√

2

From the definitions one can derive that the Shrödinger equation for, ψ4, (12) for constant V = V0 applies. Moreover,
it is found for ψ4 that

i~
∂

∂t
ψ4(x, t) = −i~c ∂

∂x
ψ4(x, t) (18)

Subsequently, the Lorentz transformations of ∂
∂t and ∂

∂x are

∂

∂x
= γ

∂

∂x′
− γ v

c2
∂

∂t′

∂

∂t
= −γv ∂

∂x′
+ γ

∂

∂t′
(19)

This implies that equation (12), with V = V0 constant in (x, t), is Lorentz invariant and entails the transformation

ψ′
4(x′, t′) = γ

(
1− v

c

)
ψ4 [x(x′, t′), t(x′, t′)] (20)

Here equation (16) is observed on the rhs. Hence, if λ′0 = γ
(
1− v

c

)
λ0, then

ψ′
4(x′, t′) = (ψ0

4)′ exp [λ′0(x′ − ct′)] (21)

Looking at (17), (ψ0
4)′ = ψ0

4γ
(
1− v

c

)
. Looking at the definition of λ0 we also find V ′

0 = V0γ
(
1− v

c

)
. The latter has

to be in accordance with the Lorentz transformation of ψ1. Let us take a closer look at this transformation. From
(19) we find

i~
(
γ
∂

∂t′
− vγ ∂

∂x′

)
ψ1 = i~c

(
γ
∂

∂x′
− γ v

c2
∂

∂t′

)
ψ1 + {V0 + eA1}ψ1 (22)
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This leads us to Lorentz transformed

i~
∂

∂t′
ψ′
1 = i~c

∂

∂x′
ψ′
1 + {V ′

0 + eA′
1}ψ′

1 (23)

with ψ′
1 = ψ1γ

(
1 + v

c

)
and A′

1 = A1γ
(
1− v

c

)
such that, together with V ′

0 = V0γ
(
1− v

c

)
, we have

{V ′
0 + eA′

1}ψ′
1 = {V0 + eA1}ψ1

because γ
(
1− v

c

)
γ
(
1 + v

c

)
= 1.

D. 2× 2 Parity & Time

The 2× 2 form which transforms with the Lorentz transformations is

i~
∂

∂t
ψ(x, t) = H ψ(x, t) (24)

Here, ψ(x, t) = (ψ1(x, t), ψ2(x, t)) and H = H0 + U , with,

U = diag (eA1 + V0, V0)

H0 = diag

(
i~c

∂

∂x
,
σ√
2
mc2

)
(25)

Employing the operators P and T (25) and noting, P2 = T 2 = 1, [8, Equation (7), Page 3], it is easy to acknowledge,

HT P
0 = PT H0T P = PT diag

(
i~c

∂

∂x
,
σ√
2
mc2

)
T P = H0.

IV. CONCLUSION & DISCUSSION

In the present paper a 4× 4 Schrödinger equation was directly derived from the total relativistic energy equation.
The present authors already have established a 4 × 4, but not Lorentz invariant, equation [7]. The found equations
are different from Dirac’s quantization of the total relativistic energy. In our derivation, no use was made of Clifford
algebra. We also did not square the root term of the total energy. Instead, use was made of operator algebra in a
R4 Euclidean space. It is noted that the total relativistic energy is also the starting point for Dirac’s treatment of
relativistic quantum mechanics.

The obtained 2× 2 set of equations represents a non-Hermitian system. The advanced operator algebra is opening
a door to study different, possibly also Lorentz invariant, alternatives of quantization of relativistic total energy.

Looking at the definition of the 2×2 diagonal H0 in equation (25) it is easy to acknowledge that indeed HT P
0 = H0.

So, if it is assumed that UT P = U , then the Hamiltonian is T P symmetric. Given the 2 × 2 Lorentz invariance,
possibly physical states can be associated to the 2× 2 Schrödinger equation. Note also [6].

In the case that there is no physical state associated to our set of equations, one can do mathematical experiments
to see if the outcome of computations with Lagrangians of real physical states change under the addition of the found
equations. We also refer to [3, Page 148]. The ”adding terms to the Lagrangian” method resembles somewhat the
speculative and ”beyond standard model” addition of e.g. the axion equation to the Lagrangian. In the latter case
the axion was introduced to solve the strong CP problem, see e.g. [9, Chapter 10].
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