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Abstract: Dirac equation includes the 4  4 complex
differential operator matrix, which is one of square roots
of d’ Alembertian with spin of half integer. We found
another 4  4 complex differential matrix as a square root
of d’ Alembertian for bosons, which we call diamond
operator. The extended Maxwell’s equations with charge
creation-annihilation field and the linear gravitational
field equations with energy creation-annihilation field can
be simply written by using the diamond operator. It is
shown that the linear gravitational field equations derive
Newton’s second law of motion, Klein-Gordon equation,
time independent Schrödinger equation, and the principle
of quantum mechanics.

I. Introduction

Dirac found a relativistic wave equation for
electrons with a 4  4 complex differential
operator matrix as a square root of d’
Alembertian.1) The equation is satisfied by
fermions with spin of half integer. Since
elementary particles to mediate forces are bosons,
different relativistic wave equation is necessary to
treat weak, strong, electromagnetic, and
gravitational forces. We found a new 4  4
complex differential operator matrix, we call it
diamond operator, as a square root of d’
Alembertian for bosons, which enable us to treat
bosons including four forces. Recently, we have
reported that the extended Maxwell’s equations
with charge creation-annihilation scalar field can
treat generation-recombination of electron-hole
pairs in semiconductors and the similar equation
for the linear gravitational field with energy
creation-annihilation scalar field can derive
Klein-Gordon and time independent Schrödinger
equations.2-8) It is shown that the diamond
operator successfully and simply describes the
extended Maxwell’s and linear gravitational field
equations.

II. Dirac equation’s operator

Dirac equation is given by

0i mc
     , (1)

where ħ is Dirac constant,  is a wave function, m
is a mass, c is light speed in free space, and
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, 2, and 3 are following Pauli matrices,
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Since  satisfies
2 2

2 0m c  


□ , (7)

satisfies

 2
  □, (8)

where □ denotes d’Alembertian defined by
2

2
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Therefore, is a square root of d’ Alembertian
with spin given by
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(10)
It should be noticed that  is not symmetrical
for space axes.

III. Diamond operator

We define the diamond operator ◇ as


 ◇ , (11)
where
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In the above equation, * denotes the complex
conjugate operator which satisfies

*A A  , (16)
where A is a complex scalar, vector, or matrix, and
A* is the complex conjugate of A. The diamond
operator satisfies

2 ◇ □. (17)
(11) – (15) give
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Therefore, this operator is symmetric for three

space axes.
For electromagnetic and gravitational force, the

four current C and the four field F satisfy
gC F◇ . (19)

In (19), g is a coupling constant and
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where D, R, and S are divergent, rotational, and
scalar fields, respectively. (19)-(21) give

0g S   C R D , (22)

0 0gC S   D , (23)

0 0   D R , (24)
0 R . (25)

The four field F with gauge parameter  and
four potential A satisfy
F A◇ , (26)

where
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0 0A  D A , (29)

 R A , (30)
0 0S A     A . (31)

C, F, and A satisfy the following Lorentz
transformation for the boost with velocity v along
x-axis,
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where  = v / c.

IV. Extended Maxwell’s equations

Maxwell’s equations cannot treat
generation-recombination of charge pairs by the
charge conservation equation

0
t


   


J . (35)

Because current J and charge concentration 
should satisfy the following equation in
semiconductors,7-10)

GR
t


   


J , (36)

where GR is charge generation-recombination rate.
In order to obtain the extended Maxwell’s
equations, C and F are substituted by four current
J, electric and magnetic fields E and B, and
charge creation-annihilation field N as

C J
ic
 

   
 

J , (37)

/ c i
F

iN
 

   

E B . (38)

Since the coupling constant g is substituted by
permeability , the extended Maxwell’s equations
are written by

1 1 N
t


 


    


EJ B , (39)

N
t

      


E , (40)

0
t


  


BE , (41)

0 B , (42)
where  is permittivity which satisfies  = 1/c2.
(39) and (40) give the following current continuity
equation,

1 N
t





    


J □ . (43)

Therefore □N/ is charge creation-annihilation
rate. By using (31), the charge
creation-annihilation field N satisfies

0 0N A     A . (44)

N is equivalent to Nakanishi-Lautrup field11, 12)

except □N  0 in the region where charges are
created or annihilated.

V. Derivation of classical and quantum
mechanics from linear gravitational field

Einstein’s gravitational equation is given by
G T  (45)

where G is Einstein tensor and  is Einstein’s
gravitational constant. T is momentum density
tensor written by
T v v    , (46)

where v and v are  and  component of the
velocity. When the momentum density is enough
small, metric tensor g is given by
g h    , (47)

where  and h are tensors which satisfy
 

 
 

1 1,2,3
0
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  
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 
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  

, (48)

1h  . (49)

Here we define h as
1
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h h h     . (50)

In Lorentz gauge condition of , 0h


  , we
obtain

2h T  □ . (51)
The above equation is regarded as the wave
equation for linear gravitational field.13) In order
to obtain Lorentz vector, we assume small volume
. Then the gravitational vector potential Ag and
gravitational current Cg are given by

0
1
2gA h
c

 
  , (52)

0
1

gC T v
c      . (53)

Therefore
g gC A □ . (54)

Then the gravitational fields Fg = (Dg + iRg, iSg)
and gF = (Dg + iRg, iSg) satisfy

g gC F◇ , (55)

g gF A◇ , (56)
where Dg, Rg, and Sg are the divergent, rotational,
and scalar fields of the linear gravitational field.



Since the four current vector Cg is equivalent to
the four momentum vector P  (P, iP0), where P
and cP0 denote 3D momentum and energy,

0g g gS  P R D , (57)

0 0g gP S D . (58)
If we assume existence of the four potential V 
(V, i/c), the total four momentum  is given by

0
E i Pi
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  
                

P Vπ
. (59)

3D total momentum  and total energy E satisfy
0total total totalS  π R D , (60)

0total total
E S
c
 D , (61)

where Dtotal, Rtotal, and Stotal are the total divergent,
rotational, and scalar fields considering the four
potential, respectively. If the four potential is
appropriate and the motion is stable, the wave
sources of the total divergent and rotational fields
should be zero as

0total total D R□ □ . (62)
Therefore

0 0c E  π , (63)
0 π . (64)

By using special relativity, we obtain
   2 2 2 2 4E c m c   π V . (65)

In the case of |P| << mc,

 2 2

2
E mc

m



  

π V
. (66)

By defining v as a 3D velocity vector,  E is
calculated as
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i i

i

Vv v
t x

 
          

 
π V

.
(68)

Since the first term of (68) is zero by using (64),
we obtain

 d
dt t


    


P Vv V . (69)

The above equation shows Newton’s second law
of motion. In electromagnetic field case, the right
side of (69) is equivalent to the sum of Lorentz
and Coulomb forces.
By using (63), (64), and a appropriate scalar field
Sc,  and E are written as

cSπ , (70)

cSE
t


 


. (71)

Here we call Sc energy creation-annihilation field,
because energy creation-annihilation rate  is
defined by

2 2
c

Ec c S
t

 
    


π □ . (72)

When we define the wave function as

exp ciS    
 

, (73)

we obtain
2 2 2

2 2 c
E c i S
c

 
  

  
  

□ □
. (74)

In the case of □Sc = 0, we obtain Klein-Gordon
equation of

2 2

2 0m c  


□
. (75)

If we assume existence of the potential U, the
above equation is rewritten as14)

2 2

2 2 2
m c U

c
    

 
□

. (76)
Since □Sg  0 in the above case, we obtain

2 2 2 2 4E c m c U i      . (77)
The above equation suggests the principle of
quantum mechanics, that it is equivalent to
classical mechanics when the absolute value of
ħis much smaller than 2c2, otherwise the
imaginary part of energy creation-annihilation
field creates or annihilates quantized interactive
energy depending on the potential U.
If 2c2 and the absolute value of ħare much

smaller than m2c4, we obtain
2 2 2 4E c m c U i     
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22 2
ci S Umc

m mc
 

  
□ . (78)

When we assume E and  0Sc do not depend on
time, and redefine the total energy E’  E  mc2
and the potential V U/2mc2, we obtain

2 2

'
2

ci SE V
m

  
 


. (79)

Since 2 is given by
2

2 2
2 c

i S 
 

     
   , (80)

the following time independent Schrödinger
equation is obtained

2
2'

2
E V

m
     


. (81)

VI. Conclusion

We found the diamond operator, which is a 4 
4 complex differential operator matrix as a square
root of d’Alembertian for bosons, although Dirac
equation’s operator matrix can be used for
fermions. The extended Maxwell’s and the linear
gravitational field equations are simply written by
using the diamond operator. The linear
gravitational field equations derive Newton’s
second law of motion, Klein-Gordon equation,
time independent Schrödinger equation, and the
principle of quantum mechanics. It was found that
imaginary part of the energy creation-annihilation
field creates or annihilates quantized interactive
energy depending on the potential.
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Appendix

Since products of complex numbers a + ib and c + id
is written by

     a ib c id ac bd i bc ad      , (A1)
(a + ib) and (c + id) can be regarded as matrix and
vector, respectively as

a b
a ib

b a
 

   
 

, (A2)

c
c id

d
 

   
 

. (A3)

Because
a b c ac bd
b a d bc ad

      
          

. (A4)

Therefore, imaginary unit i can be regarded as the 2  2
matrix of

0 1
1 0

i
 

  
 

, (A5)

The complex conjugate operator * can be also regarded
as the 2  2 matrix of

1 0
0 1
 

    
, (A6)

because

 
1 0
0 1

a a
a ib a ib

b b
     

                
. (A7)

Then product of i and * is also regarded as the
following 2  2 matrix

0 1 1 0 0 1
1 0 0 1 1 0

i
     

            
. (A8)

Here
   2 2 2 1i i      . (A9)

When we define the following bracket operator



 
 
 
 

1
, 0

1

AB BA
A B AB BA

AB BA


  
  

, (A10)

we obtain
     , , * *, 1i i i i      . (A11)

Here, we define n  n real basis matrices bn ( = 0,
1,…, n2-1) as the real matrices whose linear
combination can give all of n  n real matrices and
square are equal to  In. Then, 1, i, *, and i * are
equivalent to the 2  2 real basis matrices b2 given by
b2 I2and

1
2

0 1
1 0

b  
  
 

, 2
2

0 1
1 0

b
 

  
 

, 3
2

1 0
0 1

b  
   

, (A12)

where
       2 2 2 20 1 2 3

2 2 2 2 1b b b b     , (A13)

and for  = 0, 1, 2, 3 and j, k = 1, 2, 3,
0
2 2, 1b b    ,

2 2, 1j k

j k
b b


    

. (A14)

Now we define partial product of matrices A and B as
11 1

1

. . .
. . .
. . .
. . .

. . .

n

m mn

b A b A

A B

b A b A

 
 
 
  
 
 
 
 

, (A15)

where
11 1

1

. . .
. . .
. . .
. . .

. . .

n

m mn

b b

B

b b

 
 
 
 
 
 
 
 

. (A16)

Then 4  4 real basis matrices can be written by
4 2 2b b b    . (A17)

If another 4  4 real matrix is written by
4 2 2b b b    , (A18)

the following relation is satisfied
   4 4 2 2 2 2b b b b b b          . (A19)

Then
4 4 2 2 2 2b b b b b b                    . (A20)

Since  and  are given by
0 0 3

2 2b b   , (A21)
1 1 2

2 2b b    , (A22)
2 2 2

2 2ib b    , (A23)
3 3 2

2 2b b    , (A24)
and

0 0 0
2 2b b     , (A25)

1 1 2
2 2ib b    , (A26)

2 3 2
2 2ib b     , (A27)

3 2 0
2 2ib b    , (A28)

we obtain

       2 2 2 20 0

0 0
1 

 
   

 
      , (A29)

, , 1   

   
   

 
        

. (A30)

The diamond operator matrix with symmetrical
structure for space axes needs the additional
commutation relation of * and i * compared with Dirac
operator matrix with asymmetrical structure for space
axes. It seems to be a kind of spontaneous symmetry
breaking.


