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Abstract: Dirac equation includes the 4  4 complex
differential operator matrix, which is one of square roots
of d’ Alembertian with spin. We found another 4  4
complex differential matrix as a spinless square root of d’
Alembertian, which we call diamond operator. The
extended Maxwell’s equations including charge
creation-annihilation field and the linear gravitational
field equations including energy creation-annihilation
field can be simply written by using the diamond operator.
It is shown that the linear gravitational field equations
derive Klein-Gordon equation, time independent
Schrödinger equation, and the principle of quantum
mechanics.

I. Introduction

Dirac found a relativistic wave equation for
electrons with a 4  4 complex differential
operator matrix as a square root of d’
Alembertian.1) The equation is satisfied by
Fermions with spin of half integer. Since
elementary particles to mediate forces are Bosons,
different relativistic wave equation is necessary to
treat weak, strong, electromagnetic, and
gravitational forces. We found a new 4  4
complex differential operator matrix, we call it
diamond operator, as a spinless square root of d’
Alembertian, which enable us to treat Bosons
including four forces. Recently, we have reported
that the extended Maxwell’s equations including
charge creation-annihilation scalar field can treat
generation-recombination of electron-hole pairs in
semiconductors and the similar equation for the
linear gravitational field with energy
creation-annihilation scalar field can derive
Klein-Gordon and time independent Schrödinger
equations.2-8) It is shown that the diamond
operator successfully and simply describes the
extended Maxwell’s and linear gravitational field
equations.

II. Dirac equation

Dirac equation is given by

0i mc
     , (1)

where ħ is Dirac constant,  is a wave function, m
is a mass, c is light speed in free space, and
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, 2, and 3 are following Pauli matrices,
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Since  satisfies
2 2

2 0m c  


□ , (7)

satisfies

 2
  □, (8)

where □ denotes d’Alembertian defined by
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Therefore, is a square root of d’ Alembertian
with spin given by



0 3 1 2

0 1 2 3

3 1 2 0

1 2 3 0

0
0

0
0

i
i

i
i




     
       
     
 
     

. (10)

It should be noticed that  is not symmetrical
for space axes for the purpose to include spin.

III. Diamond operator

We define the diamond operator ◊ as


   , (11)
where
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In the above equation, * denotes the complex
conjugate operator which satisfies

*A A  , (16)
where A is a complex scalar, vector, or matrix, and
A* is the complex conjugate of A. The diamond
operator satisfies

2 □ . (17)
(11) – (15) give
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Therefore, this operator is symmetric for three
space axes and does not include spin.
For electromagnetic and gravitational force, the

four current C and the four field F satisfy
gC F  . (19)

In (19), g is a coupling constant and
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where D, R, and S are divergent, rotational, and
scalar fields, respectively. (19)-(21) give

0g S   C R D , (22)

0 0gC S   D , (23)

0 0   D R , (24)
0 R . (25)

The four field F with gauge parameter  and
four potential A satisfy
F A  , (26)

where
i
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(26)-(28) give
0 0A  D A , (29)

 R A , (30)
0 0S A     A . (31)

C, F, and A satisfy the following Lorentz
transformation for the boost with velocity v along
x-axis,
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, (34)

where  = v / c.

IV. Extended Maxwell’s equations

Maxwell’s equations cannot treat
generation-recombination of charge pairs by the
charge conservation equation

0
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J . (35)

Because current J and charge concentration 
should satisfy the following equation in
semiconductors,9, 10)

GR
t


   


J . (36)

where GR is charge generation-recombination rate.
In order to obtain the extended Maxwell’s
equations, C and F are substituted by four current
J, electric and magnetic fields E and B, and
charge creation-annihilation field N as
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Since the coupling constant g is substituted by
permeability , the extended Maxwell’s equations
are written by

1 1 N
t


 


    


EJ B , (39)

N
t

      


E , (40)

0
t


  


BE , (41)

0 B , (42)
where  is permittivity which satisfies  = 1/c2.
(1) and (2) give the following current continuity
equation,

1 N
t





    


J □ . (43)

Therefore □N/ is charge creation-annihilation
rate. By using (31), The charge
creation-annihilation field N satisfies

0 0N A     A . (44)

N is equivalent to Nakanishi-Lautrup field11, 12)

except □N  0 in the region where charges are
created or annihilated.

V. Linear Gravitational field and quantum
mechanics

Einstein’s gravitational equation is given by
G T  (45)

where G is Einstein tensor and  is Einstein’s
gravitational constant. T is momentum density
tensor written by
T v v    , (46)

where v and v are  and  component of the
velocity. When the momentum density is enough
small, metric tensor g is given by
g h    , (47)

where  and h are tensors which satisfy
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1h  . (49)

Here we define h as
1
2

h h h     . (50)

In Lorentz gauge condition of , 0h


  , we
obtain

2h T  □ . (51)
The above equation is regarded as the wave
equation for linear gravitational field.13) In order
to obtain Lorentz vector, we assume small volume
. Then the gravitational vector potential Ag and
gravitational current Cg are given by
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0
1

gC T v
c      . (53)

Therefore
g gC A □ . (54)

Then the gravitational fields Fg = (Dg + iRg, iSg)
and gF = (Dg + iRg, iSg) satisfy

g gC F   , (55)

g gF A   , (56)
where Dg, Rg, and Sg are the divergent, rotational,
and scalar fields of the linear gravitational field.



Since the four current vector Cg is equivalent to
the four momentum vector P = (P, iU/c), where P
and U denote 3D momentum and energy,

0g g gS  P R D , (57)

0g g
U S
c
 D . (58)

Since Dg and Rg can be regarded as much smaller
than Sg in atomic scale, we obtain

gSP , (59)
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t


 


. (60)

Here we call Sg energy creation-annihilation field,
because energy creation-annihilation rate  is
defined by
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When we define the wave function as
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In the case of □Sg = 0, we obtain Klein-Gordon
equation of

2 2

2 0m c  


□
. (64)

If we assume that the above equation is satisfied
even in the case of □Sg  0 under the potential V,
we obtain by using the total energy E = U + V
 2 2 2 2 4E V P c m c i      . (65)

The above equation suggests the principle of
quantum mechanics, that it is equivalent to
classical mechanics when the absolute value of
ħis much smaller than P2c2, otherwise the
imaginary part of energy creation-annihilation
field creates or annihilates quantized interactive
energy depending on the potential V.
If P2c2 and the absolute value of ħare much

smaller than m2c4, we obtain
2
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When we assume V and Sg do not depend on time
and the total energy is given by E = U  mc2 + V
we obtain
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Since 2 is given by
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   , (68)
the following time independent Schrödinger
equation is obtained
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. (69)

IV. Conclusion

We found the diamond operator, which is a 4 
4 complex differential operator matrix as a square
root of d’Alembertian without spin, although
Dirac equation’s operator matrix includes spin.
The extended Maxwell’s and the linear
gravitational field equations are simply written by
using the diamond operator. The linear
gravitational field equations derive Klein-Gordon
equation, time independent Schrödinger equation,
and the principle of quantum mechanics. It was
found that imaginary part of the energy
creation-annihilation field creates or annihilates
quantized interactive energy depending on the
potential.
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Appendix

Since products of complex numbers a + ib and c + id
is written by

     a ib c id ac bd i bc ad      , (A1)
(a + ib) and (c + id) can be regarded as matrix and
vector, respectively as

a b
a ib

b a
 

   
 

, (A2)
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c id
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. (A3)

Because
a b c ac bd
b a d bc ad

      
          

. (A4)

Therefore, imaginary unit i can be regarded as the 2  2
matrix of
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, (A5)

The complex conjugate operator * can be also regarded
as the 2  2 matrix of
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Then product of i and * is also regarded as the
following 2  2 matrix

0 1 1 0 0 1
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. (A8)

Here
   2 2 2 1i i      . (A9)

When we define the following bracket operator
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we obtain
     , , * *, 1i i i i      . (A11)

Here, we define n  n real basis matrices bn ( = 0,
1,…, n2-1) as the real matrices whose linear
combination can give all of n  n real matrices and

square are equal to  In. Then, 1, i, *, and i * are
equivalent to the 2  2 real basis matrices b2 given by
b2 I2and
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where
       2 2 2 20 1 2 3

2 2 2 2 1b b b b     , (A13)

and for  = 0, 1, 2, 3 and j, k = 1, 2, 3,
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Now we define partial product of matrices A and B as
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Then 4  4 real basis matrices can be written by
4 2 2b b b    . (A17)

If another 4  4 real matrix is written by
4 2 2b b b    , (A18)

the following relation is satisfied
   4 4 2 2 2 2b b b b b b          . (A19)

Then
4 4 2 2 2 2b b b b b b                    . (A20)

Since  and  are given by
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we obtain
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The diamond operator matrix without spin needs the
additional commutation relation of * and i * compared
with Dirac operator matrix with spin. It seems to be a
kind of spontaneous symmetry breaking.
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