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Ecole Nationale SupÃ c©rieure de Statistique et d’Economie.

08 BP 03 Abidjan 08, COTE D’IVOIRE.
E-mail: virostake@gmail.com

Abstract

In this paper we will first establish that there are many prime p such that p + n is also
prime for even integer n by using Chebotarev-Artin theorem
Mertens third formula and the principle inclusion-exclusion of Moivre
With these tools we get a fonction whose count the number of prime p such that p+ n is
prime less than x for even integer n and for n = inf{m ∈ 2N : p+m ∈ P}
we deduce Polignac’s conjecture

1 demonstration of even gap conjecture and Polignac’s

conjecture

In number theory,Polignac’s conjecture was made by Alphonse de Polignac in 1849 and
states For any positive even number n,there are many cases of two consecutive prime
numbers with difference n. In other words for any even integer n ,it exists infinitely
many primes p such that p+n are consecutive primes. The object of this paper is to
demonstrate this old conjecture. We propose here an elegant and original proof by proving
this conjecture for even number n it exists a prime p such that p+ n is prime
We are going to call it even gap conjecture

2 Principle of the demonstration

To prove the conjecture of polignac’s, we will first establish the formula giving the cardinal
of the set of prime p such that p+n is also prime ,less than or equal to x+n where x ≥ 5 we
find αn(x) = bn(x)× x

ln2(x)
+©( x

ln3(x)
) where bn(x) is a fonction such that lim

x→+∞
bn(x) = bn

is a constant defined by bn = 4 exp(−γ)Cn where Cn = C2

∏
p∈P,p≥3,p/n

p−1
p−2

where C2 and
γ are respectively the twin prime constant and Euler-Mascheroni constant. To do that
,we decompose Cx = {9, 15, 21, 25, 27, 33....} that is the set of the composed odd integers
of [9, x],via the aritmetic sequences A2p,p≥3 = {3p, 5p, 7p....(1 + 2pbx−p

2p
c)p} whose first
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element is 3p and of reason 2p; where p ∈ P√x and such that all its terms are less than
x. We can then evaluate the quantity of prime numbers inside the set And then ,by
applying,the Chebotarev-Artin theorem,before conclude to each the set of composed odd

integers of [9, x] Let the bijective mapping be
fn : Cx → Cx + n

m 7→ m+ n

2.1 definition

Let’s partionned the following set Cx + n = IC≤x+n ∪G≤x+n where:
IC≤x+n is the subset of Cx + n formed of the composed old integers and G≤x+n the

subset of Cx + n composed of prime numbers Let p ∈ P≤x+n the set of prime numbers
less than x+ n

2.2 lemma1

for any even integer n and for any prime p ∈ P≤x+n\G≤x+n such that p ≥ n+ 1 so p− n
is a prime number

2.3 proof of lemma 1

letn be a given even integer for any p ∈ P≤x+n\G≤x+n such that p ≥ n + 1 we get two
situation: or p− n < 9 or p− n ≥ 9 as p− n is old so in the first situation p− n is prime
obvious manner and in the second situation p−n /∈ Cx so p−n ∈ [9, x]\Cx which permit
us to conclude

2.4 definition

Denote by δn(x) = card(G≤x+n) , αn(x) = card(p ∈ P≤x+n\G≤x+n : p ≥ n + 1) and
Π(x+ n) = card(P≤x+n) .So we have Π(x+ n) = δn(x) + αn(x) + Π(n+ 1)
Without loss of generality,observe that each number m ∈ Cx is divisible by at least
one prime p ≤

√
x Let P≤√x = {p1, p2, p3, .....pr} where p1 = 2, p2 = 3, p3 = 5, ...pr =

max(P≤√x)
Each element of Cx has at least one divisor in that set P≤√x Let consider the bx−p

2p
c first

element of arithmetic sequences :
A2p,p≥3 = {3p, 5p, 7p....(1 + 2pbx−p

2p
c)p} ⊂ Cx where p ∈ P≤√x consisting of p without

p and 2p and less than x

2.5 remarque

The first element of A2p,p≥3 is 3p, the last element is (1 + 2pbx−p
2p
c)p} and whose reason

is 2p which permit us to write Cx =
⊔
p∈P√x

(A2p,p≥3) so Cx + n =
⊔
p∈P√x

(A2p,p≥3 + n)

. in the following we are going to apply Chebotarev-Artin’s theorem in one hand and
the other hand the principle inclusion-exclusion of Moivre, in order to evaluate the prime
numbers of

⊔
p∈P√x

(A2p,p≥3 + n)

2.6 THEOREM 1,cf lectures on nx(p), Jean Pierre Serre

Let a, b > 0 integers such thatgcd(a, b) = 1.
Let Π(x, a, b) = card(p ≤ x, p ≡ a[b]) so ∃c > 0 such that:

Π(x, a, b) = Li(x)
φ(b)

+©(cx exp(−
√
lnx))
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where Li(x) =
∫ x

0
dt
lnt

According to the prime numbers theorem’s we have Π(x) ∼∞ x
lnx

so Π(x, a, b) = Π(x)
φ(b)

+©(cx exp(−
√
lnx))

2.7 THEOREM 2

Let a, b > 0 such that gcd(a, b) = 1 .Let Π(x, a, b) = card(p ≤ x, p ≡ a[b]) so we have
π(x,a,b)
π(x)

= 1
φ(b)

+©(clnx exp(−
√
lnx)) In probabilistic point of view,the probability of prime

numbers less than a given real number x on arithmetic progression of reason b such that
gcd(a, b) = 1 is 1

φ(b)
+©(clnx exp(−

√
lnx)) in the following we are going to vindicate the

application of Chebotarev-Artin’s theorem to the sets
⋂k
j=1 A2pij +n,pij≤x for the integers

1 ≤ i1 ≤ i2 ≤ i3 ≤ ..... ≤ ik ≤ r

2.8 REMARKS

It is easy to see that
⋂k
j=1A2pij +n,pij≤x is the set of multiple

∏k
j=1 pij without

∏k
j=1 pij

and 2
∏k

j=1 pij we pull without problem that
⋂k
j=1A2pij +n,pij≤x = {i

∏k
j=1 pij + n|3 ≤ i ≤

bx−
∏k

j=1 pij

2
∏k

j=1 pij
c} we see that

⋂k
j=1A2pij +n,pij≤x is an arithmetic sequence of reason 2

∏k
j=1 pij

and the first term is 3
∏k

j=1 pij +n . for vindicating the hyphothesis of Chebotarev -Artin

theorem’s it will be question to show that gcd(3
∏k

j=1 pij + n, 2
∏k

j=1 pij) = 1 which easy

because
∏k

j=1 pij don’t divide n

3 Polignac’s conjecture proof

3.1 THEOREM of even gap conjecture

Let x > 0 an arbitrarily real number, n an even integer ,αn(x) the number of prime
number less than x,γ Euler-Mascheroni constant C2 twin prime constant .So it exists a
fonction bn(x) such that limn→∞ bn(x) = 4 exp(−γ)Cn
where Cn = C2

∏
p≥3,p/n

p−1
p−2

such that:αn(x) = xbn(x)
(lnx)2

+©( x
(lnx)3

)

3.2 useful lemma

Let a1, a2, .....ar r non-negative real numbers so
1−

∑r
i=1

1
ai

+
∑

1≤i<j≤r
1

aiaj
+ ......+ (−1)r

a1a2......ar
=

∏r
i=1

ai−1
ai

3.3 proof of the lemma

Consider the polynomial P (x) =
∏r

i=1(x− 1
ai

) .According to the relations roots-coefficients

P (x) = xn +
∑r

k=1

∑
1≤i1<i2<....<ik≤r

(−1)kxn−k∏k
j=1 aij

for x = 1 we obtain the result

3.4 proof of theorem

According to the principle of inclusion-exlusion of Moivre we have :
%(
⋃r
j=2A2pj+n, pj - n) =

∑r
k=2(−1)k−1

∑
2≤i1<i2<...<ik≤r %(

⋂k
j=2 Apij , pij - n)

where % represent the probability of prime numbers and r = max{i|pi ≤
√
x}

%(Cx + n) = %(
⋃r
j=2 A2pj+n, pj - n) = δn(x)

π(x+n)
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According to the Chebotarev-Artin’s theorem :
we have %(

⋂k
j=2Apij , pij - n) = 1

φ(2
∏k

j=1 pij )
+ h(x+ n)

where h(x+ n) =©(cln(x+ n)exp(−
√
ln(x+ n))) so

δn(x)
Π(x+n)

= h(x+ n) +
∑r

k=2

∑
2≤i1<i2<.....<ik≤r

(−1)k−1

φ(2
∏k

j=2 pij ,pij -n)

δn(x)
π(x+n)

= h(x+ n) +
∑r

k=2

∑
2≤i1<i2<.....<ik≤r

(−1)k−1∏k
j=2(pij−1),pij -n

According to the useful lemma we can write :
δn(x)
π(x+n)

= h(x+ n) + (1−
∏r

i=2,pi-n
pi−2
pi−1

)

δn(x) = π(x+ n)− αn(x)− π(n+ 1)
So αn(x) = π(x+ n)− δn(x)− π(n+ 1) finally
αn(x) = π(x+ n)

∏r
i=2,pi-n

p−2
p−1
− π(n+ 1)− π(x+ n)h(x+ n)

as r = max{i|pi
√
x} so αn(x) = π(x+ n)

∏
3≤p≤

√
x,-n

p−2
p−1
− π(n+ 1)− π(x+ n)h(x+ n)

we going now to apply Merten’s third formula in order to evaluate cn(x) =
∏

3≤p≤
√
x,p-n

p−2
p−1

As∏
3≤p≤

√
x
p−2
p−1

=
∏

3≤p≤
√
x,p-n

p−2
p−1

∏
3≤p≤

√
x,p|n

p−2
p−1

we deduce that cn(x) =
∏

3≤p≤
√
x
p−2
p−1

∏
3≤p≤

√
x,p|n

p−1
p−2

The formula of Mertens can been expressed by:∏
p≤x(1−

1
p
) = exp(−γ)

lnx
(1 +©( 1

lnx
))

So
∏

p≤
√
x(1−

1
p
) = 2exp(−γ)

lnx
(1 +©( 1

lnx
))

Let c2(x) =
∏

3≤p≤
√
x
p(p−2)
(p−1)2

c2(x) =
∏

3≤p≤
√
x

p
p−1

∏
3≤p≤

√
x
p−2
p−1

So cn(x) =
∏

3≤p≤
√
x(1−

1
p
)c2(x)

∏
3≤p≤

√
x,p|n

p−1
p−2

so cn(x) = 2
∏

p≤
√
x(1−

1
p
)c2(x)

∏
3≤p≤

√
x,p|n

p−1
p−2

With the formula of Mertens we deduce that :
cn(x) = 4c2(x)exp(−γ)

lnx

∏
3≤p≤

√
x,p|n

p−1
p−2

[1 +©( 1
lnx

)]

As π(x+ n) = x+n
ln(x+n)

[1 +©( 1
ln(x+n)

)]

then αn(x) = 4xc2(x)exp(−γ)
ln2(x)

∏
3≤p≤

√
x,p|n

p−1
p−2

[1 +©( 1
lnx

)]− π(x+ n)h(x+ n)− π(n+ 1)

But in obvious manner we prove that π(x+ n)h(x+ n) =©( x
(ln(x))3

)
for x an arbitrarily real number and an integer n such that n� x we can conclude
for n = inf{m ∈ 2N : p+m ∈ P} we deduce Polignac’s conjecture
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