The internal structure of natural numbers and one method for the definition of large prime numbers
Emmanuil Manousos
APM Institute for the Advancement of Physics and Mathematics, 13 Pouliou str., 11523
Athens, Greece

Abstract

It holds that every product of natural numbers can also be written as a sum. The inverse does not hold when 1 is excluded from the product. For this reason, the investigation of natural numbers should be done through their sum and not through their product. Such an investigation is presented in the present article. We prove that primes play the same role for odd numbers as the powers of 2 for even numbers, and vice versa. The following theorem is proven: "Every natural number, except for 0 and 1, can be uniquely written as a linear combination of consecutive powers of 2 with the coefficients of the linear combination being -1 or +1 ." This theorem reveals a set of symmetries in the internal order of natural numbers which cannot be derived when studying natural numbers on the basis of the product. From such a symmetry a method for identifying large prime numbers is derived.

MSC classifications: 11A41, 11N05
Keywords: Prime numbers, composite numbers

1. INTRODUCTION

It holds that every product of natural numbers can also be written as a sum. The inverse (i.e. each sum of natural numbers can be written as a product) does not hold when 1 is excluded from the product. This is due to prime numbers p which can be written as a product only in the form of $p=1 \cdot p$. For this reason, the investigation of natural numbers should be done through their sum and not through their product. Such an investigation is presented in the present article.

We prove that each natural number can be written as a sum of three or more consecutive natural numbers except of the powers of 2 and the prime numbers. Each power of 2 and each prime number cannot be written as a sum of three or more consecutive natural numbers. Primes play the same role for odd numbers as the powers of 2 for even numbers, and vice versa.

We prove a theorem which is analogous to the fundamental theorem of arithmetic, when we study the positive integers with respect to addition: "Every natural number, with the exception of 0 and 1, can be written in a unique way as a linear combination of consecutive powers of 2 , with the coefficients of the linear combination being -1 or $+1 .{ }^{\prime \prime}$ This theorem reveals a set of symmetries in the internal order of natural numbers which cannot be derived when studying natural numbers on the basis of the product. From such a symmetry a method for identifying large prime numbers is derived.

2. THE SEQUENCE $\boldsymbol{\mu}(\boldsymbol{k}, \boldsymbol{n})$

We consider the sequence of natural numbers

$$
\begin{align*}
& \mu(k, n)=k+(k+1)+(k+2)+\ldots+(k+n)=\frac{(n+1)(2 k+n)}{2} \\
& k \in \mathbb{N}^{*}=\{1,2,3, \ldots\} \tag{2.1}\\
& n \in A=\{2,3,4, \ldots\}
\end{align*}
$$

For the sequence $\mu(k, n)$ the following theorem holds:

Theorem 2.1.

" For the sequence $\mu(k, n)$ the following hold:

1. $\mu(k, n) \in \mathbb{N}^{*}$.
2. No element of the sequence is a prime number.
3. No element of the sequence is a power of 2 .
4. The range of the sequence is all natural numbers that are not primes and are not powers of 2.

Proof.

1. $\mu(k, n) \in \mathbb{N}^{*}$ as a sum of natural numbers.
2. $n \in A=\{2,3,4, \ldots\}$ and therefore it holds that
$n \geq 2$
$n+1 \geq 3^{\text {. }}$
Also we have that
$2 k+n \geq 4$
$\frac{2 k+n}{2} \geq \frac{3}{2}>1$
since $k \in \mathbb{N}^{*}$ and $n \in A=\{2,3,4, \ldots\}$. Thus, the product
$\frac{(n+1)(2 k+n)}{2}=\mu(k, n)$
is always a product of two natural numbers different than 1 , thus the natural number $\mu(k, n)$ cannot be prime.
3. Let that the natural number $\mu(k, n)=\frac{(n+1)(2 k+n)}{2}$ is a power of 2 . Then, it exists $\lambda \in \mathbb{N}$ such as
$\frac{(n+1)(2 k+n)}{2}=2^{\lambda}$
$(n+1)(2 k+n)=2^{\lambda+1}$.
Equation (2.2) can hold if and only if there exist $\lambda_{1}, \lambda_{2} \in \mathbb{N}$ such as
$n+1=2^{\lambda_{1}} \wedge 2 k+n=2^{\lambda_{2}}$
and equivalently
$\left.\begin{array}{l}n=2^{\lambda_{1}}-1 \\ n=2^{\lambda_{2}}-2 k\end{array}\right\}$.
We eliminate n from equations (2.3) and we obtain
$2^{\lambda_{1}}-1=2^{\lambda_{2}}-2 k$
and equivalently
$2 k-1=2^{\lambda_{2}}-2^{\lambda_{1}}$
which is impossible since the first part of the equation is an odd number and the second part is an even number. Thus, the range of the sequence $\mu(k, n)$ does not include the powers of 2 .
4. We now prove that the range of the sequence $\mu(k, n)$ includes all natural numbers that are not primes and are not powers of 2 . Let a random natural number N which is not a prime nor a power of 2 . Then, N can be written in the form
$N=\chi \psi$
where at least one of the χ, ψ is an odd number ≥ 3. Let χ be an odd number ≥ 3. We will prove that there are always exist $k \in \mathbb{N}$ and $n \in A=\{2,3,4, \ldots\}$ such as
$N=\chi \cdot \psi=\mu(k, n)$.
We consider the following two pairs of k and n :

$$
\begin{align*}
& \chi \leq 2 \psi-1, \chi, \psi \in \mathbb{N} \\
& k=k_{1}=\frac{2 \psi+1-\chi}{2} \tag{2.4}\\
& n=n_{1}=\chi-1 \\
& \chi \geq 2 \psi+1, \chi, \psi \in \mathbb{N} \\
& k=k_{2}=\frac{\chi+1-2 \psi}{2} . \tag{2.5}\\
& n=n_{2}=2 \psi-1
\end{align*}
$$

For every $\chi, \psi \in \mathbb{N}$ it holds either the inequality $\chi \leq 2 \psi-1$ or the inequality $\chi \geq 2 \psi+1$. Thus, for each pair of naturals (χ, ψ), where χ is odd, at least one of the pairs $\left(k_{1}, n_{1}\right)$, $\left(k_{2}, n_{2}\right)$ of equations (2.4), (2.5) is defined. We now prove that "when the natural number k_{1} of equation (2.4) is $k_{1}=0$ then the natural number k_{2} of equation (2.5) is $k_{2}=1$ and additionally it holds that $n_{2}>2$.". For $k_{1}=0$ from equations (2.4) we take
$\chi=2 \psi+1$
and from equations (2.5) we have that
$k_{2}=\frac{(2 \psi+1)+1-2 \psi}{2}=1$
$n_{2}=2 \psi-1$
and because $\psi \geq 2$ we obtain
$k_{2}=1$
$n_{2}=2 \psi-1 \geq 3>2$.
We now prove that when $k_{2}=0$ in equations (2.5), then in equations (2.4) it is $k_{1}=1$ and $n_{1}>2$. For $k_{2}=0$, from equations (2.5) we obtain
$\chi=2 \psi-1$
and from equations (2.4) we get
$k_{1}=\frac{2 \psi+1-(2 \psi-1)}{2}=1$.
$n_{1}=\chi-1=2 \psi-2 \geq 2$
We now prove that at least one of the k_{1} and k_{2} is positive. Let
$k_{1}<0 \wedge k_{2}<0$.
Then from equations (2.4) and (2.5) we have that
$2 \psi+1-\chi<0 \wedge \chi+1-2 \psi<0$.

Taking into account that $\chi>1$ is odd, that is $\chi=2 \rho+1, \rho \in \mathbb{N}$, we obtain from inequalities
$2 \psi+1-(2 \rho-1)<0 \wedge(2 \rho+1)+1-2 \psi<0$
$2 \psi-2 \rho<0 \wedge 2 \rho-2 \psi+2>0$
$\psi<\rho \wedge \psi>\rho+1$
which is absurd. Thus, at least one of k_{1} and k_{2} is positive.
For equations (2.4) we take
$\mu\left(k_{1}, n_{1}\right)=\frac{\left(n_{1}+1\right)\left(2 k_{1}+n_{1}\right)}{2}$
$=\frac{(\chi-1+1)\left(2 \frac{2 \psi+1-\chi}{2}+\chi-1\right)}{2}=\frac{\chi(2) \psi}{2}=\chi \psi=N$
For equations (2.5) we obtain
$\mu\left(k_{2}, n_{2}\right)=\frac{\left(n_{2}+1\right)\left(2 k_{2}+n_{2}\right)}{2}$
$=\frac{(2 \psi-1+1)\left(2 \frac{\chi+1-2 \psi}{2}+2 \psi-1\right)}{2}=\frac{2 \psi \chi}{2}=\chi \psi=N$
Thus, there are always exist $k \in \mathbb{N}^{*}$ and $n \in A=\{2,3,4, \ldots\}$ such as
$N=\chi \psi=\mu(k, n)$ for every N which is not a prime number and is not a power of 2 .ם
Example 2.1. For the natural number $N=40$ we have
$N=40=5 \cdot 8$
$\chi=5$
$\psi=8$
and from equations (2.4) we get
$k=k_{1}=\frac{16+1-5}{2}=6$
$n=n_{1}=5-1=4$
thus, we obtain
$40=\mu(6,4)$.
Example 2.2. For the natural number $N=51$,
$N=51=3 \cdot 17=17 \cdot 3$
there are two cases. First case:
$N=51=3 \cdot 17$
$\chi=3$
$\psi=17$
and from equations (2.4) we obtain
$k=k_{1}=\frac{34+1-3}{2}=16$
$n=n_{1}=3-1=2$
thus,
$51=\mu(16,2)$.
Second case:

$$
\begin{aligned}
& N=51=17 \cdot 3 \\
& \chi=17 \\
& \psi=3
\end{aligned}
$$

and from equations (2.5) we obtain
$k=k_{2}=\frac{17+1-6}{2}=6$
$n=n_{2}=6-1=5$
thus,
$51=\mu(6,5)$.
The second example expresses a general property of the sequence $\mu(k, n)$. The more composite an odd number that is not prime (or an even number that is not a power of 2) is, the more are the $\mu(k, n)$ combinations that generate it.

Example 2.3.

$135=15 \cdot 9=27 \cdot 5=9 \cdot 15=45 \cdot 3=5 \cdot 27=3 \cdot 45$
$135=\mu(2,14)=\mu(9,9)=\mu(11,8)=\mu(20,5)=\mu(25,4)=\mu(44,2)$
a. $135=9 \cdot 15=\mu(2,14)=\mu(11,8)$
$135=2+3+4+\ldots \ldots+15+16=11+12+13 \ldots . .+18+19$.
b. $135=5 \cdot 27=\mu(9,9)=\mu(25,4)$
$135=9+10+11+\ldots . .+17+18=25+26+27+28+29$.
c. $135=3 \cdot 45=\mu(20,5)=\mu(44,2)$
$135=20+21+22+23+24+25=44+45+46$.
In the transitive property of multiplication, when writing a composite odd number or an even number that is not a power of 2 as a product of two natural numbers, we use the same natural numbers $\chi, \psi \in \mathbb{N}$:
$\Phi=\chi \cdot \psi=\psi \cdot \chi$.
On the contrary, the natural number Φ can be written in the form $\Phi=\mu(k, n)$ using different natural numbers $k \in \mathbb{N}^{*}$ and $n \in A=\{2,3,4, \ldots\}$, through equations (2.4), (2.5). This difference between the product and the sum can also become evident in example 2.3:
$135=3 \cdot 45=45 \cdot 3$
$135=44+45+46=20+21+22+23+24+25$

From Theorem 2.1 the following corollary is derived:
Corollary 2.1. "1. Every natural number which is not a power of 2 and is not a prime can be written as the sum of three or more consecutive natural numbers.
2. Every power of 2 and every prime number cannot be written as the sum of three or more consecutive natural numbers."

Proof. Corollary 2.1 is a direct consequence of Theorem 2.1.

3. THE CONCEPT OF REARRANGEMENT

In this paragraph, we present the concept of rearrangement of the composite odd numbers and even numbers that are not power of 2 . Moreover, we prove some of the consequences of the rearrangement in the Diophantine analysis. The concept of rearrangement is given from the following definition:

Definition. "We say that the sequence $\mu(k, n), k \in \mathbb{N}^{*}, n \in A=\{2,3,4, \ldots\}$ is rearranged if there exist natural numbers $k_{1} \in \mathbb{N}^{*}, n_{1} \in A,\left(k_{1}, n_{1}\right) \neq(k, n)$ such as
$\mu(k, n)=\mu\left(k_{1}, n_{1}\right) . "$
From equation (2.1) written in the form of
$\mu(k, n)=k+(k+1)+(k+2)+\ldots . .+(k+n)$
two different types of rearrangement are derived: The "compression", during which n decreases with a simultaneous increase of k. The «decompression», during which n increases with a simultaneous decrease of k. The following theorem provides the criterion for the rearrangement of the sequence $\mu(k, n)$.

Theorem 3.1. " ' 1 . The sequence $\mu\left(k_{1}, n_{1}\right),\left(k_{1}, n_{1}\right) \in \mathbb{N}^{*} \times A$ can be compressed

$$
\begin{equation*}
\mu\left(k_{1}, n_{1}\right)=\mu\left(k_{1}+\varphi, n_{1}-\omega\right) \tag{3.2}
\end{equation*}
$$

if and only if there exist $\varphi, \omega \in \mathbb{N}^{*}, \omega \leq n_{1}-2$ which satisfies the equation

$$
\begin{align*}
& \omega^{2}-\left(2 k_{1}+2 n_{1}+1+2 \varphi\right) \omega+2\left(n_{1}+1\right) \varphi=0 \\
& \varphi, \omega \in \mathbb{N}^{*} \tag{3.3}\\
& \omega \leq n_{1}-2
\end{align*}
$$

2. The sequence $\mu\left(k_{2}, n_{2}\right),\left(k_{2}, n_{2}\right) \in \mathbb{N}^{*} \times A$ can be decompressed

$$
\begin{equation*}
\mu\left(k_{2}, n_{2}\right)=\mu\left(k_{2}-\varphi, n_{2}+\omega\right) \tag{3.4}
\end{equation*}
$$

if and only if there exist $\varphi, \omega \in \mathbb{N}^{*}, \varphi \leq k_{2}-1$ which satisfies the equation

$$
\begin{align*}
& \omega^{2}+\left(2 k_{2}+2 n_{2}+1-2 \varphi\right) \omega-2\left(n_{2}+1\right) \varphi=0 \\
& \varphi, \omega \in \mathbb{N}^{*} \tag{3.5}\\
& \varphi \leq k_{2}-1
\end{align*}
$$

3. The odd number $\Pi \neq 1$ is prime if and only if the sequence
$\mu(k, n)=\Pi \cdot 2^{l}$
$l, k \in \mathbb{N}^{*}, n \in A$
cannot be rearranged.
4. The odd Π is prime if and only if the sequence
$\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)=\Pi^{2}$
cannot be rearranged."
Proof. 1,2. We prove part 1 of the corollary and similarly number 2 can also be proven. From equation (4.1) we conclude that the sequence $\mu\left(k_{1}, n_{1}\right)$ can be compressed if and only if there exist $\varphi, \omega \in \mathbb{N}^{*}$ such as
$\mu\left(k_{1}, n_{1}\right)=\mu\left(k_{1}+\varphi, n_{1}-\omega\right)$.
In this equation the natural number $n_{1}-\omega$ belongs to the set $A=\{2,3,4, \ldots\}$ and thus $n_{1}-\omega \geq 2 \Leftrightarrow \omega \leq n_{1}-2$. Next, from equations (2.1) we obtain
$\mu\left(k_{1}, n_{1}\right)=\mu\left(k_{1}+\varphi, n_{1}-\omega\right)$
$\frac{\left(n_{1}+1\right)\left(2 k_{1}+n_{1}\right)}{2}=\frac{\left(n_{1}-\omega+1\right)\left[2\left(k_{1}+\varphi\right)+n_{1}-\omega\right]}{2}$
and after the calculations we get equation (3.3).
5. The sequence (3.6) is derived from equations (2.4) or (2.5) for $\chi=\Pi$ and $\psi=2^{l}$. Thus, in the product $\chi \psi$ the only odd number is Π. If the sequence $\mu(k, n)$ in equation (3.6) cannot be rearranged then the odd number Π has no divisors. Thus, Π is prime. Obviously, the inverse also holds.
6. First, we prove equations (3.7). From equation (2.1) we obtain:
$\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)=\frac{(\Pi-1+1)\left(2 \frac{\Pi+1}{2}+\Pi-1\right)}{2}=\Pi^{2}$.
In case that the odd number Π is prime in equations (2.4), (2.5) the natural numbers χ, ψ are unique $\chi=\Pi \wedge \psi=\Pi$, and from equation (2.5) we get $k=\frac{\Pi+1}{2} \wedge n=\Pi-1$. Thus, the sequence $\mu(k, n)=\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)$ cannot be rearranged. Conversely, if the sequence
$\mu\left(\frac{\Pi+1}{2}, \Pi-1\right)=\Pi^{2}=\Pi \cdot \Pi$ cannot be rearranged the odd number Π cannot be composite and thus Π is prime.

We now prove the following corollary:
Corollary 3.1. "1. The odd number Φ,

$$
\begin{align*}
& \Phi=\Pi^{2}=\mu\left(\frac{\Pi+1}{2}, \Pi-1\right) \\
& \Pi=\text { odd } \tag{3.8}\\
& \Pi \neq 1
\end{align*}
$$

is decompressed and compressed if and only if the odd number Π is composite.
2. The even number α_{1},

$$
\begin{align*}
& \alpha_{1}=2^{l} \Pi=\mu\left(2^{l}-\frac{\Pi-1}{2}, \Pi-1\right) \\
& \Pi=o d d \tag{3.9}\\
& 3 \leq \Pi \leq 2^{l}-1 \\
& l \in \mathbb{N}, l \geq 2
\end{align*}
$$

cannot be decompressed, while it compresses if and only if the odd number Π is composite.
3. The even number α_{2},

$$
\begin{align*}
& \alpha_{2}=2^{l} \Pi=\mu\left(\frac{\Pi+1}{2}-2^{l}, 2^{l+1}-1\right) \\
& \Pi=o d d \tag{3.10}\\
& \Pi \geq 2^{l+1}+1 \\
& l \in \mathbb{N}^{*}
\end{align*}
$$

cannot be compressed, while it decompresses if and only if the odd number Π is composite.
4. Every even number that is not a power of can be written either in the form of equation (3.9) or in the form of equation (3.10)."

Proof.

1. It is derived directly through number (4) of Theorem 3.1. A second proof can be derived through equations $(2.4),(2,5)$ since every composite odd Π can be written in the form of $\Pi=\chi \psi, \chi, \psi \in \mathbb{N}$, χ, ψ odds.

$2,3$.

Let the even number α,
$\alpha=2^{l} \Pi$
$\Pi=o d d$.
$l \in \mathbb{N}^{*}$
From equation (2.4) we obtain
$k=\frac{2 \cdot 2^{l}+1-\Pi}{2}=2^{l}-\frac{\Pi-1}{2}$
$n=\Pi-1$
and since $k, n \in \mathbb{N}, k \geq 1 \wedge n \geq 2$ we get
$\frac{2 \cdot 2^{l}+1-\Pi}{2} \geq 1$
$\Pi-1 \geq 2$
and equivalently
$3 \leq \Pi \leq 2^{l+1}-1$.
In the second of equations (3.12) the natural number n obtains the maximum possible value of $n=\Pi-1$, and thus the natural number k takes the minimum possible value in the first of equations (3.12). Thus, the even number
$\alpha_{1}=\mu\left(2^{l}-\frac{\Pi-1}{2}, \Pi-1\right)$
cannot decompress. If the odd number Π is composite then it can be written in the form of $\Pi=\chi \psi$, $\chi, \psi \in \mathbb{N}^{*}, \chi, \psi$ odds, $\chi, \psi<\Pi, \alpha_{1}=2^{l} \chi \psi$. Therefore, the natural number $\alpha_{1}=2^{l} \chi \psi$ decompresses since from equations (3.11) it can be written in the form of $\alpha_{1}=\mu(k, n)$ with $n=\chi-1<\Pi-1$. Similarly, the proof of 3 is derived from equations (2.5).
4. From the above proof process it follows that every even number that is not a power of 2 can be written either in the form of equation (3.9) or in the form of equation (3.10).

By substituting $\Pi=P=$ prime in equations of Theorem 3.1 and of corollary 3.1 four sets of equations are derived, each including infinite impossible diophantine equations.

Example 3.1. The odd number $P=999961$ is prime. Thus, combining (1) of Theorem 3.1 with (1) of corollary 3.1 we conclude that there is no pair $(\omega, \varphi) \in \mathbb{N}^{2}$ with $\omega \leq 999958$ which satisfies the diophantine equation
$\omega^{2}-(2999883+2 \varphi) \omega+1999922 \varphi=0$.
We now prove the following corollary:
Corollary 3.2 "The square of every prime number can be uniquely written as the sum of consecutive natural numbers."

Proof. For $\Pi=P=$ prime in equation (3.5) we obtain

$$
\begin{equation*}
P^{2}=\mu\left(\frac{P+1}{2}, P-1\right) \tag{3.13}
\end{equation*}
$$

According with 4 of Theorem 3.1 the odd P^{2} cannot be rearranged. Thus, the odd can be uniquely written as the sum of consecutive natural numbers, as given from equation (3.13).

Example 3.2. The odd $P=17$ is prime. From equation (3.13) for $P=17$ we obtain

$$
289=\mu(9,16)
$$

and from equation (2.1) we get

$$
289=9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25
$$

which is the only way in which the odd number 289 can be written as a sum of consecutive natural numbers.

4. NATURAL NUMBERS AS LINEAR COMBINATION OF CONSECUTIVE POWERS OF 2

According to the fundamental theorem of arithmetic, every natural number can be uniquely written as a product of powers of prime numbers. The previously presented study reveals a correspondence between odd prime numbers and the powers of 2 . Thus, the question arises whether there exists a theorem for the powers of 2 corresponding to the fundamental theorem of arithmetic. The answer is given by the following theorem:

Theorem 4.1. 'Every natural number, with the exception of 0 and 1, can be uniquely written as a linear combination of consecutive powers of 2 , with the coefficients of the linear combination being -1 or $+1 .{ }^{\prime \prime}$

Proof. Let the odd number Π as given from equation
$\Pi=\Pi\left(v, \beta_{i}\right)=2^{v+1}+2^{v} \pm 2^{v-1} \pm 2^{v-2} \pm \ldots \ldots . . \pm 2^{1} \pm 2^{0}=2^{v+1}+2^{v}+\sum_{i=0}^{v-1} \beta_{i} 2^{i}$
$\beta_{i}= \pm 1, i=0,1,2, \ldots \ldots . ., v-1$
$v \in \mathbb{N}$
From equation (4.1) for $v=0$ we obtain
$\Pi=2^{1}+2^{0}=2+1=3$.
We now examine the case where $v \in \mathbb{N}^{*}$. The lowest value that the odd number Π of equation (4.1) can obtain is
$\Pi_{\text {min }}=\Pi(v)=2^{v+1}+2^{v}-2^{v-1}-2^{v-1}-\ldots \ldots . .2^{1}-1$
$\Pi_{\text {min }}=\Pi(v)=2^{v+1}+1$.
The largest value that the odd number Π of equation (4.1) can obtain is

$$
\begin{align*}
& \Pi_{\max }=\Pi(v)=2^{v+1}+2^{v}+2^{v-1}+\ldots \ldots . .2^{1}+1 \\
& \Pi_{\max }=\Pi(v)=2^{v+2}-1 \tag{4.3}
\end{align*}
$$

Thus, for the odd numbers $\Pi=\Pi\left(v, \beta_{i}\right)$ of equation (4.1) the following inequality holds

$$
\begin{equation*}
\Pi_{\min }=2^{v+1}+1 \leq \Pi\left(v, \beta_{i}\right) \leq 2^{v+2}-1=\Pi_{\max } . \tag{4.4}
\end{equation*}
$$

The number $N\left(\Pi\left(v, \beta_{i}\right)\right)$ of odd numbers in the closed interval $\left[2^{v+1}+1,2^{v+2}-1\right]$ is
$N\left(\Pi\left(v, \beta_{i}\right)\right)=\frac{\Pi_{\max }-\Pi_{\min }}{2}+1=\frac{\left(2^{v+2}-1\right)-\left(2^{v+1}+1\right)}{2}+1$
$N\left(\Pi\left(v, \beta_{i}\right)\right)=2^{v}$.
The integers $\beta_{i}, i=0,1,2, \ldots \ldots . ., v-1$ in equation (4.1) can take only two values, $\beta_{i}=-1 \vee \beta_{i}=+1$, thus equation (4.1) gives exactly $2^{v}=N\left(\Pi\left(v, \beta_{i}\right)\right)$ odd numbers. Therefore, for every $v \in \mathbb{N}^{*}$ equation (4.1) gives all odd numbers in the interval $\left[2^{\nu+1}+1,2^{\nu+2}-1\right]$.

We now prove the theorem for the even numbers. Every even number α which is a power of 2 can be uniquely written in the form of $\alpha=2^{v}, v \in \mathbb{N}^{*}$. We now consider the case where the even number α is not a power of 2 . In that case, according to corollary 3.1 the even number α is written in the form of

$$
\begin{equation*}
\alpha=2^{l} \Pi, \Pi=\text { odd }, \Pi \neq 1, l \in \mathbb{N}^{*} . \tag{4.6}
\end{equation*}
$$

We now prove that the even number α can be uniquely written in the form of equation (4.6). If we assume that the even number α can be written in the form of
$\alpha=2^{l} \Pi=2^{i}{ }^{i}{ }^{\prime}$
$l \neq l^{\prime}\left(l>l^{\prime}\right)$
$\Pi \neq \Pi^{\prime}$
$l, l^{\prime} \in \mathbb{N}^{*}$
П, $\Pi^{\prime}=$ odd
the we obtain
$2^{l} \Pi=2^{i} \Pi^{\prime}$
$2^{l-l} \Pi=\Pi^{\prime}$
which is impossible, since the first part of this equation is even and the second odd. Thus, it is $l=l$ and we take that $\Pi=\Pi$ from equation (4.7). Therefore, every even number α that is not a power of 2 can be uniquely written in the form of equation (4.6). The odd number Π of equation (4.6) can be uniquely written in the form of equation (4.1), thus from equation (4.6) it is derived that every even number α that is not a power of 2 can be uniquely written in the form of equation
$\alpha=\alpha\left(l, v, \beta_{i}\right)=2^{l}\left(2^{v+1}+2^{v}+\sum_{i=0}^{v-1} \beta_{i} 2^{i}\right)$
$l \in \mathbb{N}^{*}, v \in \mathbb{N}$
$\beta_{i}= \pm 1, i=0,1,2, \ldots \ldots . ., v-1$
and equivalently
$\alpha=\alpha\left(l, v, \beta_{i}\right)=2^{l+v+1}+2^{l+v}+\sum_{i=0}^{v-1} \beta_{i} 2^{l+i}$
$l \in \mathbb{N}^{*}, v \in \mathbb{N}$
$\beta_{i}= \pm 1, i=0,1,2, \ldots \ldots . ., v-1$
For 1 we take
$1=2^{0}$
$1=2^{1}-2^{0}$
thus, it can be written in two ways in the form of equation (4.1). Both the odds of equation (4.1) and the evens of the equation (4.8) are positive. Thus, 0 cannot be written either in the form of equation (4.1) or in the form of equation (4.8).

In order to write an odd number $\Pi \neq 1,3$ in the form of equation (4.1) we initially define the $v \in \mathbb{N}^{*}$ from inequality (4.4). Then, we calculate the sum
$2^{v+1}+2^{v}$.
If it holds that $2^{v+1}+2^{v}<\Pi$ we add the 2^{v-1}, whereas if it holds that $2^{v+1}+2^{v}>\Pi$ then we subtract it. By repeating the process exactly v times we write the odd number Π in the form of equation (4.1). The number of v steps needed in order to write the odd number Π in the form of equation (4.1) is extremely low compared to the magnitude of the odd number Π, as derived from inequality (4.4).

Example 4.1. For the odd number $\Pi=23$ we obtain from inequality (4.4)

$$
\begin{aligned}
& 2^{v+1}+1<23<2^{v+2}-1 \\
& 2^{v+1}+2<24<2^{v+2} \\
& 2^{v}<12<2^{v+1}
\end{aligned}
$$

thus $v=3$. Then, we have
$2^{v+1}+2^{v}=2^{4}+2^{3}=24>23$ (thus 2^{2} is subtracted)
$2^{4}+2^{3}-2^{2}=20<23$ (thus 2^{1} is added)
$2^{4}+2^{3}-2^{2}+2^{1}=22<23$ (thus $2^{0}=1$ is added)
$2^{4}+2^{3}-2^{2}+2^{1}+1=23$.
Fermat numbers F_{s} can be written directly in the form of equation (4.1), since they are of the form $\Pi_{\text {min }}$,
$F_{s}=2^{2^{s}}+1=\Pi_{\min }\left(2^{s}-1\right)=2^{2^{s}}+2^{2^{s}-1}-2^{2^{s}-2}-2^{2^{s}-3}-\ldots \ldots . .-2^{1}-1$.
$s \in \mathbb{N}^{*}$
Mersenne numbers M_{p} can be written directly in the form of equation (4.1), since they are of the form $\Pi_{\text {max }}$,
$M_{p}=2^{p}-1=\Pi_{\max }(p-2)=2^{p-1}+2^{p-2}+2^{p-3}+\ldots \ldots .+2^{1}+1$
$p=$ prime
In order to write an even number α that is not a power of 2 in the form of equation (4.1), initially it is consecutively divided by 2 and it takes of the form of equation (4.6). Then, we write the odd number Π in the form of equation (4.1).

Example 4.2. By consecutively dividing the even number $\alpha=368$ by 2 we obtain $\alpha=368=2^{4} \cdot 23$. Then, we write the odd number $\Pi=23$ in the form of equation (4.1), $23=2^{4}+2^{3}-2^{2}+2^{1}+1$, and we get

$$
\begin{aligned}
& 368=2^{4}\left(2^{4}+2^{3}-2^{2}+2^{1}+1\right) \\
& 368=2^{8}+2^{7}-2^{6}+2^{5}+2^{4}
\end{aligned}
$$

This equation gives the unique way in which the even number $\alpha=368$ can be written in the form of equation (4.9).

From inequality (4.4) we obtain

$$
\begin{aligned}
& 2^{v+1}+1 \leq \Pi \leq 2^{v+2}-1 \\
& 2^{v+1}<2^{v+1}+1 \leq \Pi \leq 2^{v+2}-1<2^{v+2} \\
& 2^{v+1}<\Pi<2^{v+2} \\
& (v+1) \log 2<\log \Pi<(v+2) \log 2
\end{aligned}
$$

from which we get

$$
\frac{\log \Pi}{\log 2}-1<v+1<\frac{\log \Pi}{\log 2}
$$

and finally
$v+1=\left[\frac{\log \Pi}{\log 2}\right]$
'where $\left[\frac{\log \Pi}{\log 2}\right]$ the integer part of $\frac{\log \Pi}{\log 2} \in \mathbb{R}$.
We now give the following definition:
Definition 4.1. We define as the conjugate of the odd
$\Pi=\Pi\left(v, \beta_{i}\right)=2^{v+1}+2^{v}+\sum_{i=0}^{i=v-1} \beta_{i} 2^{i}$
$\beta_{i}= \pm 1, i=0,1,2, \ldots \ldots . ., v-1$
$v \in \mathbb{N}^{*}$
the odd Π^{*},
$\Pi^{*}=\Pi^{*}\left(v, \gamma_{j}\right)=2^{v+1}+2^{v}+\sum_{j=0}^{j=v-1} \gamma_{j} 2^{j}$
$\gamma_{i}= \pm 1, j=0,1,2, \ldots \ldots . . ., v-1$
$v \in \mathbb{N}^{*}$
for which it holds
$\gamma_{k}=-\beta_{k} \forall k=0,1,2, \ldots \ldots . ., v-1$.
For conjugate odds, the following corollary holds:
Corollary 4.1. " For the conjugate odds $\Pi=\Pi\left(v, \beta_{i}\right)$ and $\Pi^{*}=\Pi^{*}\left(v, \gamma_{i}\right)$ the following hold:

1. $\left(\Pi^{*}\right)^{*}=\Pi$.
2. $\Pi+\Pi^{*}=3 \cdot 2^{v+1}$.
3. Π is divisible by 3 if and only if Π^{*} is divisible by 3 ."

Proof. 1.The 1 of the corollary is an immediate consequence of definition 4.1.
2. From equations (4.13), (4.14) and (4.15) we get
$\Pi+\Pi^{*}=\left(2^{v+1}+2^{v}\right)+\left(2^{v+1}+2^{v}\right)$
and, equivalently
$\Pi+\Pi^{*}=3 \cdot 2^{v+1}$.
3. If the odd Π is divisible by 3 then it is written in the form $\Pi=3 x, x=o d d$ and from equation (4.17) we get $3 x+\Pi^{*}=3 \cdot 2^{v+1}$ and equivalently $\Pi^{*}=3\left(2^{v+1}-x\right)$. Similarly we can prove the inverse.

5. THE HARMONIC ODD NUMBERS AND A METHOD FOR DEFINING LARGE PRIME NUMBERS

The harmonic symmetry: We define as harmonic the odd numbers of equation (4.1) for which the signs of $\beta_{i}= \pm 1, i=0,1,2,3 \ldots \ldots . ., v-1$ alternate:
$\Pi_{1}=2^{\nu+1}+2^{\nu}-2^{\nu-1}+2^{\nu-2}-\ldots \ldots . .-2^{1}+1$
$\Pi_{2}=2^{\nu+1}+2^{\nu}+2^{\nu-1}-2^{\nu-2}+\ldots \ldots .+2^{1}-1$.
$v=2 \lambda, \lambda \in \mathbb{N}^{*}$
$\Pi_{1}=2^{\nu+1}+2^{\nu}-2^{\nu-1}+2^{\nu-2}-\ldots \ldots . .-2^{1}+1$
$\Pi_{2}=2^{\nu+1}+2^{\nu}+2^{\nu-1}-2^{\nu-2}+\ldots \ldots . .+2^{1}-1$.
$v=2 \lambda+1, \lambda \in \mathbb{N}^{*}$
From equations (5.1), (5.2) and definition 4.1 we obtain
$\Pi_{2}=\Pi_{1}^{*}=3 \times 2^{v+1}-\Pi_{1}$
for the pair of harmonic odd numbers.
A method for the determination of large prime numbers emerges from the study we presented. This method is completely different from previous methods [1-11]. When we consider the prime factorization of the odd integers
$\Phi_{1}=2+\Pi_{1}=2+2^{\nu+1}+2^{\nu}-2^{\nu-1}+2^{\nu-2}-\ldots \ldots . .-2^{1}+1$
$\nu=2 \lambda, \lambda \in \mathbb{N}^{*}$

$$
\begin{align*}
& \Phi_{2}=-2+\Pi_{2}=-2+2^{\nu+1}+2^{v}+2^{\nu-1}-2^{\nu-2}+\ldots \ldots . .+2^{1}-1 \\
& v=2 \lambda, \lambda \in \mathbb{N}^{*} \tag{5.5}
\end{align*}
$$

$$
\begin{equation*}
\Phi_{2}=\Phi_{1}^{*}=3 \times 2^{V+1}-\Phi_{1} \tag{5.6}
\end{equation*}
$$

we have the following statement:
The factors of either Φ_{1} or $\Phi_{2}=\Phi_{1}^{*}$ consist of a set of small prime factors and one large factor. Hence from the factorization of Φ_{1} and $\Phi_{2}=\Phi_{1}^{*}$ of equations (5.4), (5.5) we get a large prime number. Following are 11 examples where we have chosen arbitrary even $v, 600 \leq v \leq 1000$, in equations (5.4), (5.5).

1. $v=604$
$\Phi_{1}=3 \times 5 \times 1423 \times 2677 \times 1039667 \times 1465469 \times 2033624136455907062140355606581460617$ 960329378244909713340374546035722007834481807880893223943637129816307143853799 454110280390103176523414883666509589711687765791
2. $v=626$
$\Phi_{1}=13 \times 186653 \times 306032599340492581270323029570138222136733600420877092183139417$ 574185782109955578496315765962131603014089519221871827181120845674859725387186 219442305406755275821605426602403741599957
3. $v=644$
$\Phi_{1}=5 \times 79 \times 12671297 \times 38892671359559494324882180204888273078001950134412751$ 881230225550378061442396379471711953850899474720409489565536036909109253945965 590266361910559333142120493266182138997818136400630503
4. $v=688$
$\Phi_{1}=3^{3} \times 5 \times 137 \times 2357 \times 84239 \times 14276659 \times 111598463167 \times 164995567141 \times 3547493034$ 864246374604223939439254117526195183644765258504745395441461348003624541265182 053620319595210678493117621150188802864705030169622562000148389984593085080457
5. $v=732$
$\Phi_{1}=5^{5} \times 19 \times 4357 \times 10093 \times 2901193 \times 373058471 \times 21318693003272810610223875009176$
985967454565131359547239807330702392207730665072351378572215387223133953567092 456647869354874941347502746701928543247909407783975122056127018272539991430427 637981
6. $v=818$
$\Phi_{2}=5826599918309521729414628892756111346582385085483938095996388692690239258$ 901551139189714409550909093308382061608683211278156913402724889465422572029940 710372011896628413739441379150647273555252328499350633086191299627798178454098 229036211569513811 is prime
7. $v=838$?
8. $v=842$
$\Phi_{1}=13 \times 811 \times 7789 \times 15271 \times 66809 \times 933419184297225688884848133741618091582561157$
362135750330558036085494747230138415970602017694350758458917589235971861548843 635060827053633582882443092203262135552296661334709021156021405492515100671199 284761072521866782927154434480887521
9. $v=914$?
10. $v=986$?
11. $v=998$
$\Phi_{2}=23 \times 277 \times 4211 \times 1385899 \times 240154091459652243015812929515159070212159918817$ 425875611004712759052716135663441910181493025014669780274245881010561780858639 784499969926885693756207174479909272942309784548553831369221141895942976579419 394048307219568666715750728448387606183250921312430705694057415487884739523892 723969

Equations (5.4), (5.5) and (5.6) are a special case of equations
$\Phi_{1}(v, \xi)=\Phi_{1}\left(v, 2^{2 \xi+1}\right)=2^{2 \xi+1}+\Pi_{1}(v)=2^{2 \xi+1}+2^{v+1}+2^{v}-2^{v-1}+2^{v-2}-\ldots \ldots . .-2^{1}+1$
$v=2 \lambda, \lambda \in \mathbb{N}^{*}$
$\xi=0,1,2, \ldots \ldots \ldots, \frac{v-2}{2}=\lambda-1$
$\Phi_{2}(v, \xi)=\Phi_{2}\left(v, 2^{2 \xi+1}\right)=-2^{2 \xi+1}+\Pi_{2}(v)=-2^{2 \xi+1}+2^{\nu+1}+2^{v}+2^{\nu-1}-2^{v-2}+\ldots \ldots . .+2^{1}-1$
$v=2 \lambda, \lambda \in \mathbb{N}^{*}$
$\xi=0,1,2, \ldots \ldots \ldots, \frac{v-2}{2}=\lambda-1$
$\Phi_{2}(v, \xi)=3 \times 2^{v+1}-\Phi_{1}(v, \xi)=\Phi_{1}^{*}(v, \xi)$
for $\xi=0$. The general equations (5.7), (5.8) and (5.9) give all possible variations of the method. For example, for $v=838$, a value of v that did not give a large prime number in the previous examples, from equation (5.7) for $\xi=1$ we get
$\Phi_{1}(838,1)=3 \times 251 \times 124958179125661642577 \times 51945201394308356447274374943957$
749268889249128703205379933327597692534177000888147927160249734500867000722765 431922957290626876299700840201468643187688745195339241792572155819582073320776 475981870379650986830637696975455178897139

For $v=66$ and $\xi=1,2,3, \ldots \ldots ., \frac{v-2}{2}=32$ from equation (5.7) we get
$\Pi_{1}=196765270119568550571$
$\Pi_{2}=245956587649460688213=3^{2} \times 27328509738828965357$
$\Phi_{2}(v, 2)=\Phi_{1}^{*}(v, 2)=73 \times 3369268323965214907$
$\Phi_{1}\left(v, 2^{3}\right)=1645337 \times 119589646449067$
$\Phi_{2}\left(v, 2^{5}\right)=4140643009 \times 59400577909$
$\Phi_{2}\left(v, 2^{7}\right)=\Phi_{1}^{*}\left(v, 2^{7}\right)=5 \times 13907 \times 3537162402379531$
$\Phi_{2}\left(v, 2^{9}\right)=\Phi_{1}^{*}\left(v, 2^{9}\right)=13 \times 601 \times 25184342777367023$
$\Phi_{2}\left(v, 2^{11}\right)=\Phi_{1}^{*}\left(v, 2^{11}\right)=5 \times 49191317529892137233$
$\Phi_{1}\left(v, 2^{13}\right)=196765270119568558763$ is prime
$\Phi_{2}\left(v, 2^{15}\right)=\Phi_{1}^{*}\left(v, 2^{15}\right)=5 \times 3259 \times 36269 \times 416167836559$
$\Phi_{2}\left(v, 2^{17}\right)=\Phi_{1}^{*}\left(v, 2^{17}\right)=157 \times 12248491 \times 127901671243$
$\Phi_{1}\left(v, 2^{19}\right)=13 \times 19 \times 4643 \times 32083 \times 5347833013$
$\Phi_{1}\left(v, 2^{21}\right)=271 \times 5903 \times 123000357013771$
$\Phi_{1}\left(v, 2^{23}\right)=7 \times 257879 \times 2350441 \times 46375123$
$\Phi_{1}\left(v, 2^{25}\right)=634853 \times 309938316617551$
$\Phi_{2}\left(v, 2^{27}\right)=\Phi_{1}^{*}\left(v, 2^{27}\right)=5 \times 49191317529865294097$
$\Phi_{1}\left(v, 2^{29}\right)=7^{2} \times 107 \times 37529137921057681$
$\Phi_{1}\left(v, 2^{31}\right)=13 \times 17749367 \times 852750974689$
$\Phi_{1}\left(v, 2^{33}\right)=233 \times 1231 \times 5227 \times 131244759703$
$\Phi_{2}\left(v, 2^{35}\right)=\Phi_{1}^{*}\left(v, 2^{35}\right)=5 \times 14683 \times 3350222537834243$
$\Phi_{2}\left(v, 2^{37}\right)=\Phi_{1}^{*}\left(v, 2^{37}\right)=73 \times 3369268322082489517$
$\Phi_{2}\left(v, 2^{39}\right)=\Phi_{1}^{*}\left(v, 2^{39}\right)=7 \times 29 \times 2293 \times 528394593740437$
$\Phi_{1}\left(v, 2^{41}\right)=7 \times 37 \times 759711476133559097$
$\Phi_{2}\left(v, 2^{43}\right)=\Phi_{1}^{*}\left(v, 2^{43}\right)=5 \times 41 \times 93472763 \times 12835698347$
$\Phi_{1}\left(v, 2^{45}\right)=541 \times 13963 \times 26047888286741$
$\Phi_{1}\left(v, 2^{47}\right)=7 \times 10061 \times 2793891701436337$
$\Phi_{2}\left(v, 2^{49}\right)=\Phi_{1}^{*}\left(v, 2^{49}\right)=245956024699507266901$ is prime
$\Phi_{2}\left(v, 2^{51}\right)=\Phi_{1}^{*}\left(v, 2^{51}\right)=5 \times 229 \times 8423 \times 25502467080379$
$\Phi_{1}\left(v, 2^{53}\right)=7 \times 28110611045546184509$
$\Phi_{2}\left(v, 2^{53}\right)=\Phi_{1}^{*}\left(v, 2^{53}\right)=245947580450205947221$ is prime
$\Phi_{1}\left(v, 2^{55}\right)=13 \times 19 \times 796766392374848237$
$\Phi_{1}\left(v, 2^{57}\right)=601 \times 327636248432020643$
$\Phi_{1}\left(v, 2^{59}\right)=7 \times 1447 \times 19482844394498171$
$\Phi_{2}\left(v, 2^{61}\right)=\Phi_{1}^{*}\left(v, 2^{61}\right)=16183 \times 75731 \times 198808531457$
$\Phi_{2}\left(v, 2^{63}\right)=\Phi_{1}^{*}\left(v, 2^{63}\right)=5 \times 23 \times 41 \times 50208529292175167$
$\Phi_{1}\left(v, 2^{65}\right)=7 \times 46507 \times 717737600997047$
Theorem 4.1 highlights additional symmetries of the internal structure of the natural numbers. We will not expand upon these symmetries in the current article.

References

1. Apostol, Tom M. Introduction to analytic number theory. Springer Science \& Business Media, 2013.
2. Manin, Yu I., and Alexei A. Panchishkin. Number theory I: fundamental problems, ideas and theories. Vol. 49. Springer Science \& Business Media, 2013.
3. Diamond, Harold G. "Elementary methods in the study of the distribution of prime numbers." Bulletin of the American Mathematical Society 7.3 (1982): 553-589.
4. Newman, David J. "Simple analytic proof of the prime number theorem." The American Mathematical Monthly 87.9 (1980): 693-696.
5. Titchmarsh, Edward Charles, and David Rodney Heath-Brown. The theory of the Riemann zetafunction. Oxford University Press, 1986
6. Poussin, Charles Jean de La Vallee. Sur la fonction [zeta](s) de Riemann et le nombre des nombres premiers inferieurs à une limite donnée. Vol. 59. Hayez, 1899.
7. Pereira, N. Costa. "A Short Proof of Chebyshev's Theorem." The American Mathematical Monthly 92.7 (1985): 494-495.
8. Bateman, P. T., J. L. Selfridge, and S. Samuel Wagstaff. "The Editor's Corner: The New Mersenne Conjecture." The American Mathematical Monthly 96.2 (1989): 125-128.
9. Deléglise, Marc, and Joël Rivat. "Computing the summation of the Möbius function." Experimental Mathematics 5.4 (1996): 291-295.
10. Cashwell, Edmond, and C. J. Everett. "The ring of number-theoretic functions." Pacific Journal of Mathematics 9.4 (1959): 975-985.
11. Abramowitz, Milton, Irene A. Stegun, and Robert H. Romer. "Handbook of mathematical functions with formulas, graphs, and mathematical tables." (1988): 958-958.
