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Abstract 

Natural numbers have a strictly defined internal structure that is being revealed in the present article. 

This structure is inherent of the natural numbers and is not derived through the introduction of any 

axioms for the set of natural numbers. In the present article, we prove the fundamental theorems that 

determine this structure. As a consequence of this structure, a mathematical expression for the set of 

odd numbers that are not primes is derived. Given the set of odd numbers, we can identify the set of 

prime numbers. Additionally, a new method for expressing odd composite numbers as the product of 

powers of prime numbers is derived.  

 

1. Introduction 

      It holds that every product of natural numbers can also be written as a sum. The inverse (i.e. each 

sum of natural numbers can be written as a product) does not hold when 1 is excluded from the 

product. This is due to prime numbers p  which can be written as a product only in the form of 1p p 

. For this reason, the investigation of natural numbers should be done through their sum and not 

through their product. Such an investigation is presented in the present article.       

We prove that each natural number can be written as a sum of three or more consecutive 

natural numbers except of the powers of 2 and the prime numbers. Each power of 2 and each prime 

number cannot be written as a sum of three or more consecutive natural numbers. Primes play the 

same role for odd numbers as the powers of 2 for even numbers, and vice versa.  

    The present study reveals a strictly defined internal structure of natural numbers. This structure is 

inherent of the natural numbers and is not derived through the introduction of any axioms for the set of 

natural numbers . As a consequence of this structure, a mathematical expression for the set of odd 

numbers which are not primes is derived. 

      For practical reasons, we denote  the set of natural numbers excluding 0 , 1,2,3,... .  

2. THE SEQUENCE  μ k,n  

We consider the sequence of natural numbers  
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For the sequence  ,k n  the following theorem holds: 

Theorem 2.1. (First theorem for the sequence  ,k n )  

‘’ For the sequence  ,k n the following hold: 

1.   , 1,2,3,...k n    

2. No element of the sequence is a prime number. 

3. No element of the sequence is a power of 2 . 

4. The range of the sequence is all natural numbers that are not primes and are not powers of

2 . 

Proof.  

1.  ,k n  as a sum of natural numbers. 

2. 2,3,4,...n A  and therefore it holds that 

2

1 3

n

n



 
. 

Also we have that  

2 4

2 3
1

2 2

k n

k n

 


 

 

since k and 2,3,4,...n A  . Thus, the product  
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is always a product of two natural numbers different than 1 , thus the natural number  ,k n  

cannot be prime.  

3. Let that the natural number  
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   11 2 2n k n      .                                                                                                      (2.2) 

 

Equation (2.2) can hold if and only if there exist 1 2,    such as 

1 21 2 2 2n k n
 

      

 

 

and equivalently 
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We eliminate n  from equations (2.3) and we obtain 

1 22 1 2 2k
 
     

and equivalently 

2 12 1 2 2k
 

    

which is impossible since the first part of the equation is an odd number and the second part is 

an even number. Thus, the range of the sequence  ,k n does not include the powers of 2 . 

 4. We now prove that the range of the sequence  ,k n includes all natural numbers that are 

not primes and are not powers of 2 . Let a random natural number N which is not a prime nor a 

power of 2 . Then, N  can be written in the form 

N    

where at least one of the ,  is an odd number 3 . Let   be an odd number 3 . We will 

prove that there are always exist k and 2,3,4,...n A  such as 

 ,N k n     . 

         We consider the following two pairs of k and n : 
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        For every ,   it holds either the inequality 2 1    or the inequality 2 1   . 

Thus, for each pair of naturals  ,  , where   is odd, at least one of the pairs  1 1,k n , 

 2 2,k n  of equations (2.4), (2.5) is defined. We now prove that “when the natural number 1k of 

equation (2.4) is 1 0k  then the natural number 2k  of equation (2.5) is 2 1k  and additionally it 

holds that 2 2n  .”. For 1 0k  from equations (2.4) we take 

2 1    

and from equations (2.5) we have that 

 
2

2

2 1 1 2
1

2

2 1

k

n

 



  
 

 

 

and because 2  we obtain 
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      We now prove that when 2 0k   in equations (2.5), then in equations (2.4) it is 1 1k   and 

1 2n  . For 2 0k  , from equations (2.5) we obtain 

2 1    

and from equations (2.4) we get 
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      We now prove that at least one of the 1k and 2k is positive. Let  

1 20 0k k   . 

Then from equations (2.4) and (2.5) we have that 

 

2 1 0 1 2 0          .                                                                                        (2.6) 

 

Taking into account that 1  is odd, that is 2 1,     , we obtain from inequalities 

(2.6) 
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which is absurd. Thus, at least one of 1k and 2k is positive. 

      For equations (2.4) we take 
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For equations (2.5) we obtain 
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Thus, there are always exist k and 2,3,4,...n A  such as 

 ,N k n   for every N which is not a prime number and is not a power of 2 .   

Example 2.1. For the natural number 40N  we have 

40 5 8
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and from equations (2.4) we get 
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thus, we obtain 

 40 6,4 . 

Example 2.2. For the natural number 51N  , 

51 3 17 17 3N       

there are two cases. First case: 

51 3 17
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and from equations (2.4) we obtain 
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thus,  

 51 16,2 . 

Second case: 

51 17 3
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and from equations (2.5) we obtain 
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thus,  

 51 6,5 . 

     The second example expresses a general property of the sequence  ,k n . The more 

composite an odd number that is not prime (or an even number that is not a power of 2 ) is, the 

more are the  ,k n  combinations that generate it. 

Example 2.3. 

           

135 15 9 27 5 9 15 45 3 5 27 3 45

135 2,14 9,9 11,8 20,5 25,4 44,2     

           

     
. 

We now prove the following corollary: 

Corollary 2.1. “For the sequence   , , , 2,3,4,...k n k n A    the following hold: 
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2. 
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3. If they exist 

max
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possible natural numbers such as a natural number   can be written in the form  ,k n  , then it 

can be written at most with  

   max maxmin ,T T k n                                                                                                             (2.9) 

different ways.’’ 

Proof. 1. From equation (2.1) we get equivalently 

   

     

1

1

1

1

, ,

1 2 1 2

2 2

2 2

k n k n

n k n n k n

k n k n

k k

 

   


  



. 

The inverse is obvious. 

2. From equation (2.1) we get equivalently 

   1, ,k n k n   

           11 2 .... 1 2 ....k k k k n k k k k n               .                             (2.10)  

For 1n n  from equation (2.10) we get 
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and equivalently we get 

       1 1 11 2 3 ..... 0k n k n k n k n             

which is absurd. Similarly, we arrive at absurd for 1n n . Thus,  1n n . 

3. Based on 1 and 2 of the corollary, in  ,k n  sequence every k  cannot be combined with more 

than one n . Also, every n  cannot be combined with more than one k . Thus, if  max maxk n  the 

maximum number of possible pairs in  ,k n  sequences is equal to maxk . If max maxn k  the 

maximum number of possible pairs is equal to maxn . Thus, equation (2.10) holds.  

      From Theorem 2.1 the following corollary is derived: 

Corollary 2.2. “1. Every natural number which is not a power of 2 and is not a prime can be written as 

the sum of three or more consecutive natural numbers. 



 

 

2. Every power of 2  and every prime number cannot be written as the sum of three or more 

consecutive natural numbers.” 

Proof. Corollary 2.1 is a direct consequence of Theorem 2.1.  

 

3. The fundamental theorems for sequence  μ k,n  

      In this chapter we prove three of the fundamental theorems for sequence  ,k n . For the proof of 

the first of these theorems we first prove the following lemma:  

Lemma 3.1 ‘’For the sets 2 3 4 5, , ,A A A A ,  

2 / 2 4 , 0,1,2,...A x x                                                                                                      (3.1) 

3 / 3 4 , 0,1,2,...A x x                                                                                                      (3.2) 

4 / 4 4 , 0,1,2,...A x x                                                                                                      (3.3) 

5 / 5 4 , 0,1,2,...A x x                                                                                                      (3.4) 

the following hold: 

1. i jA A   for every , , 1,2,3,4i j i j  .                                                                         (3.5) 

2. 2 3 4 5 2,3,4,...A A A A A     . ‘’                                                                                    (3.6) 

Proof. 1. We will prove that it holds 

2 4A A    

and the proof is similar for the rest of the pairwise intersections of the sets 2 3 4 5, , ,A A A A . Let there exist 

a common element x  between the sets 2A and 4A , 2 4x A x A   . Then, there exist 

1 2, 0,1,2,...   such as 
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which is impossible, since the natural number in the first part of the equation is even and in the second 

part is odd.  

2. For every 2x A it holds: 

2 3 4 51 2 3x A x A x A x A          . Thus, starting from the set 2A  with 2x  and 0   

and by increasing x  continually by  1 , the natural number  4x   passes successively and repeatedly 

through all of the sets 2 3 4 5 2, , , , ,...A A A A A , producing the set 2,3,4,...A  .  

We now prove the following theorem: 

Theorem 3.1 (Second theorem for the sequence  ,k n ) 

‘’1. The even numbers 1 2 3 4, , ,    , 
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give, generate, all of the even numbers which are not a power of 2 . 

2. The odd numbers 1 2 3 4, , ,    , 
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give, generate, all of the odd numbers which are not primes.’’ 



 

 

Proof. We consider the natural numbers N  as given from equations 
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The way that we defined the natural numbers N in equations (3.9) allows k , 
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to obtain all values 1,2,3...k   in  ,k n sequence, and additionally the natural number n  takes all 

values 2,3,4,...n  . Thus, according to Theorem 2.1, equations (3.9) give all natural numbers which are 

not primes and are not powers of 2 .  We now consider the natural numbers   and   as given from 

equations  
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The natural numbers    of equations (3.10) are even and the natural numbers   of equations (3.11) 

are odd. Indicatively, we prove that the natural numbers   of the first of equations (3.10) are even. 

Similarly, we can prove the second of equations (3.10) as well as the equations (3.11). 

      In the first of equations (3.10) we have that 2 3n A A  . When 2n A then from equations (2.1) and 

(3.1) we get 
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which is an even number. When 3n A  then from equations (2.1) and (3.2) we obtain 
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which is an even. Following the same proof procedure we get 
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According to Theorem 2.1 and lemma 3.1 equations (3.12) give, generate, all even numbers that are not 

powers of 2 . Equations (3.13) give, generate all odd numbers that are not primes. 

      For the natural numbers , , 1,2,3,4i i i   of equations (3.12) and (3.13) the following hold: 
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Indicatively, we prove inequality    2 3, ,      : 
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which holds. Equality,    2 3, ,      , holds for 0   ( 0  cannot be substituted in  3 ,  

). Thus, we rewrite equations (3.12), (3.13) by substituting in ascending order the even numbers 

1 2 3 4, , ,    and the odd numbers 1 2 3 4, , ,     and we obtain equations (3.7) and (3.8).  

We now prove the following theorems: 

Theorem 3.2 (Third theorem for the sequence  ,k n ) 

‘For the sequence  ,k n , , 2,3,4,...k n A    the following equations hold 
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where  the set of integers.’’ 

Proof. 1. From equation (2.1) we obtain 
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and since 
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and with equation (2.1) we obtain 

     , , 1 ,k n k k n          . 
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Theorem 3.4. (Fourth theorem for the sequence  ,k n ) 

‘’The sequence  ,k n  , that is every even which is not a power of 2 and every odd which is not a 

prime, can be written in the form of equations 
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Proof. From equation (2.1) we obtain 
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and next we use equations (2.4) and (2.5).  

We now give the following definition: 

Definition. ‘’We say that the sequence   , , , 2,3,4,...k n k n A    is rearranged if there exist 

natural numbers 1 1,k n A  ,    1 1, ,k n k n  such as  

   1 1, ,k n k n  .’’                                                                                                                          (3.17) 

From equation (2.1) written in the form of  

       , 1 2 .....k n k k k k n          

two different types of rearrangement are derived: The “compression”, during which n  decreases with a 

simultaneous increase of k . The «decompression», during which n  increases with a simultaneous 

decrease of k . Such a rearrangement is given by the equation (3.16) of theorem 3.4. 

Example 3.1. 

For the pairs of example 2.3 we obtain 

a.    135 2,14 11,8    through the first of equations (3.16), (135 15 9 9 15    ). 

b.    135 9,9 25,4    through the third of equations (3.16), (135 5 27 27 5    ). 

c.    135 20,5 44,2    through the third of equations (3.16), (135 3 45 45 3    ). 

We now prove the following corollary: 

Corollary 3.1. ‘’For the natural numbers , , 1,2,3,4i i i   the following equations hold:  
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Proof. We prove the first two of equations (3.18) and in a similar way the rest of equations can be 

proved. From equations (3.8) and (3.7) we get, respectively, the following equations 
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We now observe that in equation (3.14) when  , jk n   and  , ik n      , 

, 1,2,3,...i j then the natural number  , 1k   is necessarily even. Thus, for  , jk n   and

 , ik n      , , 1,2,3,...i j  we have that 

 , 1 2 ,k                                                                                                                           (3.21) 

in equation (3.14). From the sum 

     1 2 .....k k k k n        

in equation (2.1) we conclude that, since the natural number  , 1k    is equal to 2 , 1,2,3,...  , in 

equation (3.14) the natural number k   is equal to 2 1  , that is 

2 1, 1,2,3,...k       .                                                                                                         (3.22) 

We solve the system of equations (3.21) and (3.22): 
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and from equation (3.14) we obtain 
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From equations (3.19) we conclude that the natural number  2 ,n   in equation (3.23) can only be 

 1 ,    or  3 ,   . Thus, there are two cases: 

For   12 ,n    from the first of equations (3.19) we get 2 4n    and from equation (3.23) we 

obtain 

      2 ,2 4 2 2 1,1 4 2 2 1,5 4 1 , 1 0                        

and with the first and fourth of equations (3.19) we obtain 

   1 4, 2 , 1 , 1            

which is the first of equations (3.18). For   32 ,n    from the third of equations (3.19) we get

5 4n   and from equations (3.23) we obtain 

   2 ,5 4 2 2 1,4 4            

and with the second and third of equations (3.19) we obtain 

   3 2, 2 ,         

which is the second of equations (3.18). Equations (3.18) give all of the possible cases that are derived 

from the combination of equations (3.23) and (3.19), (3.20).  

      The first four of the equations (3.18) are independent of the natural number  , while the fifth and 

six are independent of the natural number . A similar corollary is also derived from Theorem 3.1: 

Corollary 3.2. “For natural numbers , , 1,2,3,4i i i   the following equations hold 

   

   

   

   





1 1

2 2

3 3

4 4

, 1, 6 8

, 1, 8 8

, , 8 8

, 1, 10 8

1,2,3,...

0,1, 2,...

      

      

       

      





   

   

   

   





                                                                                                   (3.24) 



 

 

   

   

   

   





1 1

2 2

3 3

4 4

, 1, 6 8

, 1, 10 8

, 1, 12 8

, 1, 12 8

1,2,3,...

0,1, 2,...

      

      

      

      





   

   

   

   





.’’                                                                                               (3.25) 

Proof. We conduct the calculations in equations (3.24) and (3.25) taking into account equations (3.7) 

and (3.8).   

      Equations (3.24) and (3.25) are independent of the natural number  .  

      According to equation (3.17) the sequence   , , , 2,3,4,...k n k n A    is rearranged if there 

are exist natural numbers 1 1,k n A  ,    1 1, ,k n k n  such as the following equation holds 

   1 1, ,k n k n  .                                                                                                                            (3.26) 

The following corollary provides the criterion for the rearrangement of the sequence  ,k n .  

Corollary 3.3. ‘’1. The sequence  ,k n ,  ,k n A  can be compressed if and only if there exist 

, , 2n      which verify the equation 

   2 2 2 2 1 2 1 0

,

2

k n n

n

   

 



      



 

.                                                                                  (3.27) 

2. The sequence  ,k n ,  ,k n A  can be decompressed if and only if there exist 

, , k     which verify the equation  

   2 2 2 2 1 2 1 0

,

k n n

k

   

 



      





.                                                                                (3.28) 

3. The odd number 1   is prime if and only if the sequence  

 , 2

, ,

k n

k n A





  

 
                                                                                                                                 (3.29) 

cannot be rearranged. 

4. The odd   is prime if and only if the sequence 



 

 

21
, 1

2


  
    

 
                                                                                                                      (3.30) 

cannot be rearranged.’’ 

Proof. 1,2. We prove part 1 of the corollary and similarly number 2 can also be proven. From equation 

(3.26) we conclude that the sequence  ,k n  can be compressed if and only if there exist ,   

such as 

   , ,k n k n      . 

In this equation the natural number  n   belongs to the set 2,3,4,...A  and thus 

2 2n n      . Next, from equations (2.1) we obtain 

   , ,k n k n       

      1 21 2

2 2

n k nn k n             

and after the calculations we get equation (3.27). 

3. The sequence (3.29) is derived from equations (2.4) or (2.5) for     and 2  . Thus, in the 

product   the only odd number is  . If the sequence  ,k n in equation (3.29) cannot be 

rearranged then the odd number   has no divisors. Thus,  is prime. Obviously, the inverse also holds. 

4. First, we prove equations (3.30). From equation (2.1) we obtain: 

 
2

1
1 1 2 1

1 2
, 1

2 2


  
         

     
 

. 

In case that the odd number   is prime in equations (2.4), (2.5) the natural numbers ,   are unique

   , and from equation (2.15) we get 
1

1
2

k n


     . Thus, the sequence 

 
1

, , 1
2

k n 
  

   
 

cannot be rearranged. Conversely, if the sequence 

21
, 1

2


  
       

 
 cannot be rearranged the odd number   cannot be composite and 

thus  is prime.  

      Observing equations (3.27) and (3.28) we conclude that they exchange roles in the transformation  

   , ,      .                                                                                                                           (3.31) 



 

 

Transformation (3.31) is the pivotal characteristics of the rearrangement. Compression and 

decompression are two inverse processes between two “conditions” of the same natural number

 ,k n . 

      Equations (3.7) give the even numbers which are not powers of 2  using four mathematical 

expression 1 2 3 4, , ,    . We will now prove that all even numbers that are not powers of 2 can be 

expressed through two mathematical expressions. We now prove the following corollary: 

Corollary 3.4. ‘’1. Each even number which is not a power of 2  can be written in a unique way either in 

the form of 

1

1

1

2 1 1
2 , 1 2 , 1

2 2

2 1


 



  




     
            

  

  

                                                 (3.32) 

or in the form of 

1
1 1

2

1

1 2 1
2 ,2 1 2 ,2 1

2 2

1 2


   



  


 



      
          

  

  

                                          (3.33) 

where  and 1   is odd. 

2. Even numbers in the form of 1  have the minimum value of k  and the maximum value of n  among 

all possible rearrangements of the natural number  1 ,k n  . Even numbers in the form of 2  have 

the maximum value of k  and the minimum value of n among all possible rearrangements of the natural 

number  2 ,k n  . 

3. If the even number 1  cannot be compressed then the odd number   is prime. If the even number 

2  cannot be decompressed then   is prime.’’ 

Proof . 1. By consecutively dividing with 2  an even number  which is not a power of 2 we bring it in 

the form of  

2                                                                                                                                                  (3.34) 

where  and 1   is odd. 

If we assume that the same even number  is written in the form of 

1 2

1 2 1 2 2 12 2 , , ,
           we take 2 1

1 2 2
 

    which is impossible, since the first 

part of the equations is odd and the second is even. Thus, every even number which is not a power of 2  

can be written in a unique way in the form of equations (3.34). 



 

 

      From equation (3.34) it is derived that 

    and 2                                                                                                                               3.35) 

in equations (2.4) and (2.5). For 

2 1 2 2 1        

we obtain from equation (2.4) equation (3.32). For 

2 1 2 2 1        

we get from equation (2.5) equation (3.33). 

2. If the odd number   is prime, from corollary 3.3 it follows that the even numbers 1  and 2  cannot 

be rearranged. If the odd number   is composite then it can be written as the product of prime 

numbers ip , 

1 2 3..... sp p p p

s

 


.                                                                                                                              (3.36) 

In that case, from equations (2.4) και (2.5) we obtain 

1 2 3 1 2 3... ...

1 ,

l l l l sp p p p p p p p

l s l

      

  
                                                                                         (3.37) 

and by rearranging the primes , 1,2,3,.....,ip i s in the product of equations (3.36) different   and   

in equation (3.37) are derived. The maximum number of   derived from equation (3.36) is    . 

Thus, in equation (3.32), 1n   has the maximum value of n , where for the specific natural number 

in the form of  ,k n  is equivalent to the minimum value of k , as derived from equation (2.1) written 

in the form of        , 1 2 .....k n k k k k n         . Similarly, in equation (3.33), n has the 

minimum possible value for the natural number 2 , 12 1n     and consequently k  has the maximum 

possible value. 

3. Part 3 of corollary 3.4 is derived from Theorem 3.3, taking into account that the even number 1  

cannot be decompressed and the even number 2  cannot be compressed.   

      Corollary 3.4 gives every even number   which is not a power of 2 either in its more “extended” 

form (equation (3.32)) or in its more “condensed” form (equation (3.33)). We now prove the following 

corollary: 

Corollary 3.5 “Every odd number 1  can be written through at least one of the following 

mathematical expressions: 



 

 

1 1                                                                                                                                            (3.38) 

2 1   .’’                                                                                                                                     (3.39) 

Proof. If the odd number   follows a power of 2 then it precedes an even number   and thus it can 

be written in the form of 1 21 1       . If the odd number   precedes a power of 2 , then it 

follows an even number   and thus it can be written in the form of 1 21 1       . In all other 

cases, the odd number   is between two even numbers in the form of  and thus it can be written 

with at least one of the forms of equations (3.38), (3.39).  

      The study presented in chapters 2 and 3 reveals the internal structure of the natural numbers. The 

volume of information derived from this structure is extremely large. In the present article, we will 

present only two of the most important applications, which are a direct consequence of this structure: A 

method of calculating the set of prime numbers and a method of expressing a composite odd number as 

a product of powers of prime numbers.  

 

 4. TWO METHODS OF CALCULATING THE SET OF PRIME NUMBERS. 

    An initial method of calculating the set of prime numbers is derived from Theorem 2.1 and corollary 

2.1. Every natural number   in the form of  ,k n  , that is every natural number which is not a 

power of 2  and is not a prime can be written in the form of equation (2.1): 

  



1 2

2

, 2,3,4,...

n k n

k n A

 
 

  

                                                                                                              (4.1) 

and solving for k  we obtain equation 

1 2

n
k

n


 


.                                                                                                                                      (4.2) 

In equation (4.2) the natural number k  belongs to the set , k . Thus,  

1k   

and equivalently we get 

1
1 2

n

n


 


 

and equivalently  

2 3 2 2 0n n     .                                                                                                                         (4.3) 



 

 

From inequality (4.3) and taking into account that 2,3,4,... 2n A n    we obtain inequality 

8 1 3
2

2
n

  
  .                                                                                                                          (4.4) 

From inequality (4.4) we obtain for the maximum value maxn of n ,  

max

8 1 3 8 1 3

2 2
n

     
  
 

                                                                                             (4.5) 

where  x  the integer part of x .  

From equation (4.1) solving for n  we get  

 2 2 1 2 2 0n k n k       

and equivalently (since , 2n n  ) we obtain 

   
2

2 1 8 2 1

2

k k
n

    
 .                                                                                                     (4.6) 

Taking into account that 2n   from equation (4.6) we obtain 

   
2

2 1 8 2 1
2

2

k k    
  

and after the calculations we get 

3

3
k

 
 .                                                                                                                                           (4.7) 

From inequality (4.7) we get for the maximum value maxk of k  

max

3

3
k

 
  
 

.                                                                                                                                  (4.8) 

Easily, it can be proved that for every  it holds that 

8 1 3 3

2 3

   
   

and thus it is  



 

 

8 1 3 3

2 3

     
   
  

 

and thus from equations (4.5) and (4.8) we get 

max maxn k .                                                                                                                                           (4.9) 

From inequality (4.9) and corollary 2.1 we arrive at the conclusion that the number of pairs  ,k n in the 

sequence  ,k n   is at most maxn .                                                                                                               

        If a natural number   is not a power of 2 and is not a prime, then there exist at least one pair   

 
8 1 3 8 1 3

, , , 2,3, 4,.....,
2 2

k n k n
        

    
  

 

which satisfies equation (4.2). By conducting all of the trials, which are maxn , we obtain all of the pairs 

 ,k n  of the sequence  ,k n  . 

      In no natural number n exists,  

8 1 3 8 1 3
2,3,4,.....,

2 2
n

        
   

  

 

for which the number 
1 2

n
k

n


 


  belongs to the set ,  then the natural number   cannot be of 

the form  ,k n  . Thus, in that case, the natural number   is either a power of 2 or prime. 

      According to equation (4.5) in order to examine if an odd number   is prime at most 

max

8 1 3
2

2
n

   
  
 

 trials in equation (4.2) are required; which is the same number as the 

natural numbers n  that we have to test in equation (4.2) in order to examine if the derived number k  

belongs to the set of .  

If the odd number   is prime, all of the trials will have to be conducted. It is easily proven that the 

number of these trials is of the same or greater order of magnitude with the calculations (i.e. divisions) 

required using the standard method [1-8] when the odd number   is prime. Thus, the aforementioned 

method, just like the standard one, has the same limitations in its application: The large number of 

calculations that have to be performed in order to define large primes. 

      A question posed is whether the internal structure of natural numbers allows us to define the set of 

prime numbers, overcoming the aforementioned limitations. Theorem 3.1 provides an answer to this 



 

 

question: Equations (3.8) generate all of the odd numbers which are not primes. For     and

 in equations (3.8) the set of odd numbersC is derived,C ; this set contains all of the odd 

numbers which are not primes (above 9). Thus we can define the set of prime numbers CP through the 

empty positions of the odd numbers of the set C . Giving such a command to a computer, and not 

commands for calculating primes, we can define the set of prime numbers CP . After an initial 

calculation, setsC  and CP  will continuously expand over time. 

      Theorem 3.1 also applies to the statistical definition of individual large primes. Giving appropriate 

values to  the natural numbers ,  in equations (3.8) we can define and then remove a set of odd 

composite numbers from every subset D , D , of the set . In this way we increase the density of 

the possible prime numbers in the set D . Moreover, all of the odd numbers which are included in every 

open interval in the form of   , , , 1,2,3,4 ,i j i ji j      are primes when the odd numbers 

,i j  are consecutive. 

 

5. A METHOD OF EXPRESSING AN ODD COMPOSITE NUMBER AS A PRODUCT OF POWERS OF PRIME 

NUMBERS 

 

      Equations (3.8) provide a method of expressing an odd composite number as a product of powers of 

prime numbers. In order to apply this method, which is presented next, it is necessary that we know the 

sets 1 2 3, ,C C C CP     of the prime numbers p in the form of 

 

 

 

1

2

3

/ 2 3, 0,1,2,...,

/ 4 3, 0,1,2,...,

/ 4 5, 0,1,2,...,

C C

C C

C C

p p p prime P

p p p prime P

p p p prime P

 

 

 

      

      

      

.                                                      (5.1) 

      Let the composite odd number  , 9 . The odd number   has at least one of the mathematical 

expressions of the equations (3.8): 

       

   

   

  



1

2

3

4

2 2 1 4 3 , , 0,0

2 2 3 4 5

4 4 5 2 3

4 4 7 2 3

, 0,1, 2,...

     

   

   

   

 

      

     

     

     



.                                                                  (5.2) 

The composite odd number   is always written as a product of powers of prime numbers. In 

combination with equations (2.4), (2.5) we conclude that there always exist 0,1,2,... such as the 



 

 

odd numbers  4 3   or  4 5   or  2 3  in equations (5.2) are prime numbers. These factors are 

only dependent on 0,1,2,... and can be defined for the odd number  , since we know the sets

1 2 3, ,C C C CP    . Repeating the procedure for the odd numbers 

4 3 4 5 2 3  

  
 

  
 

we finally obtain the odd number   as a product of powers of prime numbers. 

      In the third and fourth of equations (5.2) the following inequalities hold 

   

   

2 3 4 4 5

2 3 4 4 7

  

  

   

   
                                                                                                           (5.3) 

thus inequality  

 2 3                                                                                                                                 (5.4) 

also holds. 

      The respective inequalities 

   

   

4 3 2 2 1

4 5 2 2 3

  

  

   

   
                                                                                                           (5.5) 

   4 3 4 5                                                                                                               (5.6) 

 for the first and the second of equations (5.2) hold in case that  

1   .                                                                                                                                        (5.7) 

       The aforementioned inequalities decrease the possible values of  , 0,1,2,...   for the odd 

number  . From equations (5.2) a further investigation for the factorization of the odd number  is 

derived.  

      The previously described method is completely different from the currently used methods [9-11] for 

the factorization of an odd composite number. The calculation of the set C  and, through it, of the sets 

CP and 1 2 3, ,C C C CP     is necessary for applications of the Number Theory in multiple fields. 

 

6. Equation  μ χ,ψ  

 



 

 

      We consider equation  ,   , 

   
  1 2

: , ,
2

  
     

 
                                                         (6.1) 

where  is the set of complex numbers. 

       We have proven that equations (3.19) give all odd numbers which are not primes and equations 

(3.20) all even numbers which are not powers of 2 . In these equations we have predefined the domain 

of the sequence  ,k n  , since  

 



,

2,3,4,...

k n A

A

 


. 

However, the general expression of the domain of the  ,k n  is given by equation 

                                                                                                                                 (6.2) 

where  is the set of integers. 

      With an appropriate domain, the sequence  ,k n  is also defined for negative values of k  and n . 

For example, it is easily proven, through conducting the calculations of equations (6.1), that the 

following equations hold 

   

   

 

 



1, 2 1, 2 1

, , 2 1

,

,

2,3, 4,...

k n n k n k n

k n n k n k n

k n

k n A

A

 

 



         

       

 

 



.                                                                  (6.3) 

      Taking as the domain of function  ,   the set 

    

where  the set of rational numbers it is easily proven, after the performing the calculations through  

equation (6.1), ), that the following equations hold 

 

 

2

2

2
, 1

2

, 2 1
2


  


  



 
  

 

 
   

 



.                                                                                                              (6.4) 



 

 

        The domain’s choice depends on the problem that we wish to solve using equations  ,   .  For 

domains in the form of   or  , where  is the set of real numbers, we can apply the 

methods of Calculus, in order to derive conclusions for the sequence  ,k n . By writing equation (4.2) 

in the forms  

 

 

 

 

1
1 2

, 2

1
1 2

, 2

x
k x

x

x x

n x
x

n x

x n x

 
   


  






   

 


  







                                                                                                          (6.5) 

we can easily prove the inequalities of Chapter 4 using derivatives. In a similar manner, we can prove 

number 2 of Corollary 3.4.  
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